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Abstract

Ad Hoc networks dramatically increase the network
security concerns. This paper presents a security pro-
tocol for ad hoc networks, denoted AD hoc SEcure
Routing (ADSER), that copes with the majority of
the security issues raised by the incremental deploy-
ment of ad hoc networks. This protocol copes with
message integrity and signing, encryption of infor-
mation and key distribution, with a low computa-
tional complexity in the majority of tasks performed.
ADSER takes as a baseline some current security
protocols and addresses the secure routing concerns
of both source routing and reactive next hop proto-
cols. This protocol is able to mitigate eavesdropping
through the encryption of data, identity problems
through signatures, trust issues through prevention
of wrong route advertisements, and replays through
sequence number and unique values generation.

1 Introduction

Nowadays, driven by the increasing users’ require-
ment to be connected to the Internet every-time and
everywhere, there is a vast amount of research in
the area of ad hoc networks. Their main objective
is to enable the autonomous creation of communica-
tion channels between mobile devices. These chan-
nels shall adapt to highly dynamical network con-
figurations, with nodes joining and leaving the net-
work. The node’s configuration must take into ac-
count that the number of nodes in the network is not
known, there are no special network entities (no cen-
tral servers expected), and that no user interaction for
the configuration of network connections is expected.

When network topology does not allow communi-
cations to be performed point to point, nodes are re-
quired to cooperate to forward packets. This leads
to many of the security problems associated with ad
hoc networks. Nodes that are asked to forward pack-
ets may not be inherently ’good’, and knowledge of
'goodness’ is difficult to obtain, since nodes are not
known ’a priori’. Another problem related to secu-
rity is that all nodes in the same radio range share
the same communication medium. This way, it is
very simple to listen to other nodes communications.
Moreover, most of the nodes in ad hoc networks are
low powered, in both processing and battery capac-
ity. Therefore, all tasks performed need to have low
complexity.

The inherent characteristics of ad hoc networks
lead to the following security concerns. Eavesdrop-
ping is the possibility to ’hear’ the data traversing
the shared medium. Denial of Service (DoS) attacks
can be performed by flooding the nodes with more re-
quests than they can handle, or flooding the medium
(with bogus data), invalidating any communication.
Identity problems are not specific of this type of net-
work but their solution is highly dependent on the ar-
chitecture/protocols used. We need to guarantee that
nodes are who they pretend to be. Trust issues are
related to the information nodes advertise, for exam-
ple, routing information. In ad hoc networks we need
to prevent the advertisement of wrong routes. Self-
ishness is not a security concern, but may prejudice
the network performance of nodes, since 'bad’ ones
can decide to selectively forward only some packets.
Finally, in replay attacks, nodes retransmit packets
sent previously by other nodes, hoping to replay the
actions to their profit.
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The level of security demanded determines the re-
strictions of the security architecture. For example,
in a military ad hoc network there is a mandatory
requirement to exclude non identified nodes from the
network, and eavesdropping on the network is not
even a possibility. In this scenario, even network ex-
istence must be concealed. However, in civilian net-
works, one can even question whether to remove a
'bad’ node from our usable nodes, or to keep it to con-
tact an, otherwise, unreachable node. This is merely
an example of solutions that are feasible to a certain
level of security, but are not even an option to other
levels.

In this paper we analyze some security protocols
and mechanisms applied to routing in ad hoc net-
works, in terms of their efficiency and complexity.
We realize that current proposals only address some
security issues, leaving other security concerns unat-
tended. With the objective of designing a security
protocol for ad hoc routing that copes with the ma-
jority of the security issues, we present a protocol, de-
noted AD hoc SEcure Routing (ADSER), that copes
with message integrity and signing, encryption of in-
formation and key distribution, with a low computa-
tional complexity in the majority of tasks performed.
ADSER takes as a baseline some current security pro-
tocols. The routing protocols considered in the de-
scription of the security mechanisms are source rout-
ing protocols and reactive next hop protocols: Dy-
namic Source Roting (DSR) [1] and Ad hoc On de-
mand Distance Vector routing (AODV) [2| will be
used as examples.

The paper is organized as follows. In section 2 we
address several proposals for secure routing in ad hoc
networks and evaluate them in terms of efficiency and
computational complexity. The proposals that will be
used as a baseline of the secure routing protocol, are
described in more detail in this section. In section
3 we present the security protocol ADSER, address-
ing its most relevant phases in source routing proto-
cols, namely: node joining the network in 3.1, getting
public keys in 3.2 and route discovery in 3.3. An ex-
tension of ADSER to reactive next hop protocols is
presented in section 4. Finally, section 5 addresses
some thoughts on the protocol evaluation and section
6 presents the most relevant conclusions and future
work.
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2 Protocols for Secure Routing in
Ad Hoc Networks

Several security mechanisms, aiming at providing se-
cure routing in ad hoc networks, have been proposed
in the literature. Some of the mechanisms are more
concerned with ensuring and enforcing good behav-
ior from the nodes in the network, while others in-
troduce cryptographic schemes to guarantee data in-
tegrity, confidentiality and signing. Here we present
some important approaches and qualitatively analyze
them in terms of efficiency and computational com-
plexity.

The proposals presented in [3] and [4] measure the
behavior of nodes. In these protocols, nodes watch
over each other to see if packets are forwarded cor-
rectly. As it is possible to listen promiscuously to
the medium, nodes verify that the next hop node for-
wards their packets correctly. If some node is not
correctly forwarding the packets, it will be avoided
by the routing protocols. Both these proposals suffer
when they encounter collision problems, transmission
power control or colluding nodes. Moreover, load pro-
cessing at a node is very high, because it is required to
store packets, listen to communications not addressed
to itself and make packets’ comparisons.

The mechanism proposed in [5] aims at providing
a path, from source to destination, with nodes only
from a specified security level. Nodes belong to a spe-
cific level by holding a symmetric encryption key for
that level; thus encryption and signing is performed
between nodes in the same level. This protocol tries
to establish different security groups in the network,
where routing messages are secured by encryption and
signing. Its downside is that there is high processing
load at each node, and key distribution is not ad-
dressed.

SAODV (Secure AODV) [6] is an extension of the
AODV routing protocol with security mechanisms
(refer to Appendix B for more details in AODV).
This extension provides signing of Route REQuest
(RREQ) and Route REPly (RREP) messages, so
senders and receivers can ascertain that routing mes-
sages are really sent by the source address indicated
in the routing message. SAODYV also provides truth-
ful metrics, with hash values correlating to the hop
count value. The problem of SAODV is that it does
neither address the encryption of messages, nor sig-



Ad Hoc & Sensor

natures of intermediate nodes. However, processing
capacity is alleviated through the use of less demand-
ing operations.

In |7], the Secure Routing Protocol is introduced.
SRP defines a source routing protocol that relies on a
security association established between the source
and destination nodes. This association is made
through a shared symmetric key, that is used to ver-
ify and validate routing messages. Verification of the
reply message, that entails the path, asserts the ve-
racity of the path found. The computational effort
related to cryptographic operations is only done at
the destination and source nodes. Message identifiers
are generated in a non-predictable way to mitigate
replays. Colluding nodes can attack the protocol (as
is described in the proposal). Key distribution is not
addressed.

The On-Demand Secure Routing Protocol Resilient
to Byzantine Failures (ODSBR) [8] detects link fault
locations, using a reactive approach, and adds cryp-
tographic schemes to guarantee data integrity, confi-
dentiality and signing. Ariadne [9] and Efficient Se-
curity Mechanisms for Routing Protocols (ESMRP)
[10] aim at lowering computational effort by using one
way functions and hash chains to secure respectively,
DSR and distance vector protocols. Finally, the Self
Securing Ad hoc Wireless Networks (SSAWN) [11]
addresses the key distribution problem, proposing the
definition of a distributed Certificate Authority (CA)
using threshold secret sharing [12]. These protocols,
ODSBR, Ariadne, ESMRP and SSAWN, will be used
as a baseline of the secure routing protocol presented
in this paper. Therefore, with the objective of provid-
ing a background on the baseline of our mechanisms,
we will address these protocols in more detail in the
following sub-sections.

2.1 On-Demand Secure Byzantine Rout-

ing Protocol

The aim of this protocol is to introduce a routing
algorithm that is able to cope with Byzantine fail-
ures (catching the ’bad’ nodes). Therefore, it provides
methods for encryption and signing of data, detection
of faulty links, and route discovery based on a met-
ric that weights the faultiness of links. This proposal
stems from the principle that only source and destina-
tion are to be trusted. Information in data packets is
encrypted with a shared key between source and des-
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tination. Every node has a list of link weights that
measure the expected reliability of every link known
by the node. A heavy weight means a small reliabil-
ity; this metric is used in the route discovery process.

The algorithm is divided in two phases: route dis-
covery and fault detection. All cryptographic opera-
tions are performed using shared keys.

Route discovery follows the principles of on de-
mand protocols (DSR is taken as example; refer to
Appendix B for more details): the source broadcasts
a RREQ and waits for a RREP. The RREQ mes-
sage is signed and carries a sequence number. Fach
node checks that the message comes from an autho-
rized node, checking the signature, and then signs
and forwards the RREQ. When the destination node
receives the request, it generates a signed RREP (in-
cluding the sequence number) with an empty node
list. This list is broadcasted by each node in the re-
turn path. Therefore, when a node receives a RREP
message it calculates the total cost so far, using its
internal weight list and the nodes list from the mes-
sage. If the total computed cost is lower than the
previous one, or if this is the first answer seen from
source and destination with that sequence number,
the node checks the signature of all nodes (verifying
the traveled path), adds itself to the path, signs the
message and broadcasts it. If the cost is higher or
equal, or if the signatures are not correct, the message
is dropped. When the source node receives the RREP
it uses the same algorithm (except broadcasting the
message), and updates its path list accordingly. The
source node can then use the ’lighter’ path to the
destination.

The signature check performed after the cost calcu-
lation does not prevent a malicious node from altering
the nodes list, and thus increase the cost of the path.
The advantage of the current approach is resource
savings, as the node only computes signatures if the
cost is lower than the previous one. However, with
this approach, it is also possible to delete nodes from
the end of the list. It suffices to remove them from the
list and remove their signatures. The authors men-
tioned in their proposal that the detection algorithm
(portrayed below) will detect this problem if the vir-
tual paths formed loose packets’ acknowledges.

Fault detection serves as input for the weight list.
It is performed using acknowledgements for data
packets. The procedure is as follows: the source
node encrypts the data for the destination and adds a
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packet counter (which identifies the packet) to the in-
formation to be sent. The destination node shall send
an acknowledgement for each data packet received. A
threshold for non-acknowledged packets exists. When
the number of non-acknowledges exceeds this thresh-
old the fault detection mechanism is triggered. Fault
detection uses probing to detect the link failure. Us-
ing a list of nodes that are to be probed, a binary
search on the path is performed. The list is added
to each data packet, and a new node is added to the
list each time the threshold is exceeded, until the two
edge nodes of the faulty link are detected. Each node
in this list shall acknowledge the packet (if it hears it),
so if the fault on a link is temporary, previous non-
answering nodes will acknowledge the packet. As can
be seen in figure 1, node 4 is requested to send an
acknowledge after the first, second and third failure
(until the probable faulty link is discovered). Node 3
is only added to the probe list after the third failure.

The probe list is ’onion’ encrypted, which means
that the information is encrypted for each node.
For example, when requesting acknowledges from
nodes 2, 3 and 4, this list is the result of the con-
catenation of the following encryptions (using the
shared key between S and 2, S and 3, S and 4):
List = Encs2(2 | Encss(3 | Encsa(4))), where | de-
notes concatenation of information and Enc the en-
cryption procedure. Each node in the probe list has
to decrypt the list before sending it to the next node
in the path. This way a malicious node cannot change
the probe list, only decrypt its onion layer.

The proposed protocol also adds constructs so that
each probed node can check that data is not modified
and prevent malicious nodes from dropping acknowl-
edges.

23 3 123 01,23

< O 4 ¢

O—EOF%O—0O—CEO—0O—0—
E] EndPoints X Faulty Link

YW
Probe sent to node after

O Intermediate Routers Y and W failures

Figure 1: Fault detection on ODSRB

In this proposal, signing and encryption are ad-
dressed, as long as keys are distributed (which is not
discussed); this addresses eavesdropping and identity
problems. Faulty links can be detected, and an al-
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gorithm to provide protection of route discovery is
portrayed, which accounts for trust issues. How-
ever, node removal from the path list is possible.
Nodes have to perform multiple signature checks be-
fore sending the packet (although only when a path
is better). Moreover, the computational complexity
of the probing process is very high.

2.2 Ariadne and Efficient Security Mech-
anisms for Routing Protocols

Through the use of one-way functions the authors
of Ariadne and ESMRP aim to provide identifica-
tion, proof of metric correctness and correct paths
with route discoveries, using low computational over-
heads. Ariadne addresses source routing protocols
and ESMRP deals with a generic distance vector pro-
tocol.

In Ariadne the authors introduce security in the
source routing protocol DSR. Its objective is to pro-
tect the path acquired in the route discovery process.
It is assumed that a shared key is already established
between source and destination nodes. For the cal-
culation of Message Authentication Codes (MACs),
used to provide message integrity, the nodes use digi-
tal signatures, shared keys or keys with a limited time
to live generated using hash functions (TESLA [13])
(see the Appendix A for information on hash func-
tions).

In route discovery, the RREQ carries the identifi-
cation of the destination, of the source and the identi-
fication of the request. The source calculates a MAC
with the shared key. The request is then broadcasted.

Each node that receives the request checks if this
is a new request; if not the message is dropped. Oth-
erwise, node i: (1) adds itself to a nodes list; (2) cal-
culates a new hash value using its identification (D)
and the previous hash value from the previous node
(i-1), using a one way function (H; = F(ID;|H;_1)
); and (3) calculates MAC of the message with the
new list. The message is then broadcasted with the
nodes list, new hash value, and a MACs list (contain-
ing the MACs made so far in the path). The hash
value and the MAC prevents the removal of nodes
from the nodes list, as in the destination node H;
must be F(IDJ| F(IDJ_]_| F(IDJ_2|. .. Ho). . ))),
and each MAC from the MACs list must be valid
(Hop is the MAC from the source node using the
shared key). Complete node removal, except for the
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source, is however possible, as Hy is accessible to ev-
ery node hearing the request, enabling the generation
of H1 — F(ID1|H0)

When the destination node receives the request it
checks the hash value as described. It also checks
the MAC from the source, using the shared key. The
destination then issues a reply sending the full path
and the MACs from the nodes list. A MAC of the
entire message using the shared key is also added.
The reply is now unicast to the reverse path. When
the sender receives the reply it checks the validity of
the MAC from the destination and of each MAC in
the nodes list.

Ariadne also provides security in routing errors and
proposes a path reliability assessment scheme.

ESMRP uses the same concepts of Ariadne, being
also based in hash functions. It adds identification
and metric correctness to distance vector protocols.

The protocol has a sequence number and a hop
metric. It ensures that a node does not decrease the
metric or increase the sequence number. To achieve
this, it generates a hash chain as shown in figure
2, where each hash value represents a given met-
ric associated with a given sequence number. The
hash values are derived as described in A, being
Hj; = F(Hj_1). Each row in the figure denotes the
hash values used for a specific sequence number. The
columns represent different metrics. Therefore, M is
the maximum hop metric value and that hash chain
can represent at most S different sequence numbers.
These values are globally known. Hg.ps is also dis-
closed by the requesting node with a signature as-
serting its origin.

When the node issues a RREQ), it adds a hash value
of the first column, corresponding to its current se-
quence number. Each node that hears the request
will increase the hash value using F(). Nodes can see
if the hash value corresponds to the hash chain (and
thus to the node), because they know Hg.ps.

When updating the routing tables, nodes follow
the normal procedures: update the entry if route is
fresher (larger sequence number); if it has the same
sequence number, the entry is updated if it has a bet-
ter (smaller) hop count.

Nodes cannot issue a larger sequence number and
decrease the metric, because it is unfeasible to reverse
F(). Nodes can maintain the hop metric, by not using
F() on the received value. Colluding nodes can thus
advertise better routes than the ones they really have.
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Figure 2: Hash chains for sequence number and hop
metric

Trying to force nodes to increase the metric, the au-
thors developed Hash Tree Chains. This construction
is based on creating a hash chain where each value is
connected to the other through a hash tree. Thus, it
is possible to authenticate values and to identify the
nodes sending the updates. Using this procedure, in-
termediary nodes have to increase the metric in order
to identify themselves. Receiving nodes check if the
node ID from which they receive the update matches
the ID from the hash value received. This construct
has some problems in networks with a large number
of nodes, since it is possible (with low probability) to
overhear hash values that will enable a same distance
fraud.

ESMRP also introduces methods for speeding up
the verification of hash values, helping in the preven-
tion of DoS attacks, by decreasing the effort needed
to verify hash chains.

In conclusion, Ariadne and ESMRP use low com-
plexity constructs to ease the nodes’ CPU usage. Re-
garding trust issues, routing metrics are protected.
Encryption is not available as TESLA (keys limited
in time) are used as basis. Some protection against
replays is possible. Key distribution is not addressed,
although shared keys are needed in both.

2.3 Self Securing Ad hoc Wireless Net-
works

This protocol strays a little from the previous ones,
as it does not specifically address routing issues.
Nonetheless, it focuses on key problems, which were
not tackled by other proposals (although they use
them).

The main objectives of SSAWN are to enable en-
cryption, authentication and non-repudiation ubiqg-
uity, ensuring high availability of the key system.
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Most cryptographic functions are performed in a dis-
tributed way.

The following discussion will center on the con-
cepts, leaving the mathematical proofs aside. The
interested reader is referred to [11] for further details.

This proposal uses threshold secret sharing (each
node has a part of the secret) with the following pre-
requisites for each node: (1) an unique ID, derived
from the node’s address, that is non forgeable (or
forgery is detected by Intrusion Detection System -
IDS), (2) a mechanism for local detection of misbe-
having nodes (usually an IDS), (3) at least K one-
hop neighboring nodes, and (4) a key pair for each
node (public and secret keys). As will be seen, the
encryption mechanism uses RSA (Rivest Shamir and
Adleman) asymmetric keys.

There is a global Secret Key (SK) and the corre-
sponding Public Key (PK). SK is ’divided’ into K
parts. The objective is that any K nodes holding a
partial secret will form a distributed Certificate Au-
thority (CA)! with SK.

Each neighboring node ¢ has a partial secret key
that is a function of its ID (Prp). The distribution of
Prp involves the generation of a polynomial of order
K-1, known only in the initial setup. Using Lagrange
interpolation, it is possible for K nodes holding a par-
tial secret share to recover SK. However, a coalition
of K-1 nodes holding a partial secret share does not
have any information about SK.

A node wanting to use the distributed CA must
contact K nodes that have a partial secret share (fig-
ure 3). These K nodes must be one-hop neighboring
nodes. This is due to the fact that it is easier to col-
lect reliable information about misbehavior of closer
nodes than multi-hop ones. As is expected PK is
known by all nodes.

Each node must have a certificate signed by SK
validating its key pair. This certificate has a limited
lifetime, to ensure continual renewal. A node must
ask K nodes to sign its key pair in order to acquire
a valid certificate. The K nodes accept the request
if the node has not been convicted of misbehavior,
according to each node’s internal information. Here
IDS systems can be used to gather knowledge about
node behavior.

Certificate renewal follows the same principles;
however the certificate cannot be in the Certificate

' A CA is an entity that issues certificates.
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Figure 3: Certificate request in SSAWN

Revocation List (CRL). A node enters this list (which
is local to each node) when the list owner, by direct
monitoring, observes malicious behavior or when K
different signed accusations are received by a node.
When a node observes misbehavior it broadcasts its
finding, signing the information.

A node can also request a partial secret to K nodes.
Using their partial secrets and the requesting node’s
ID, the K nodes issue a partial secret. Each node
consults its CRLs as for certificate issuing before an-
swering the node’s request.

Partial secret keys are also renewed periodically.
Note that the global SK remains the same; what
changes are the partial secrets (more precisely the
function that generates Prp). Each node (holder of a
partial secret) has a probability of starting this func-
tion renewal, in which case it uses K nodes to generate
an update polynomial. This polynomial is encrypted
using SK and broadcasted. Each node that receives
the change notification uses K nodes to update its
part of the share secret. This works even if the K
nodes have not updated their secrets, as long as all K
nodes have the same version of the function. Partial
secret shares from different versions of the function
cannot be used together, which makes impossible the
accumulation of partial secret shares through updates
by malicious nodes.

Any K nodes can be used to derive the SK. This
means that a node can roam to find nodes, collect-
ing results from answering nodes. Therefore, mobility
improves the availability of the distributed CA.

Initialization is done by an offline authority that
distributes the partial secrets by K initial nodes, or
through a coalition of K nodes using collaborative
admission control.

Regarding the possibility of malicious nodes send-
ing and/or generating false partial secrets for good
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nodes, the authors point to Verifiable Secret Sharing
(VSS) methods to recover from this problem. This
problem and the forgery of nodes IDs could make this
proposal vulnerable to Sybil attack [14], thus the im-
portance of the IDS system and VSS.

The value of K defines availability (K one-hop
nodes need to be reached) and security level (K nodes
must be taken over before malicious nodes can be-
came a CA). As is mentioned in the proposal, this
can lead to conflicting goals.

The performance evaluation performed by the au-
thors indicates that normal laptops can cope with the
computational work; however, low end devices may
experience some delays. As is easily perceived, there
is some computational work associated with this pro-
posal. Initial deployment, could also pose a prob-
lem. Nonetheless, a distributed key certification is
achieved, which enables keys distribution. Malicious
nodes, if detected by a needed IDS, are ignored by
the CA through CRLs.

3 Ad Hoc Secure Routing

In the war against malicious nodes in ad hoc networks
we consider that the battlefronts are:

1. Message integrity - message information
should be protected, MACs should be used;

2. Signing - to ensure information origin;

3. Encryption of information - the possibility
of encryption should exist (in routing and data
packets), the user/application could then define
its needs;

4. Key distribution/usage - this is an important
factor, as this must exist to enable striking the
second and third fronts;

5. Computational /Energy savings - a protocol
should try to minimize this spending, because
low-end devices are expected to be a large per-
centage of nodes in these types of networks.

Current proposals do not address the whole picture.
However, many of them focus on multiple aspects:
ODSBR has signing, message integrity, encryption
and path protection; Ariadne/ ESMRP deals with eas-
ing computational effort, path and metric protec-
tion and signing; Self-Securing tackles key distribu-
tion/usage. There is no proposal addressing all fronts.

The security protocol presented in this paper, de-
noted AD hoc SEcure Routing (ADSER), includes:
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(2) - signing (which enables message integrity (1)) us-
ing as basis ODSBR and Ariadne constructs; (2) and
(4) - availability of keys to allow encryption of data
using PK/SK pairs, distributed using a simple algo-
rithm and certified through a distributed CA as de-
scribed in SSAWN; and finally (5) - low complexity
tasks, resorting to Ariadne and ESMRP algorithms.

ADSER also defines the protection of path infor-
mation, resorting to ODSBR and Ariadne for source
routing protocols (DSR) and to ESMRP for reactive
next hop routing protocols (AODV). The difference
between the two protocols resides on the fact that
source route uses the overall path and reactive next
hop only knows the next hop of the path. Thus,
protecting the overall path information is needed in
source routing protocols (which also protects the hop
count metric), and hop metric protection is needed
in reactive next hop routing protocols. This is, of
course, based on the premise that hop count is used
to rank paths®. In both types the sequence number
also needs to be secured.

The following protocol will define procedures to en-
able safe route discovery. This will use hash functions
to ease computation, some encryption and signatures
to ensure the origin of messages (this will be described
in 3.3). The cryptographic functions will use asym-
metric public/secret keys. To allow nodes to have
the public keys of their corresponding nodes, a way
to obtain these keys will be depicted in 3.2. When
entering the network a node will have to follow some
steps to gather the necessary information to operate
in the network; this process will be described in sub-
section 3.1. The secure of route repairs and main-
tenance and routing errors is not mentioned in the
protocol description, as it follows the same principles
of the secure of route request and reply messages.

The detailed description of the protocol will only
dwell in the source routing problem (DSR will be used
as an example). Source path information will enable
a larger level of security, because the overall path is
known. Section 4 briefly describes the extensions ap-
plied to the security protocol in order to cope with
reactive next hop routing protocols (AODV will be
used as an example).

Securing data packets is not mentioned, but grant-
ing that public/secret key pairs exist, data can be
encrypted using these keys.

2Other types of metrics would imply different protections.
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3.1 Entering the network

When a node is brought to existence in the network
(either from boot up or from reaching radio range of
the network), it must perform several steps to assure
that its PK is distributed to interested nodes. All the
procedures described assume that the node’s address
is already configured.

First, the node will generate an /D that will enable
SSAWN. As describe in 2.3 this ID is derived from
the node’s address, and shall be unique and not forge-
able. Next, the node generates its key pair (public
and secret keys). The public key is then certified by
the K-coalition of nodes, again using the algorithm of
2.3. A certificate (CERT) asserting that pkjp is the
public key of node ID is the result of this algorithm.
The triplet {pkrp, ID, CERT} is then broadcasted
using a Time To Live (TTL) sufficient for dissemina-
tion of the node’s PK.

Nodes receiving this broadcast use the K-coalition
to verify the certificate. When the certificate holds
true, the node caches the triplet, and re-broadcasts
it. Certificates have an expiration time; this shall be
honored by purging entries from the cache that have
expired. Nodes shall also request the global PK for
the coalition, to be able to verify signatures and cer-
tificates made by the coalition. A global hash func-
tion F() shall also be received in this setup phase,
to enable the hash chains algorithms. This proce-
dure should be correctly protected as malicious node
should not be able to trick nodes with false F() an
PK. This is related to the bootstrap issues of SSAWN.

3.2 Getting Public Keys

When a node needs to encrypt data to other node or
verify its signature it needs its PK. A cache of triplets
{pkip, ID, CERTY} is to be maintained in the node,
as mentioned before. Nonetheless, the node may not
have the PK of the node with which it wants to corre-
spond. This can be due to the expiration of a previ-
ous triplet or its inexistence (broken links, small TTL,
node has just moved to a new location, etc). We will
describe in algorithm 1 a procedure that will enable
nodes to acquire public keys and certificates. This is
not based on any of the protocols described so far; it
tries to follow common rules of ad hoc protocols.
When a node requires a public key of other node,
it broadcasts a Public Key REQuest (PKREQ) (sim-
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ilar RREQ in DSR, described in Appendix B). The
contents of the PKREQ messages are presented in
algorithm 1. When a node receives the PKREQ), it
replies to the request with a Public Key REPly mes-
sage (PKREP) if it has the public key requested, or
it re-broadcasts the PKREQ to find a node with this
information. The PKREP message is broadcasted,
in contrast with RREP messages in DSR, in order
to increase the number of nodes knowing {pkrp, ID,
CERT}.

A node receiving the PKREQ message may ignore
it, if it already has received the same request before
and it still contains it in cache. To remove the request
from the cache there is a TIMEOUT? to rate-limit
sending new PKREQ. Additionally, a limit is imposed
in the number of PKREQ that can be sent?. When-
ever the TIMEOUT expires, the number of failures
increases. In the source node, reaching a defined limit
triggers a destination unreachable error to the appli-
cation. Intermediate nodes do not have application
requests. This process serves two purposes. First, it
enables re-requests for the same triplet (the request
in cache expires and new one is processed). Second,
it obviates overwhelming the network resources due
to unreachable nodes.

When a node receives a PKREP message, it ignores
the message if it already knows the public key being
broadcasted, or it stores the triplet in its list if the
public key is not known. Also, if it has a PKREQ for
that 1D in cache, it re-broadcasts the PKREP and re-
moves the PKREQ from the cache. This action stems
from the fact that nodes should only send replies to
queries that they have heard and have not yet an-
swered. Having a cached PKREQ) is the confirmation
of the existence of an unanswered PKREQ. This also
limits PKREPs.

Before caching the triplet the node must verify the
certificate (using the globally known PK).

3.3 Route discovery

In this sub-section we will describe the process for
route discovery. The primal objective is to protect
path information. This protection will be performed
based on a combination of ODSBR and Ariadne, to
develop a low complexity algorithm. ODSBR allows

®In DSR an exponential back-off algorithm is used for
RREQs.
4This is similar to AODV and its RREQs.
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Algorithm 1 Get PK
Node needing the PK for node I D
1. Broadcast request for key of the node identified by ID.
The request should carry an PKREQp correlated to ID
2. Add PKREQp to cache with TIMEOUT
3. If TIMEOUT expired

(a) Clear PKREQp from cache

(b) Increase number of failures for ID

(¢) If number of failures reaches MAX FAIL return
destination unreachable to application and stop
PKREQ sending

Each node hearing PKREQ
1. If PKREQp in cache ignore

2. Else If {pkip, ID, CERT} exists,

broadcast re-

ply PKREP with TTL=max hops, PKREPip =
PKREQp and the {pk;p, ID, CERT} (this includes
node ID)

3. Else

(a) Rebroadcast request
(b) Add PKREQ:p to cache with TIMEOUT

4. If TIMEOUT expired

(a) Clear PKREQp from cache

(b) Increase number of failures for ID

(c) If number of failures reaches MAX FAIL stop
PKREQ sending

Each node hearing the PKREP
1. If {pkip, ID, CERT} known ignore

2. Else if certificate verifies (using the global PK of the coali-
tion)
(a) Add to local tables
(b) If PKREQp in cache

i. Rebroadcast PKREP
ii. Remove PK REQpfrom cache

the removal of nodes from the end of the list. Ari-
adne does not protect the removal of every node ex-
cept the source. The introduction of the hash from
Ariadne prevents the first issue (it is unfeasible to
reverse F()) and the nonce® added here thwarts the
second. Additionally, using hash functions eases the
computational task of nodes when compared to the
"onion’ encryption of ODSBR.

ODSBR uses signature of the nodes as Ariadne,
but the latter uses keys with limited time to live
(TESLA). Here, these keys are not used as they make
temporal restrictions in key verifications and require
loosely coupled time synchronization. Shared keys of
ODSBR . pose a problem of distribution. Therefore,
in this case PK/SK pairs (described in the previous
sub-section) will be used®.

Value randomly generated only used once.
5Shared keys can be derived after connection establishment
using the public keys.

Each node needs to append security extensions to
the routing messages in order to secure the routing
and the overall path. The security extensions are de-
scribed in figure 4 for the source node and in figure 6
for intermediate nodes. Figures 5 and 7 illustrate the
process.

SSN = Sign(Option TypelSeq. Num.|Target
Addr |Source Addr|nonce_S)
CS = Crypt_Dest(SSN|nonce_S|Source Addr)
Hash = F(SSN|nonce_S|Source Addr)
SSs = Sign(Option TypelSeq. Num.|Target
Addr |Source Addr|CS)
SS = Sign(Option TypelSeq. Num.|Target
Addr |Source Addr|CS|Hash)
Mesg = Normal RREQ|SSs|CS|Hash|SS
Where

Crypt_Dest(Y) - crypt data Y with public
key of destination node
Sign(Y) - sign data Y using the private key

of the current node )
| - denotes data concatenation

F - is a hash function
and

Option Type - indication of message operation
(2 in DSR indicates a RREQ)

Seq. Num. - sequence number of request

nonce_S - value randomly generated by the
source node that can only be used once

Figure 4: Security extensions generated by the source
node

0 - [Normal RReQ [ 585 cs[ Hasho] ss]

1- |Norma| RREQlSSleSl Hash1| S|gs|—> =(SI1]8S)

= F(SI 1] IN1 | Hash0)
2 - [Nomal RREQ[ 555 C5] Hash2] sigs > = (s1 2| S5)

= F(SI 2 | IN2 | Hash0)

J - [Normal RReQ | sss[cs] Hasha] sigs > = (s1 4 | Sigs J-1)

=F(SIJ|IN J | Hash J-1)

J

¥

1 - [Normal RrREQ] s55] 5] Hashu+1] sigs > = (s1 J+1 | Sigs J)

= F(SI J+1 | IN J+1 | Hash J)

Source Node Intermediate Node

i- Verify SSs
ii- Verify SS
iii- Create SI 2

i- Create Nonce
ii- Create SSs

iii- Create SS

iv- Create CS

v- Create Hash 0
vi- Broadcast

iv- Create Hash 2
v- Broadcast
vi - Update Routing table

Intermediate Node Destination Node

i- Verify SSs i- Verify SSs

ii- Verify SI'J ii- Decrypt CS

iii- Create SI J+1 iii - Verify Hash J+1

iv- Create Hash J+1 iv- Verify Sigs

v- Broadcast v- Update Routing table

vi - Verify Sigs 1+1

vii- Update Routing table

Figure 5: ADSER Routing Request
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When a node sends a RREQ), it must be guaran-
teed that the RREQ was really sent by it. All nodes
in the path, including the destination, need to ver-
ify that source issued the RREQ. The SSs (Signature
Source simple) is the signature of all message parts
generated by the source, to provide source integrity.
The SSs generated certifies that the node with Source
Addr has sent the RREQ (Option Type =2) with a
specific sequence number (Seq. Num.) to search for
the destination node Target Addr. A Crypted Source
(CS), explained below, is also included in this sig-
nature to provide all information generated by the
source to the destination node. The sequence num-
ber must also be protected, because malicious nodes
could change it to advertise fresher routes using the
same signatures. The validation of the source node’s
signature stops invalid nodes (nodes in CRL) from
starting RREQ floods in the network. SSs is verified
in all nodes.

Two other signatures are required: SSN (Signa-
ture Source Nonce) and SS (Source Signature). SSN
is built using a nonce to prevent the removal of ev-
ery node from the node path, leaving only the source
node. This is related to the Hash, which follows Ari-
adne, and provides the confirmation of path traversal
(described below). Without a nonce, as every node
seeing the RREQ has access to SSs they could gen-
erate Hash. In this case 'S would not exist and thus
SSN would be S§Ss. SS, the other signature, signs the
information actually sent on the RREQ to the next
hop nodes.

The nonce is encrypted in CS with the public key
of the destination, so that only this node can extract
and verify SSN and nonce, and no other node can
access this. SSN and nonce will serve for the hash
chain verification.

The source node then broadcasts the overall mes-
sage Mesg (message 0 in figure 5).

Hash = F(SIs|Node Addr|Hash_previous)
SI = Sign(Option TypelSeq. Num.|Target
Addr |Source Addr|HC|CS|Node List)
Sigs = (SI|Sigs_previous)
Mesg = Normal RREQ|SSs|CS|Hash|Sigs
Figure 6: Security extensions generated by interme-

diate nodes

Intermediate nodes perform similar operations.
These nodes generate a SI (Signature Intermediate)
to certify that they actually processed the message.
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The receiving node will verify the overall path by val-
idating each signature in the Sigs list (which holds
all signatures). A Hash is generated to be used by
the destination node in the hash chain verification.
It is calculated from the previous hash, the SI and
the node address, so to form the required hash chain.
A node cannot build a different hash (with only the
nodes it wishes) because it has not access to SSN and
the nonce.

When the request is re-broadcasted, Mesg is sent,
with the security extensions appended to the RREQ.

Upon receiving a RREQ), an intermediate node ver-
ifies the last sender signature (SI) and the source
node signature (SSs), in order to assure the integrity
of the source and previous intermediate node. This
verification requires access to the PK of the signing
nodes. If the triplet is not available the procedure
described in 3.2 to get public keys shall be followed.
The validation of source node’s signature stops invalid
nodes (nodes in CRL) from starting RREQ floods in
the network. The last sender’s signature verification
halts immediately invalid nodes from being part of
the path.

If the integrity of both nodes is assured, the in-
termediate node proceeds its normal routing opera-
tions. The node verifies each signature in the path,
validating the nodes list in the RREQ), before adding
this route to its internal table. This check can be
done prior to re-broadcasting. That will stop in-
valid /adulterated RREQ from spreading, but will in-
flict a delay in the RREQ traversal. Valid paths
should occur more often than malicious ones, so over-
all, sending before verification should prove to be a
better option.

When the destination node receives the RREQ it
verifies the signature of the source node (SSs). Next
it decrypts CS, and verifies the Hash, performing the
hash chain verification to ascertain the integrity of
the overall path. Only if these checks hold, it will
verify the Sigs list, validating this list with the one
available in the RREQ message. If all verifications
hold correct, the node issues a normal RREP and
signs the message, including the nodes’ list.

The RREP message only needs to contain a sig-
nature of the destination (similar to SS, but for the
destination) and of the intermediate nodes (SI). Since
we are assuming bidirectional paths, the destination
node signs the complete list of nodes between the
source and destination (messages 1, 2 and 3 in fig-

10
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ure 7).
1 - | Normal RREP -ssm > Node List 1
L+1 -] Normal RREP | SSd1
2 - | Normal RREP | SSd2 1> N List 2
orma - ode List H+1 | Normal RREP | Ssd2
- | Normal RREP | SSd1
4 G+1 { Normal RREP[ 5503
5 - | Normal RREP | SSd2

Intermediate Node

©

i- Verify SSd
ii- Send
iii- Update routing table

Source Node

©)

i- Verify SSd
ii- Update routing table

X,

Destination Node

©

i- Create SSd
ii- Send

Intermediate Node

i- Verify SSd
ii- Send
iii- Update routing table

O\ .
S ':%4— 4—

.3
l' 2

Figure 7: ADSER Routing Reply

The RREP now travels back to the source. Each
intermediate node verifies the destination’s signature
and the one from the previous hop. If this holds true,
the RREP is re-broadcasted. The node can now add
the path to the destination to its internal routing ta-
ble. As the nodes’ list is signed by the destination,
one can trust that the path to the destination is not
altered, as it would only harm itself.

When the source node receives the RREP it checks
the signatures and adds the nodes’ list to its routing
table. As in normal DSR, if multiple paths are avail-
able, several RREP will arrive, and the source will
choose a path using the same algorithms as in DSR
(shortest path).

When RREP initiated by intermediate nodes are
to be used (see Appendix B), the node can cache the
RREP signature and send it when it sees a RREQ.
Certificate expiration (and thus key pairs expiration)
prevents cache old-age problems for intermediate and
source nodes.

3.3.1 Spontaneous RREP

When RREPs initiated by intermediate nodes are to
be used (see Appendix B), the node can cache the
RREP signature and send it when it sees a RREQ.
This signature will however only certify part of the
path. As illustrated in figure 8, if IN2 sends the
cached SSdI it will certify the previous path {IN4,
IN3, IN2, IN1}. To use the travelled path S2 needs
confirmation for {IN4, IN3, IN5, IN6}. To insure
this, the intermediate node will perform as forward-
ing the RREQ, calculating Hash, SI and Sigs. This
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will be added in the RREP, as the cached node list
and the cached signature. This can be seen in figure
9. The other intermediate nodes (IN5 and IN6 in
the figure) will be unable to certify the path because
they can not verify the Hash value. The source node
however will, if it has cached the nonce_ S associated
with the RREQ. It will then be able to proceed as
the destination when receiving the RREQ, verifying
the hash and the Sigs list. This will certify the path
to the intermediate node that sent the spontaneous
reply. The remaining path is certified by the cached
signature S5d and the cached node list.

The intermediate node should check if the cached
signature is still valid, that is, that it has not expired,
before sending the RREP. If the signature has expired
it must be deleted from the cache and no RREP sent.

Nodes will have to distinguish this reply from the
normal one. This can be done using a different Option
Type.

The destination node will not have a path to the
source node. A gratuitous RREP could be sent by
node IN2, following the RREQ methodology. This
would also be a different Option Type.

The originating node can nonetheless issue a RREQ
increasing the Dst Seq Nr so that Spontaneous RREP
will not occur and a complete RREQ, RREP proce-
dure is performed.

Source that sent the 1st RREQ

Source that issued a later RREQ

® {

et
. Cached
Node List {IN4, IN3, IN2, IN1}

Figure 8: ADSER Spontaneous Routing Reply

Hash = F(SIs|Node Addr|Hash_previous)
SI = Sign(Option TypelSeq. Num.|Target
Addr |Source Addr|HC|CS|Node List)
Sigs = (SI|Sigs_previous)
Mesg = Normal RREP|Cached SSd|Hash|Sigs|Cached List

Figure 9: Security extensions for Spontaneous RREP
generated by intermediate nodes

Certificate expiration (and thus key pairs expira-
tion) prevents cache old-age problems for intermedi-
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ate and source nodes.

4 Extensions to Reactive Next Hop
Protocols

The procedure for reactive next hop protocols is sim-
ilar to the one for source routing. In this sub-section
we will briefly describe the relevant differences. We
will address the example of AODV routing protocol
(described in Appendix B).

As mentioned, when protecting this type of pro-
tocol, the hop metric and sequence number will be
addressed using the algorithms of ESMRP, that force
the nodes to increase the hop metric.

When entering the network, a node will perform
the same steps of 3.1. To use ESMRP constructs,
each node also needs to build a hash tree chain for
each RREQ and RREP it starts.

In RREQ and RREP, nodes will verify the signa-
tures of the requesting node and the sender node.
Hop count and sequence number will be validated re-
sorting to the hash tree chain value. The top hash
should be sent signed. If correct, this value will be
incremented. The message will be signed and sent
(broadcasted in RREQ and unicasted in RREP, as
per normal routing behavior). At this point, a node
can add the information to the routing table if the
normal conditions for route updates hold (fresher se-
quence number, or same sequence number but better
hop count).

When the RREQ arrives at the end node, the node
performs the same checks. It can also update its rout-
ing table and send a signed RREP including the top
hash (signed) of a new tree hash chain. This guaran-
tees that in the reverse path verifications can be done
to the hop count/sequence number. The requesting
node performs the same confirmation procedures and
route updates.

The triplets {pkrp, ID, CERT} are also used here
for signing and validation purposes. Public keys are
obtained as described in 3.2. Certificate issuing is
also performed using SSAWN.

Reactive next hop protocols, although lighter in
routing message exchange, have the disadvantage
that the source node does not know which route its
packets will take before reaching their destinations.
Although some efforts can be made to secure this
traversal, source routing provides more knowledge
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about packets’ intended voyage.

5 Evaluation

In this sub-section we will address several global as-
pects of the protocol described. It will serve as a
wrap-up and to pinpoint some issues.

The protocol described, ADSER, tries to secure a
route discovery process and to distribute keys to all
nodes, to allow encryption and signature, using low
complexity functions when possible.

As mentioned, techniques from ODSBR, Ari-
adne/ESMRP and SSAWN were used to achieve this.
Additions were made to the route discovery process
to mitigate node suppression.

The portrayed protocol addresses/mitigates the fol-
lowing issues:

e Eavesdropping - the deployment of PK/SK
pairs and their associated signature allow nodes
to encrypt data and prevent this issue;
Identity problems - the signatures used allow
the verification of identity. Together with CRL,
nodes can be prevented from operating in the
network. This authorization should be more fine
grained (a node should be authorized for some
things but not others). The population of CRL
should also be more defined. The problem of
certificate stealing is not addressed. To achieve
this, a node should assume the ID of the in-
tended node and steal its certificate. The ID
theft should be protected by IDS;

Trust issues - care was taken in validating rel-
evant information regarding routing protocols.
Nodes are thus prevented from advertising better
route characteristics than what they have and/or
lie about that information. Selfishness was not
addressed here. Although this can be an issue to
take into account, it is more related to fairness
than security issues;

Replays - by using sequence number and
nonces, ADSER deals with the replay of previous
messages. Sequence number and nonce genera-
tion was not portrayed, but should be a protected
procedure.

DoS attacks were not discussed. Although some con-
trol can be made through the use of CRL lists to
ignore nodes, this was not exploited to full poten-
tial in the text. This brings to focus the use of IDSs
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in the network. They should not grow to be a full
blown IDS system, but rather the sufficient to eval-
uate node behavior (in accordance to some defined
factors). The use of an IDS could also provide infor-
mation regarding route metrics. ODSBR uses a link
failure detection approach that, in our opinion, de-
mands too much message exchange without the pro-
portional benefits. However, a security metric should
be obtained so that nodes can choose a path based
on its security qualities.

The protocol discussed here tried not to abuse net-
work resources (bandwidth and nodes” CPU), but the
use of the coalition of K nodes in SSAWN, involves
a bit of both resources. However, they will only be
used when a node needs to sign its triplet (and in par-
tial secrets update). Certification expiration time will
be a factor to balance between security and resources
usage (together with K as discussed in 2.3).

6 Conclusions

In this paper, a security protocol for ad hoc networks,
ADSER, was presented. This protocol includes mech-
anisms to cope with the majority of the security is-
sues of ad hoc networks, and tries to secure a route
discovery process and to distribute keys to all nodes,
to allow encryption and signature making, using low
complexity functions when possible. ADSER takes
as a baseline some current security protocols and ad-
dresses the secure routing concerns of both source
routing and reactive next hop protocols. This pro-
tocol is able to mitigate eavesdropping through the
encryption of data, identity problems through signa-
tures, trust issues through prevention of wrong route
advertisements, and replays through sequence num-
ber and unique values generation.

As future work, it is planned to study the inter-
action of ADSER with IDS, and to address security
issues of bootstrap phase. Our plan is also to address,
through network simulations, the overhead due to the

security process and the performance evaluation of
ADSER.

A Hash Chains

Hash chains are based on one way functions. These
functions cannot be reversed, so if we compute
h = F(j), being F() a one way function or hash,
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there is no feasible computational way of deriving j
from h. This means that if we release h as result of a
hash then we must also have/know j. Hash chains are
built applying the one way function recursively, that
is H, = F(Hy_1), where each Hy for 0 < k < N is an
element of the chain. Hy is the top of the chain, or
top hash. A value J is part of the chain if it is possible
to hash it to get Hy, that is Hy = Fk(J), meaning
that J = Hj and k = N-j, for some 0 < j < N.

B AODV and DSR

The objective of these protocols is to find routes in
an ad hoc network. Both are on-demand, meaning
that only when a node wants to transmit data does
it search for a route to the destination. AODV (Ad
hoc On demand Distance Vector) [2] has reached a
RFC form and DSR (Dynamic Source Routing) [1] is
currently an Internet Draft from IETF. DSR is source
based (each packet has the route to be traveled explic-
itly set), whereas AODV is table driven (each node
that receives the packet has to perform a routing ta-
ble lookup to discover the next hop for the given des-
tination). There are other ad-hoc routing protocols
that also use tables lookup, but differ from AODV.
This leads to the use of ’reactive next hop’ routing
protocol to characterize it (reactive in the sense of
on-demand).

The protocols, however, share some common prin-
ciples of operation. When a node needs to reach an-
other one, it consults its internal cache for the route.
If it does not find one, it broadcasts a RREQ (Route
REQuest) to query the network. Nodes hearing the
broadcast should make the same check on their in-
ternal cache. If they have a route for the destination
node or if they are the destination node, they should
originate a RREP (Route REPly). If none of the
previous conditions hold, the node must re-broadcast
the RREQ, but only if it is the first time it sees the
request (request identifier in the RREQ allows this
verification). As these requests are broadcast, each
node (including the destination) will hear the same
request repeated, arriving by different paths.

The RREP differs in each protocol. In DSR all
RREQs are replied by the destination, originating
multiple RREPs. This behavior of DSR enables
caching different routes to the same destination. In
AODV only one route is known for each destination

13
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and a destination node only sends one RREP. That
means that, a RREP is only sent for the first RREQ
received.

In DSR the RREQ and RREP messages have a field
that contains all nodes where the packet has passed,
which allows the node issuing the RREP to use this
field to address the RREP. The node that started the
request (and that receives the various RREP) has its
answer from this field. Nodes hearing the RREQ or
RREP can use the path field to update their internal
routing table. In AODV, only the next hop for a
given destination is known. Thus, when forwarding
RREP or RREQ, nodes update the routing table to
the destination or source respectively with the node
that sent the message. The 'construction’ of this path
is the answer that the route requester receives.
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