Applied Cryptography

Week #11 Extra

Bernardo Portela and Rogério Reis

2023/2024

Important

» Your answers must always be accompanied by a justification. Presenting the final result (e.g. the
result of a calculation) without the rationale that laid to said result will result in a grade of 0.

e Submit your answers via e-mail to bernardo.portela@fc.up.pt, with adequate identification of the
group and its members.

Q1: Man-in-the-Middle

Implement a prototype that demonstrates how a Man-in-the-Middle attack can occur in a standard
unauthenticated Diffie-Hellman key exchange. As usual, this happens between usual suspects Alice
and Bob. In appendix, you can find three files:

e config is a configuration file that is used by Alice and Bob to know who to talk to.

o alice.py establishes a connection with Bob (hopefully), and performs the Diffie-Hellman key
exchange.

e bob.py mirrors the behavior of Alice.

The goal of the work is to design the man-in-the-middle adversary code: mitm.py. Your code must
convince Alice and Bob to instead talk to him, and perform a key exchange with him. Your attack
must not change the source code of Alice or Bob. Your attack is successful if Alice and Bob are
not agreeing on the same secret, and instead the secrets they have agreed to are both known to the
adversary.

Suggestion: Start by analysing the code for Alice and Bob, what are they using to communicate?
How can we subvert this mechanism to be more... convenient?

References: To facilitate communication, this code uses pwntools (reference). It is not mandatory to
use this, but the library considerably facilitates communication.

Q2: ECC

The following is a naive attempt at an elliptic curve signature scheme. Consider a global elliptic curve,
prime p and generator GG. The scheme works as follows.

o Alice picks a private signing key sk and forms the public verifying key by computing pk4 < ska-G

o To sign message m, Alice picks a random value k, and computes the signature o < m —k-ska-G.
It then sends to Bob the tuple (m, k, o)

 To verify the signature, Bob checks that m = o+ k- pk4. If this is true, the signature is validated.


https://github.com/Gallopsled/pwntools

Question - P1: Show that the scheme works, i.e. show that, for correctly signed messages, the
verification algorithm works accordingly.

Question - P2: Show that this scheme is vulnerable, by describing a simple technique for forging
a signature on an arbitrary message, without knowledge of the secret key sk. Hint: consider what
computations can one do using simply pka

Q3: Post-quantum Cryptography

The evolution of quantum computation technology poses a looming threat to cryptographic mechanisms
of common usage, such as public-key encryption, digital signatures and key agreement protocols. This
is mainly due to Shor’s algorithm for quantum computation, which is theoretically capable of solving
problems such as integer factorization or the discrete logarithm in polynomial time, given sufficient
stable qubits. This has led to the development of post-quantum cryptographic (PQC) algorithms,
which rely on different mathematical objects which, to the best knowledge of cryptographers worldwide,
are computationally hard to be solved by quantum computers.

Question - P1: A common misconception is that, to develop post-quantum cryptographic algorithms,
one needs to leverage quantum computation. Explain why this is not the case, by distinguishing
quantum computation from post-quantum cryptography.

Shor’s algorithm is expected to be able to efficiently break RSA-2048 using roughly 20 million qubits
(reference). Cutting-edge quantum computers are barely surpassing 1000 qubits. However, developing
PQC algorithms is an extremely pressing concern.

Question - P2: Investigate an attack technique called store-now-decrypt-later (ENDL), and discuss
why this approach is a good argument for dealing with quantum threats as soon as possible.


https://quantum-journal.org/papers/q-2021-04-15-433/pdf/

	Q1: Man-in-the-Middle
	Q2: ECC
	Q3: Post-quantum Cryptography

