
Applied Cryptography
Week #9 Extra

Bernardo Portela and Rogério Reis

2023/2024

Important

• Your answers must always be accompanied by a justification. Presenting the final result (e.g. the
result of a calculation) without the rationale that laid to said result will result in a grade of 0.

• Submit your answers via e-mail to bernardo.portela@fc.up.pt, with adequate identification of the
group and its members.

Q1: Implementing Authenticated Encryption

Implement a prototype that exemplifies the behavior of an authenticated encryption scheme. Your goal
is to ensure secure communications between Alice and Bob. The system must ensure the following:

• Message confidentiality. Use AES-128-CTR to do this
• Message authenticity. Use HMAC-SHA256 to do this
• Protection against replay attacks. Include a sequence number to the messages sent

As such, this task requires you to implement alice.py and bob.py, communicating using authenticated
encryption, supported by gen.py, which generates the pre-shared keys. Use Encrypt-then-MAC,
meaning that you should calculate HMAC from the result of AES-CTR, and send both of these values
over the network. The tasks are as follows:

1. Upon execution, gen.py must produce a file pw with two symmetric keys. One to be used for
encryption, the other to be used for message authentication

2. Upon execution, alice.py and bob.py must begin by reading the file pw to get their keys.
3. Then, alice.py and bob.py must exchange the following messages:

• From Alice: “Hello Bob”
• From Bob: “Hello Alice”
• From Alice: “I would like to have dinner”
• From Bob: "Me too. Same time, same place?
• From Alice: “Sure!”

Students are encouraged to tackle this challenge one step at a time. The suggested stages as as
follows:

Part 1: Implement gen.py and test if alice.py and bob.py are reading the keys correctly.

Part 2: Implement the communication layer between Alice and Bob using sockets (hint: check out
this reference), or pwntools (reference). Test if you can send bytes and if they are arriving without
errors.

Part 3: Adapt the messages sent to now be the result of AES-128-CTR. See if the decryption is
successful.

1

https://realpython.com/python-sockets/
https://realpython.com/python-sockets/
https://github.com/Gallopsled/pwntools


Part 4: Include the result of HMAC-SHA256 in the sent message. See if the authentication is
successful.

Part 5: Include a sequence number in both alice.py and bob.py, and append it to the sent message.
Check if everything is working.

Final: Adapt your prototype to have Alice and Bob send the specified messages. Check if everything
is validated, and correctly decrypted.

Q2: Signing with RSA

Let d denote the private key and e denote the public key for RSA, m denote the message we want to
sign and σ denote the produced signature. A naive way to use RSA for digital signatures is to simply
encrypt the message using the private key. Consider the following signature scheme:

• Sign: σ ←Md mod N
• Verify: Compute M ′ ← σe mod N . Accept if M = M ′

Question - P1: Show how this signature can never be shown to be unforgeable, by constructing a
valid signature for a message without knowledge of the private key d.

Full Domain Hash (FDH) are constructions that also rely on RSA to produce digital signatures, but
make use of a cryptographic hash function (H) to avoid these issues. FDH behaves as follows:

• Sign: Compute h← H(M), and σ ← hd mod N
• Verify: Compute h′ ← σe mod N . Accept if H(M) = h′

Question - P2: What properties of the hash functions are we using to ensure that the previous attack
no longer works?

2


	Q1: Implementing Authenticated Encryption
	Q2: Signing with RSA

