Efficient Reservation-Based QoS Architecture

Rui Prior, Susana Sargento, Pedro Brand&o, and Sérgio Criséstomo

DCC & LIACC, Faculty of Sciences, University of Porto
Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
{rprior,ssargento,pbrandao,slc}@ncc.up.pt

Abstract. This paper describes a new architecture that provides end-
to-end QoS support, and analyses its performance in terms of QoS guar-
antees and scalability of the solution. This architecture introduces a scal-
able per-flow signalling model, using several techniques and algorithms
developed in order to minimise the computational complexity. A label
switching mechanism and an efficient timer implementation were devel-
oped with the goal of reducing the signalling processing overhead at each
router. The underlying architecture is based on DiffServ and the resource
reservation is performed for aggregates of flows at both core and access
networks. The performance results presented in this paper show that this
architecture is able to support both IntServ service models in high speed
networks, minimizing the processing load in each network element.

1 Introduction

The Internet nowadays only supports best effort service. Since this kind of service
cannot be mapped to the diversity of the applications and users requirements,
several techniques have been proposed in order to introduce Quality of Service
(QoS) support and service differentiation in the Internet.

The IETF proposed two main QoS architectures. The Integrated Services
(IntServ) architecture [1] uses per-flow reservation, through the Resource ReSer-
Vation Protocol (RSVP) [2], and provides strict QoS guarantees and efficient

resource usage. However, it has several scalability problems, concerning the per-.

flow scheduling, classification and reservation procedures. The Differentiated Ser-
vices (DiffServ) architecture [3] does not suffer from scalability problems: there
are no per-flow resource reservations, flows are aggregated in classes according
to specific characteristics, and services have a different treatment according to
their class. However, without admission control mechanisms to limit the number
of flows in the network, all flows belonging to a class may be degraded.

With the objective of benefiting from the virtues of both IntServ and DiffServ
and mitigating its problems, several architectures have been proposed in the lit-
erature. However, none of these architectures ensures simultaneously the strict
and differentiated QoS support and the maximization of the usage of network
resources without scalability concerns. For example, the SCORE architecture [4]
and its associated Dynamic Packet State (DPS), which consists on carrying the
state information in the header of every packet, keeping the stateless character

G. Ventre and R. Canonico (Eds.): MIPS 2003, LNCS 2899, pp. 168-181, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Efficient Reservation-Based QoS Architecture 169

~ of the network, imposes the same scheduling mechanisms in all routers and its

computational complexity is still high. In the “Egress Admission Control” [5]
architecture, only the egress routers perform resource management and admis-
sion control based on passive monitoring, but this architecture is not able to
assure strict QoS guarantees. The probing schemes [6,7] have also the advan-
tage of no network control required, but the flow setup times can be high, they
introduce themselves congestion-in the network, the measurements are impre-
cise, and they also suffer from a resource stealing problem. In [8] a framework
is proposed for the operation of IntServ over DiffServ networks, where an entire
DiffServ domain emulates a single network element in the end-to-end path, avoid-
ing signalling processing inside the domain. Without the support of end-to-end
signalling in the DiffServ network, the resource allocation is not optimised and
admission control is imprecise. Finally, the aggregation of per-flow reservations,
where the RSVP is extended to allow RSVP signalling messages to be hidden
inside an aggregate [9] benefits from the fact that the signalling messages are
only exchanged when the aggregate’s bandwidth needs to be updated. However,
aggregation implies a tradeoff: with high aggregation, more flows are rejected
and the utilization decreases; with small aggregation the decrease in utilization
is neglegible but the number of signalling messages remains high.

In this paper we propose a new architecture that provides end-to-end QoS
support without the problems of the previously mentioned ones. More specif-
ically, our proposed model does not impose a complex scheduling mechanism,
supports both soft and strict QoS guarantees, optimises the resource allocation,
and does not suffer from resource stealing problems. Moreover, it achieves the
same QoS guarantees as the aggregation model without a trade-off between sig-
nalling and utilization. The developed architecture is based on scalable per-flow
signalling and resource reservation for aggregates of flows at both transit (core)
and access networks. Several techniques and algorithms have been developed
aiming at the minimization of the computational complexity and, therefore, the
improvement of the signalling scalability. More specifically, a label switching
mechanism was developed with the goal of avoiding expensive lookups in flow
reservation tables. A scalable implementation of expiration timers for soft reser-
\}ations, with a complexity that is low and independent from the number of
flows, was also developed. In terms of QoS guarantees, this paper shows that
our architecture is able to support strict and soft QoS guarantees to each ﬁQw,
irrespectively of the behavior of the other flows in the same and in different
classes, and with increased scalability.

This paper is organized as follows. Section 2 presents a brief overview of the
system architecture, the service differentiation and traffic control techniques,
the label switching mechanism and the signalling protocol. In section 3 the per-
formance results of the developed end-to-end QoS architecture are shown and
analysed. In section 4, some considerations on performance and scalability are
presented and, finally, section 5 presents the most important conclusions, and
describes the future work to be performed and the extensions to be applied to
the architecture.

170 R. Prior et al.
2 System Architecture

The developed architecture, described with more detail in [10], combines the
strict end-to-end QoS guarantees of a signalling based approach with per-flow
reservations subject to admission control, both in terms of bounded delay and
minimal loss, with the efficiency and scalability provided by flow aggregation
and by several mechanisms and algorithms developed.

The underlying architecture of the proposed model is strongly based on Diff-
Serv (with which it may coexist) with the addition of signalling based reser-
vations subject to admission control. The network is partitioned into domains
consisting of core and edge nodes. In addition, access domains have also access,
nodes. Individual flows are aggregated according to service classes, mapped to
DiffServ compatible PHBs (Per-Hop Behaviors), and aggregate classification is
performed based on the DS field of the packet header.

Besides best effort, our model provides two additional service classes: the
Guaranteed Service (GS) class that is characterized by hard QoS assurance in
terms of both delivery guarantee and maximum delay, based on the same prin-

- ciples as the EF (Expedited Forwarding) PHB in DiffServ; and the Controlled

Load (CL) classes that emulate the behavior of a lightly loaded best effort net-
work, based on the AF (Assured Forwarding) PHB. The simplest queuing model
for the routers is depicted in figure 1. There are up to 4 different controlled load
service classes using DSCPs from other AF classes, provided these are not used
by DiffServ. In this case, the CL queuing block is replaced by the one shown in
figure 1-b. Reservations for traffic flows using the GS class are characterized by a
token bucket. Reservations for traffic flows using CL classes are characterized by
three average rate water-marks: packets exceeding the first two water-marks will
receive a degraded service in terms of drop probability; packets exceeding the
third water-mark will be dropped. Admission control (described with detail in
[10]) is performed at every node along the flow path, using different algorithms
for GS and CL.

As can be seen in figure 1, the highest priority queue, corresponding to the
GS traffic class, must be subject to a token-bucket type traffic shaper. The sig-
nalling/routing traffic, though not subject to admission control, must be shaped
in order to prevent starvation of the CL class. The CL class may also be shaped,

a) Single CL class

b) Multiple CL classes

Fig. 1. Queuing model

Efficient Reservation-Based QoS Architecture 171

but this is only needed if the network administrator wants to make sure that
some bandwidth always remains for best effort traffic. Contrary to the GS shaper,
these ones are work-conserving.

All nodes in the architecture perform signalling and support the previously
described queuing model. The access nodes perform per-flow policing for the
CL class and per-flow ingress shaping for the GS class. Edge nodes perform
aggregate policing and DSCP remarking. Core nodes perform no policing.

Probably the most scalability-limiting task for the core routers is the lookup
of the stored flow information, based on the 5-tuple parameters that specify the
flow, usually implemented using hash tables. In order to efficiently access the
reservation structures we developed a label switching mechanism which allows
direct access to these structures without any need for hash lookups. These la-
bels are 32 bit values whose meaning is externally opaque, but internally may
be an index to a table of reservation structures or the memory address of the
reservation structure. Three label fields are stored in this structure: B, T and F.
These label fields hold, respectively, the label to be used upstream (backwards),
the label for the router itself', and the label to be used downstream (forwards),
and are installed at reservation setup time.

The label switching mechanism has also strong advantages in all per-flow
processing, like policing performed at the access routers. The labels may also
be used to improve route change detection: a mismatch between the next hop
assigned by the routing tables with the one stored in the reservation structure
of the flow means that the route has changed. In order to profit from these
advantages on per-flow processing, all packets would need to carry the label
information. In [10], we present several proposals for the labels’ insertion in the
packet headers, both in IPv4 and IPv6. Notice that, in spite of these advantages,
the labels are not used for packet classification (except maybe at the access
routers), since it is performed on an aggregate basis, using just the DS field of
the IP header.

The signalling protocol works on a hop by hop basis, providing unidirectional,
soft state, sender initiated reservations. Although we have chosen to implement
it as an extension to the RSVP protocol, it is much more scalable, since (1)
the access to the flows’ information is direct using the labels, (2) timers for the
expiration of soft reservations are implemented in a very efficient way, and (3)
it uses simple reservation identification in order to decrease the length of the re-
fresh and explicit tear down messages. Since RSVP is meant to perform receiver
initiated reservations, we had to extend it by adding three new message types:
SResv (Sender Reservation), used to establish, refresh and modify reservations;
SResvStat (Sender Reservation Status), used for reservation confirmation and
error reporting; and SResvTear (Sender Reservation Tear Down), used to explic-
itly terminate a reservation. A detailed description of the signalling protocol is
available in [10].

Full SResv messages include flow identification, reservation quantification, a
LABEL_SETUP object (used to install the label), an identifier of the service

! The T label may be implicit.

172 R.. Prior et al.

class and a reservation expiration timeout value. The last two are conveyed by
a SRESV_PARMS object. Upon receiving an initial SResv message, the request
is subject to admission control; if accepted, the router updates the resource
reservation of the flow’s class, creates an entry in the reservation structure for
the flow, stores the label at the B field for this reservation, and forwards the
SResv message to the next router after changing the LABEL_SETUP to the
reservation entry assigned to this flow. If the flow cannot be accepted (anywhere
in the path), a SResvStat message is sent towards the sender reporting the
error. This message already makes use of the labels in order to access to the flow
reservation structure. When the SResv reaches the destination, all routers along
the path have reserved resources for the new flow and all labels required for
backward message processing are installed in the reservation state. The receiver
acknowledges the successful reservation by sending a SResvStat message towards
the sender, making use of the labels already installed in the opposite direction.
The LABEL object in this message is used to access the memory structure
for this reservation and the LABEL.SETUP object is stored in the F field of
each node. Each node switches the LABEL to the one installed at the B field
and forwards the message to the next node, until the sender is reached. Notice
that the SResvStat message will also trigger the commitment of the resource
reservation to both the policing and the queueing modules at the routers if the
reservation succeeded, or the removal from the admission control module if it
failed.

The reservations are soft state: if no SResvTear message is received and the
reservation is not refreshed, the associated timer expires and it is removed. The
basic implementation concept for timers is a sorted event queue: the processor
waits until the first timer value in the list expires, dequeues it, performs the
appropriate processing, then goes on waiting for the next timer value to expire.
While dequeuing an event is trivial, inserting an event with a random expiration
time is a very expensive operation, highly dependent on the total number of
events queued. Contrasting to the complexity of generic timers, fixed delay timers
are very simple and efficient to implement (a single FIFO queue). Trying to
achieve some sort of balance between the two types, we have created an algorithm
which has trivial timer queuing and a low and constant cost timer dequeuing,
providing eight possible timer delays in a base 2 logarithmic scale, providing a
range of 1:128. The implementation is based on eight different queues, each of
which has an associated fixed delay. Internally, therefore, these queues are served
using a FIFO discipline. Enqueuing an event is a simple matter of adding it to
the tail of the corresponding queue, which is trivial. Dequeuing an event means
choosing one of the eight possible queues (the one whose timers expires first)
and taking the first event from that queue.

Having a good range of reservation expiration timer values means that short-
lived flows will not remain stale for long times whenever something unusual
occurs (such as an application lockup or premature termination, or an undetected
route change) but longer-lived flows will not generate too much signalling traffic
just to refresh the reservation. Figure 2 shows the relative weight of the refresh
SResv messages in the total signalling traffic for flows with lifespans varying

Efficient Reservation-Based QoS Architecture 173

Refresh weight (%)

4 8 16 32 64 128 256 512
Expiration timer (s)

Fig. 2. Relative weight of refresh messages

from 15 s to 240 s using the eight possible different reservation timer values.
The base timer is 4 s, and refresh messages are sent at a rate that is 4 times
larger than the expiration timer rate to ensure that the reservation is correctly
refreshed even in the presence of some signalling traffic losses. As can be seen,
the weight of the refresh messages in the overall signalling traffic may vary from
0 to 98,6%, increases with the lifespan of the flows and decreases with the timer
duration. Applications should use timer values proportional to the expected flow
lifespan, representing a good tradeoff between signalling traffic and fast recovery
from faults. When the lifespan cannot be estimated a priori, the application may
use a short timer at first and increase it with refresh messages.

3 Performance Results

The architecture has been implemented using the ns-2 simulator, an extension
of the Nortel DiffServ implementation and Marc Greis’ RSVP patch. The Diff-
Serv extensions implemented include, among others, the possibility of aggregate
classification at the edge, the inclusion of multiple flows per node pair, dynamic
modification of meter parameters for policing, and the configuration of the to-
ken bucket traffic shaper in priority mode in order to handle non-conformant
aggregate GS traffic. These extensions are publicly available [11]. In this section
we present the performance results of the end-to-end QoS architecture. These
results mainly address the QoS guarantees achieved with the proposed model.
Though very important in our model, processing efficiency measurement is out
of the scope of this paper, since the ns-2 simulator is not suited to the evaluation
of processing delays.

The simulated scenario is depicted in figure 3. It includes 1 transit and 5
access domains. Each terminal in the access domains simulates a set of terminals.
The reason for having more than one access domain connected to an edge node
of the access and transit domains is to check that correct aggregate policing
is performed at the entry of the domain. The bandwidth of the connections
in the transit domain, and in the interconnections between the transit and the
access domains, is 10 Mbps. The propagation delay is 2 ms in the transit domain

174 R. Prior et al.

Fig. 3. Simulated scenario

connections and 1 ms in the interconnections between the access and the transit
domain.

In this scenario we consider the coexistence of GS, CL and BE classes. At each
referred connection, the bandwidth assigned to the signalling traffic is 1 Mbps.
Note that, although this seems very high, the unused signalling bandwidth is used
for BE traffic. The bandwidth assigned to the GS class is 3 Mbps, while for CL
it is 4 Mbps. The remaining bandwidth is used for BE traffic. The bandwidth
reserved for the GS and CL classes and left unused is also used for BE.

Each terminal of the access domains on the left side generates a set of flows
belonging to the GS, CL and BE classes. Each source may generate traffic to all
destinations; the destination of each flow is randomly chosen in the set of the
terminals in the right side access domains. The traffic belonging to each class is
a mixture of different types of flows.

All simulations presented in this paper are run for 5,400 simulation seconds,
and data for the first 1,800 seconds is discarded. All values presented are an
average of, at least, 5 simulation runs with different random seeds. The next
sub-sections present the results of these experiments.

3.1 End-to-End QoS Guarantees

In this set of experiments we evaluate the end-to-end QoS guarantees of both
GS and CL classes for different amounts of offered traffic in each class. In these
experiments the set of flows is distributed in the following way (tablel): (1)
traffic in the GS class is composed by CBR (Constant Bit Rate) flows (Voice
and Video256) and on-off exponential (Explgs) flows; (2) traffic in the CL class
is composed by on-off exponential (Explcl) and Pareto (Paretolcl) flows; and
(3) traffic in the BE class is composed by on-off Pareto (Paretolbe) and FTP
(Ftpbe) flows. The flows belonging to the BE class are active for the overall
duration of the simulations (there are 3 FTP and 2 Pareto flows per source),
while the flows in the other classes are initiated according to a Poisson process
with a certain mean time interval between calls (MTBC), and each flow has

Efficient Reservation-Based QoS Architecture 175

an average duration (Avg dur.) exponentially distributed. The characteristics of
these flows are summarized in table 1.

The largest Mean Offered Load (MOL) in the GS and CL classes is, in terms
of average traffic rates, about 20% higher than the bandwidth assigned to those
classes, which, due to different mixes of flow types, translates, in terms of re-
quested reserved rates (ROL - Requested Offered Load), in excess figures of 26%
(GS) and 42% (CL). The values presented in the table correspond to this maxi-
mum offered load, which we will denote as a load factor of 1. For lower amounts
of offered traffic, the mean time between flow generation events is increased in
the inverse proportion of the offered load factor.

For GS flows, the reservation rate (Resv rate) represents the rate of the token
bucket and the reservation burst (Resv burst) represents its depth. The reser-
vation parameters provide a small amount of slack to compensate for numerical
errors in floating point calculations. For CL flows, Low RR (Reservation Rate),
Resv rate and High RR represent the three rate water-marks used for drop prece-
dence selection and packet dropping at the policer. Admission control for the CL
class in these simulations is parameter-based, with the utilization limits for the
three rate water-marks set to 0.7, 1.0 and 1.7 times the bandwidth assigned to
this class. The sum of the rates in each water-mark for all flows in the class
must not exceed the respective utilization limits. Measurement-based admission
control is a topic for further implementation. Notice that both scheduling and
policing are performed on a per-class basis (except at the access routers).

Figures 4 (a, b and c) present the delay, jitter and loss, respectively, of both
GS and CL flows when the offered load factor of the GS flows is 1 and the offered
load factor of the CL flows increases from 0.5 to 1. As can be seen in the figures,
the average delay remains very low and almost constant for all flow types, except
for the GS exponential flows. For all except these, the delay is mostly the sum of
transmission and propagation delays. GS exponential flows suffer an additional,
and potentially large, delay at the ingress shaper of the access router when
they send at a rate larger than what they requested for long periods of time. It
is the applications’ fault, though, for transmitting non-conformant traffic. The
fact that the delay for the other GS flows remains very low shows that they
are not adversely affected. The delay for CL flows remains almost constant,
independently of the offered traffic. Jitter values exhibit a similar behavior for
GS flows. On the other hand, jitter for CL flows increases somewhat with the
offered CL load, which is expected due to the increased multiplexing. Regarding
losses, they are null for well behaved GS flows. In CL flows, packet losses increase

Table 1. Characteristics of the traffic flows

.

Class| Type [Peakrate|On time |Of time | Avg. rate| Pkt size | Resv rate | Resv burst] Low RR | High RR[MTBC | Avg dur. | M

(kbps) (ms) (ms) | (kbps) | (bytes) (kbps (bytes) (kbps) | (kbps) (s} (s} (kbps)
48 - 48 80 48.048 81 - - 45 120 768

256 000 | 256.256 1050 - - 180 240 2048

=
3
=

Voice
GS [Video256 256

|
)|
Wi

X
=
bl
=

Expl1gs 256 200 200 128 000 160 5000 - - 90 90 768 | 960

a Paretoicl 256 200 200 128 000 150 - 84 256 38 120 2425 | 2842

L Expict 258 200 200 128 000 150 - 64 256 38 120 2425 | 2842
Simult. Flows

Fipbe - - - - 1040 - - - - 3 per sic terminal | var. | N.A,

BE Ipareiofbs | 256 200|200 | 1285 | 1000 B - . — 1% per src terminal | 2304 | NA.

176 R. Prior et al.

with the offered load, but remain nevertheless very low (less than 0.03%). This
means we should probably be more aggressive by reducing the requested rate
water-marks for these flows. Losses for exponential GS flows are higher, though
small (j0.14%), and are due to buffer space limitation at the ingress shaper. At
the core, the average utilization of the GS class is just below 2.5 Mbps (83%),
and that of the CL class varies from 2.4 Mbps (60%) with a load factor of 0.5
to 3.1 Mbps (78%) with a load factor of 1, with a decreasing slope.

Figure 4 (d) presents the delay of both GS and CL flows when the offered load
of the GS flows increases from 0.5 to 1 and that of CL flows remains constant
at 1. The exponential GS flows exhibit larger delays compared to the one of the
other flows, as expected due to ingress shaping. Jitter and losses, not shown here
due to space limitations, have values comparable to the ones presented in the
previous experiments, though they do not vary with the GS offered load. At the
core, the average utilization of the GS class varies from 1.7 Mbps (57%) with a
load factor of 0.5 to 2.5 Mbps (83%) with a load factor of 1, while that of the
CL class remains constant at 3.1 Mbps (78%).

As was previously referred, we could be more aggressive on the requested rate
of the CL traffic flows. In the next experiments we will analyse the effect, on the
delay and packet losses of both GS and CL classes, of decreasing the requested
rate. Figures 5 (a and b) show, respectively, the variation of the delay and packet

100 ¢ E
100 . Voice - G5 —e—
5 Video -GS -
£ R 5 Expor’laential-%f -
E ial - areto - CL -
% xmrﬂ‘e‘?o -((i)L % 10 Exponential - CL._--—-#—
° Exponential - CL % 2
§ 5
g e T
s e
1
10 L L . . R .
05 055 0.6 065 0.7 075 0.8 085 0.9 095 1 05 055 06 065 07 075 0.8 085 09 095 1
CL offered load factor CL offered load factor
a) Mean delay vs CL offered load b) Jitter vs CL offered load
0.14
0,12 - -
100
g op 7 Voice - GS —a—
7 3 Video - GS ~-a-
2 008 oice - =
2 Vidgo - G§ ~~ar &
= 006 Exponential - G]
%’ . ParetoI gt - §
onential - -
& 004 2
0.02 =
0 fre g : . ol . .
05 055 0.6 065 0.7 0.75 0.8 0.85. 09 095 1 05 055 0.6 065 0.7 075 0.8 085 09 095 1
CL offered load factor GS offered load factor

c) Packet loss vs CL offered load d) Mean delay vs GS offered load

Fig. 4. Loss, delay and jitter vs offered CL and GS load

Efficient Reservation-Based QoS Architecture 177

Voice -GS —=— |
Video - GS -
Exponential - GS -
Parsto - CL. -
Exponential - CL_—-—»— |

100 06
Video - GS ~

Exponential - GS -
Pareto - CL. -
onential - CL_-—x—

Mean delay (ms)
Packet losses (%)

130 135 140 145 150 156 160 130 135 140 145 150 155 160
Reserved rate (kbps) Reserved rate (kbps)

a) Mean delay vs increasing reserved rate b) Packet loss vs increasing reserved rate

Fig. 5. Delay and packet losses with varying reserved rates for the CL flows

loss values with varying requested rates for CL flows. Here we have set the flow
acceptance utilization limits of the three rate water-marks to 0.7, 1.0 and 2.0
times the bandwidth assigned to CL in order to ensure that flow admission
would be performed based on the second rate water-mark, the varying factor
in these experiments. Since the average rate for both types of CL flows used
in this experiment is 128 kbps, we varied the requested rate from 130 kbps to
160 kbps, a little higher than the 150 kbps used in the previous experiments.
As a result, the average utilization of the CL class at the core decreased from
3.5 Mbps (88%) to 3.0 Mbps (75%).

The delay for CBR GS flows remains constant, and is approximately equal
to the sum of transmission and propagation delays. Exponential GS flows ex-
perience a much higher delay due to the ingress shaper. As expected, the delay
for CL flows decreases with the increasing requested rate, since the number of
accepted flows is lower. Jitter figures, though not shown, have a similar variation
pattern. The most interesting results for this group are the loss figures. Packet
loss in GS flows is not affected by the CL reservations, being null for conformant
flows. CL flows, on the other hand, exhibit increasing losses with decreasing re-
quested rates. With a requested rate of 130 kbps, which is only 1.6% higher than
the average transmission rate, packet loss for exponential CL flows is just below
0.5%, while for the heavier tailed Pareto it is slightly above 0.8%. This shows
that the architecture is also able to support soft QoS guarantees.

This set of experiments shows that our model, though being aggregation-
based, is able to support both strict and soft QoS guarantees and achieves com-
plete independence between traffic classes.

3.2 Independence between Flows

In this sub-section we evaluate the performance of the architecture in the pres-
ence of misbehaved flows, that is, flows that send at a rate much higher than the
one they requested for considerable periods of time. Moreover, we also analyse
the influence of misbehaved flows on well behaved ones. In order to protect the

178 R. Prior et al.

network from these flows, the access router performs per-flow ingress shaping for
GS class flows. This shaper absorbs multiplexing jitter from the terminal and
ensures that the traffic injected into the network does not exceed the reserved
parameters by absorbing application bursts above the requested bucket (of 5
packets in this case), thus protecting the other GS flows.

In this experiment, the mean offered load (MOL) for the GS class is 23%
larger than its assigned bandwidth (table 2). GS class includes three types of
flows: (1) a CBR flow (Video64) that is considered a well behaved flow; (2) a
on-off exponential flow (Explgs) with a burstiness of 50% (average busy and idle
times of 200 ms) and a peak rate of 256 kbps, that is considered a nearly well
behaved flow, since it sends at a rate a little higher than it is requesting; and (3)
a on-off exponential flow (Exp2gs) with varying burstiness and peak rate that
is considered a misbehaved flow, since it sends at a rate much larger than the
one it is requesting for considerable periods of time. Its burstiness is variable,
from 50% to 12.5%, varying its peak rate between 256 kbps (average busy and
idle times of 200 ms) and 1024 kbps (average busy and idle times of 50 ms and
350 ms, respectively). Notice that the sum of the average idle and busy times
remains constant (400 ms), as does the average rate. It is the high mismatch
between the requested rate and the peak transmission rate that turns Exp2gs
flows into misbehaved ones.

Figure 6 (a and b) depicts the packet loss ratio and the mean delay for all
three types of flows with increasing burstiness values of the mishehaved (Exp2gs)
flows. We may observe that the packet loss of both well behaved (Video64)
flows and nearly well behaved (Explgs) flows is, respectively, 0 and just above
0.1%. The packet loss of the misbehaved (Exp2gs) flows reaches 7.1% when its
burstiness reaches 12.5%. With such a burstiness, the peak rate of this type of
flows is much larger than the reserved rate, and a large number of packets is lost.
However, this misbehavior does not affect the previous flows. The mean delay
of the well behaved flows is very small, and is mainly due to transmission and
propagation delays. The nearly well behaved flows have a constant average delay
in the order of 160 ms, which is significantly larger than that of the well behaved
ones. Notice that this type of flow has a peak bandwidth approximately 100
kbps larger than the requested one, and therefore the packets will experience
some delay (and small amounts of losses) at the ingress shaper of the access
routers when the sources transmit at the peak rate for longer periods of time. As
expected, the misbehaved flows have a delay that increases with their burstiness.
With a burstiness of 12.5%, this delay can reach more than 400 ms. Jitter curves,
though not shown, exhibit the same behavior as the delay curves. Notice that
since all GS flows are aggregated and use the same queue, internally served in

Table 2. Characteristics of the GS traffic flows

Class| Type [Peakrate]On time [Off time [Avg. rate [PKt size [Resv rate | Resv burst | Low RR | High RR | MTBC | Avg dur. | MOL
(kbps} (ms) (ms) (kbps) | (bytes) | (ibps) (bytes) (kbps) | (kbps) () | (s) (kbps) | (kbps)
64 - .

ideob4gs - 84 500 64.064 501 - 75 40 1229 1 1230
GS [Expigs 256 200 200 128 1000 160 5000 - - 75 20 1229 | 1536
Exp2gs var. var. var. 128 1000 160 5000 - - 75 20 1229 | 1536

Efficient Reservation-Based QoS Architecture 179

a FIFO fashion, the queueing delay is shared by all GS flows. Therefore the
large delays for nearly well behaved and misbehaved flows are inflicted at the
ingress shaper. This reaction against misbehaved flows (in terms of large delays
and losses) is meant to protect the other GS flows. This way, well behaved flows
preserve a constant and small delay and no packet losses irrespectively of the
burstiness of the misbehaved flows. It is the applications’ fault for requesting
inadequate reservations in face of the traffic to be transmitted.

This experiment shows that the system reacts accordingly in the presence of
misbehaved flows, keeping a complete independence between flows. These results
are not unusual, and are to be expected in guaranteed service type classes. The
main achievement of our model is to provide these guarantees in a scalable,
aggregation-based architecture.

Due to space limitations, we do not present the same kind of experiments
for the CL class. In terms of packet losses, the results are similar, though not
providing absolute guarantees as in GS (packet losses are minimal, but not null).
This protection is due to the (re)marking (and dropping) of the excess traffic
at the access router. Forcing higher packet losses in excess traffic ensures that
network congestion remains low, protecting well behaved flows. On the other
hand, there is no delay penalty in misbehaved CL flows, since there is no shaping
in this class. This means that the CL class is more appropriate for misbehaved
flows with loose QoS requirements.

4 Considerations on Performance and Scalability

The previous section shows that the developed architecture is able to guarantee
both soft and strict end-to-end QoS support and achieves independence between
traffic classes. The performance in terms of QoS is, therefore, similar to that of
the IntServ architecture. ‘

Concerning scalability, the only quantifiable measures performed are the ones
of the algorithm developed to implement efficient expiration timers. We have
shown that our timer implementation, though very light in terms of processing,

450
400 |
350 |
300 } R
250 |
200 |
150 & S .
100 |
50 |

VidggG?gs
S
Exp2ts

Packet losses (%)
»
Mean delay (ms})

. 0 ? i
128 25 375 50 125 25 375 50
Burstiness (%) Burstiness (%)

a) Packet loss ws burstiness b) Mean delay vs burstiness

Fig. 6. Architecture performance in the presence of misbehaved flows

180 R. Prior et al.

is flexible enough to allow for a significant reduction in signalling traffic for long-
lived flows while, at the same time, avoiding stale reservations for long periods
of time in presence of application or network problems for short-lived ones.

The impact on scalability of aggregate-based classification and scheduling,
trivial admission control and label switching mechanisms is obvious, but can
only be quantified in a practical implementation. This implementation is a topic
for further work.

The heaviest task in our model is the per-flow policing and ingress shaping
at the access routers. Although this is not a huge problem, since the number of
flows at the access routers is usually small, its complexity is reduced to O(1) if
the labels are introduced in the data packet headers.

As a conclusion, we may state that our model achieves end-to-end QoS guar-
antees with per-flow signalling without the scalability concerns of IntServ.

5 Conclusions and Future Work

In this paper a new QoS architecture that scalably supports end-to-end QoS with
strict and soft guarantees was proposed, and performance results were presented.
This architecture includes per-flow signalling with enhanced scalability and re-
source reservation for aggregates of flows at both core and access networks, with
an underlying DiffServ architecture. In order to improve the signalling scalabil-
ity, several algorithms and techniques were introduced to reduce the signalling
messages’ processing at core and edge nodes, namely the label switching mech-
anism and the efficient implementation of expiration timers in soft reservations.
Moreover, all mechanisms related to packet classification and scheduling are
performed on a per-aggregate basis, making its complexity independent of the
number of flows, and the admission control decisions are based on aggregate
parameters trivially computed. The results presented in this paper show that
this architecture is able to support both IntServ service models .in high speed
networks, minimizing the processing load at each network element.

As future work, we plan to improve the simulation model with measurement-
based admission control in the controlled load class, and with the processing of
route changes. We also plan to compare the performance of our model with
that of others providing similar services and also aiming at high scalability. We
are particularly interested in models providing reservation aggregation [9] over
a DiffServ infrastructure. The expected outcome from these tests will be an
improved network resource utilization with our model, while assuring the same
quality of service. The drawback is increased signalling traffic, which we expect
will be compensated by our efficient signalling processing.

In order to evaluate and quantify the scalability of the solution as compared
to others, we plan to develop a prototype implementation.

Other topics for further research include the introduction of accounting and
charging models, security and privacy models, the integration with mobility and
wireless scenarios, and the possibility of interaction with QoS routing protocols
and multicast.

Efficient Reservation-Based QoS Architecture 181

References

10.

11.

. Braden, R., Clarck, D., Shenker, S.: Integrated Services in the Internet Architec-

ture: an Overview. RFC 1633, Internet Engineering Task Force (1994)

. Braden, R., Zhang, L., Berson, S., Herzog, S., Jamin, S.: Resource Reservation

Protocol (RSVP) - Version 1 Functional Specification. RFC 2205, Internet Engi-
neering Task Force (1997)

. Blake, 5., Blake, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture

for Differentiated Services. RFC 2475, Internet' Engineering Task Force (1998)

- Stoica, L.: Stateless Core: A Scalable Approach for Quality of Service in the Inter-

net. PhD thesis, Carnegie Mellon University (2000)

. Cetinkaya, C., Knightly, E.: Egress Admission Control. In: Proceedings of IEEE

INFOCOM 2000. (2000)

- Breslau, L., Knightly, E., Shenker, S., Stoica, I., Zhang, H.: Endpoint admission

control: Architectural issues and performance. In: Proceedings of ACM SIGCOMM
2000. (2000) ‘

Sargento, 8., Valadas, R., Knightly, E.: Resource Stealing in Endpoint Controlled
Multi-class Networks. In: Proceedings of IWDC 2001. (2001) Invited paper.
Bernet, Y., Ford, P., Yavatkar, R., Baker, F., Zhang, L., Speer, M., Braden, R.,
Davie, B., Wroclawski, J., Felstaine, E.: " A Framework for Integrated Services
(OQggrO&;tion over Diffserv Networks . RFC 2998, Internet Engineering Task Force
Baker, F., Iturralde, C., Faucheur, F.L., Davie, B.: Aggregation of RSVP for IPv4
and IPv6 Reservations. RFC 3175, Internet Engineering Task Force (2001)

Prior, R., Sargento, S., Cris stomo, S., Brand o, P.: End-to-end Quality of Ser-
vice with Scalable Reservations. INternational Conference on Telecommunication
System, Modeling and Analysis (accepted for publication) (2003)

?rior,) R.: ns DiffServ extensions. http://www.ncc.up.pt/ rprior/ns/index-en.html
2003

