Applied Cryptography
 Week \#1 Extra

Bernardo Portela and Rogério Reis

2023/2024

Important

- Your answers must always be accompanied by a justification. Presenting the final result (e.g. the result of a calculation) without the rationale that laid to said result will result in a grade of 0 .
- Submit your answers via e-mail to bernardo.portela@fc.up.pt, with adequate identification of the group and its members.

Notation:

Note: reverse denotes the function that takes a bit string and produces the reverse bit string. || denotes the concatenation of bit-strings. \oplus denotes the bit-wise XOR operation. x^{n} is the representation of n times x in sequence, e.g. $0^{3}=000 . \leftarrow$ denotes generating uniformly random values from a given set.

These notations will be common throughout the proposed exercises during the semester.

Q1: Semantically secure schemes

Consider a (one-time) semantically secure encryption scheme (E, D), with message and ciphertext space $\{0,1\}^{n}$. We now want to propose an alternative encryption scheme (E^{\prime}, D^{\prime}). Consider the following alternatives:

1. $E^{\prime}(k, m)=\operatorname{reverse}(E(k, m))$
2. $E^{\prime}(k, m)=E\left(0^{n}, m\right)$
3. $E^{\prime}(k, m)=E(k, m) \| 0$
4. $E^{\prime}(k, m)=E(k, m) \oplus 1^{n}$
5. $E^{\prime}(k, m)=E\left(k, 0^{n}\right)$
6. $E^{\prime}(k, m)=E(k, m) \| m$
7. $E^{\prime}\left(\left(k, k^{\prime}\right),\left(m, m^{\prime}\right)\right)=E(k, m) \| E\left(k^{\prime}, m^{\prime}\right)$

Question: Which of the encryption schemes E^{\prime} are also (one-time) semantically secure?

Q2: Shifting the alphabet

Consider the following encryption scheme (E, D), with message and ciphertext space the english alphabet, considering words of size n. The scheme is as follows:

- Generate a key k with n uniform values [$0 \ldots 25$]
- $E(k, m)$ shifts the letters of m according to k, producing c
- $D(k, m)$ takes c and applies the reverse shift according to k

A simple example of how this encryption scheme works:

- $k=\{3,7,1,20,15,2\}$
- $m=$ banana
- $c=$ ehoucc

Question: Is the proposed scheme E perfectly secure?

Q3: Secret Sharing

Secret sharing is a method for distributing a secret by breaking it into shares, which are distributed over multiple participants. This is done in such a way that no individual holds enough information about the secret to recover it, but such that when a threshold of participants in the group combine their information, the secret can be retrieved. There are somewhat complex ways to do secret sharing, by representing the secret as points in a polynomial, and using polynomial interpolation to reconstruct it, also known as Shamir Secret Sharing. These are important building blocks for an area of advanced cryptography, also known as secure computation.

We will now consider a much simpler way to do it, which is simply to use something that cryptographers love: the $\operatorname{XOR}(\oplus)$. To exemplify how this can be done, lets do it such that message m is broken into shares m_{1}, m_{2}, m_{3}, and can only be recovered if all shares are gathered.

- $m_{1} \leftarrow s\{0,1\}^{n}$
- $m_{2} \leftarrow\left\{\{0,1\}^{n}\right.$
- $m_{3} \leftarrow m \oplus m_{1} \oplus m_{2}$

Observe that, without knowledge of all secrets, all possible values of m are equally probable. However, when all secrets are combined, we can compute $m=m_{1} \oplus m_{2} \oplus m_{3}$ and recover the message.
This will be used to distribute a message $m \in\{0,1\}^{n}$, divided into six secrets, and distributed over three participants P_{1}, \ldots, P_{3}, such that no two participants can recover the message, but all three participants should be able to recover the message.

- $P_{1}:\left(m_{1}, m_{2}\right) ; P_{2}:\left(m_{3}, m_{4}\right) ; P_{3}:$?

The following are alternatives to shares, to be given to P_{3}

1. $\left(m_{5}, m_{6}\right)$
2. $\left(m_{3}, m_{4}, m_{5}, m_{6}\right)$
3. $\left(m_{2}, m_{3}, m_{5}, m_{6}\right)$
4. $\left(m_{1}, m_{4}, m_{5}\right)$

Question - P1: Explain which of the proposed alternatives meets the aforementioned criteria.
Question - P2: Propose an alternative distribution of these six secrets over the same three participants, in a way that now allows for any two participants to recover the message.

