
Cryptography
Week #11:

PKI

Rogério Reis, rogerio.reis@fc.up.pt
2023/2024
DCC FCUP

December, 15th 2023



Why PKI?



Why PKI

All PK cryptography primitives assume public-keys are authentic.

If not true, protocols are vulnerable to man-in-the-middle attacks.

In the real-world this problem can be solved in an ad-hoc way:

• manually confirm public-key belongs to intended party
• systems (e.g., GPG/PGP) supporting ad-hoc PK authentication

When legal/regulatory coverage is required ∆ PKI:

• Technical standards: which algorithms/encoding formats to use
• Regulations: how technical standards should be used
• More Regulations: responsibilities and rights of involved parties
• Laws: formal guarantees and penalties wrt regulations

3

Rogerio Reis



Public-key certificates



Public-key certificates

Goal:

• Alice sends Bob a public key pk over an insecure channel
• Bob must be able to check Alice holds associated secret key

Trivial solution:

• Bob has authenticated channel to Trusted-Third-Party (TTP)
• Alice has previously proved to TTP that she owns pk (how?)
• Bob asks TTP (on-line) if pk belongs to Alice

Problems in practice:

1. How does Bob build authenticated channel to TTP?
2. What happens if TTP is o�-line?
3. How do Bob and Alice get to work with the same TTP?
4. What does “Trust” in TTP mean?

4

Rogerio Reis



Public-key certificates

Goal:

• Alice sends Bob a public key pk over an insecure channel
• Bob must be able to check Alice holds associated secret key

Trivial solution:

• Bob has authenticated channel to Trusted-Third-Party (TTP)
• Alice has previously proved to TTP that she owns pk (how?)
• Bob asks TTP (on-line) if pk belongs to Alice

Problems in practice:

1. How does Bob build authenticated channel to TTP?
2. What happens if TTP is o�-line?
3. How do Bob and Alice get to work with the same TTP?
4. What does “Trust” in TTP mean?

4

Rogerio Reis



Public-key certificates (2)

Public-key certificates use signatures to solve points 1 and 2:

• TTP is called a Certification Authority (CA)

• Alice proves to CA that she owns pk

• By signing a certificate request (PKCS#11)
• Because CA itself provides secret key to Alice

• CA provides/checks data Alice wants on certificate:

• Alice identity + public key
• CA-specific information: serial number, issuer identity
• Validity (start and end dates)

• CA signs data as a byte-encoded ASN.1 data structure.

PK Certificate := Alice’s data and PK + CA signature

Trust in certificate Æ Trust in CA

5

Rogerio Reis



Public-key certificates (2)

Public-key certificates use signatures to solve points 1 and 2:

• TTP is called a Certification Authority (CA)

• Alice proves to CA that she owns pk

• By signing a certificate request (PKCS#11)
• Because CA itself provides secret key to Alice

• CA provides/checks data Alice wants on certificate:

• Alice identity + public key
• CA-specific information: serial number, issuer identity
• Validity (start and end dates)

• CA signs data as a byte-encoded ASN.1 data structure.

PK Certificate := Alice’s data and PK + CA signature

Trust in certificate Æ Trust in CA 5

Rogerio Reis



Public-key certificates (3)

What is ASN.1 (see here for some examples)?

• Abstract Syntax Notation 1: platform/language independent
• Legacy specification language from networking standards
• Standards use ASN.1 to specify data structures (packets)
• DER (Distinguished Encoding Rules) specify byte encoding

How do certificates solve points 1 and 2:

• Digital signature guarantees certificate is authentic to Bob
• CA can be o�-line: Bob can get certificate via Alice!

So can certificates be sent over insecure channels?

Other natural questions:

• How does Bob know CA and verifies the CA signature?
• What are Alice/Bob actually trusting the CA to do?

6

https://tools.ietf.org/html/rfc8017#appendix-C
Rogerio Reis



Public-key certificates (3)

What is ASN.1 (see here for some examples)?

• Abstract Syntax Notation 1: platform/language independent
• Legacy specification language from networking standards
• Standards use ASN.1 to specify data structures (packets)
• DER (Distinguished Encoding Rules) specify byte encoding

How do certificates solve points 1 and 2:

• Digital signature guarantees certificate is authentic to Bob
• CA can be o�-line: Bob can get certificate via Alice!

So can certificates be sent over insecure channels?

Other natural questions:

• How does Bob know CA and verifies the CA signature?
• What are Alice/Bob actually trusting the CA to do?

6

https://tools.ietf.org/html/rfc8017#appendix-C
Rogerio Reis



Public-key certificates (3)

What is ASN.1 (see here for some examples)?

• Abstract Syntax Notation 1: platform/language independent
• Legacy specification language from networking standards
• Standards use ASN.1 to specify data structures (packets)
• DER (Distinguished Encoding Rules) specify byte encoding

How do certificates solve points 1 and 2:

• Digital signature guarantees certificate is authentic to Bob
• CA can be o�-line: Bob can get certificate via Alice!

So can certificates be sent over insecure channels?

Other natural questions:

• How does Bob know CA and verifies the CA signature?
• What are Alice/Bob actually trusting the CA to do? 6

https://tools.ietf.org/html/rfc8017#appendix-C
Rogerio Reis



Verifying a Public-Key Certificate

Suppose Alice sends Bob a public-key certificate with:

• Alice’s identity and public key
• A validity period (start and end dates)
• Some additional meta-information
• All signed by certification authority CA

This is what Bob should do:

1. Check Alice’s identity is correct (e.g., DNS name for server)
2. Check current time is within validity period
3. Check meta-information makes sense for application
4. Check CA is trustworthy to certify this public-key
5. Obtain CA’s public key and verify signature in certificate

The first three are self-explanatory. PKI solves 4 and 5.

7

Rogerio Reis



Verifying a Public-Key Certificate

Suppose Alice sends Bob a public-key certificate with:

• Alice’s identity and public key
• A validity period (start and end dates)
• Some additional meta-information
• All signed by certification authority CA

This is what Bob should do:

1. Check Alice’s identity is correct (e.g., DNS name for server)
2. Check current time is within validity period
3. Check meta-information makes sense for application
4. Check CA is trustworthy to certify this public-key
5. Obtain CA’s public key and verify signature in certificate

The first three are self-explanatory. PKI solves 4 and 5.
7

Rogerio Reis



Sanity check: did you understand how this works?

Who sends and who receives/validates a PK certificate in:

• Asymmetric encryption:

• Public key belongs to receiver
• Sender must get certificate beforehand

• Digital signatures
• Public key belongs to signer
• OK to sign and send certificate along (M, ‡)

• Key agreement
• If mutually authenticated, then both must send certificates
• What happens usually in TLS?

Example: in S/MIME (signed email) clients usually

• Allow signing a message as soon as personal certificate installed
• Needs signed message from Alice before allowing encryption
• Does this make sense?

8

Rogerio Reis



Sanity check: did you understand how this works?

Who sends and who receives/validates a PK certificate in:

• Asymmetric encryption:
• Public key belongs to receiver
• Sender must get certificate beforehand

• Digital signatures

• Public key belongs to signer
• OK to sign and send certificate along (M, ‡)

• Key agreement
• If mutually authenticated, then both must send certificates
• What happens usually in TLS?

Example: in S/MIME (signed email) clients usually

• Allow signing a message as soon as personal certificate installed
• Needs signed message from Alice before allowing encryption
• Does this make sense?

8

Rogerio Reis



Sanity check: did you understand how this works?

Who sends and who receives/validates a PK certificate in:

• Asymmetric encryption:
• Public key belongs to receiver
• Sender must get certificate beforehand

• Digital signatures
• Public key belongs to signer
• OK to sign and send certificate along (M, ‡)

• Key agreement

• If mutually authenticated, then both must send certificates
• What happens usually in TLS?

Example: in S/MIME (signed email) clients usually

• Allow signing a message as soon as personal certificate installed
• Needs signed message from Alice before allowing encryption
• Does this make sense?

8

Rogerio Reis



Sanity check: did you understand how this works?

Who sends and who receives/validates a PK certificate in:

• Asymmetric encryption:
• Public key belongs to receiver
• Sender must get certificate beforehand

• Digital signatures
• Public key belongs to signer
• OK to sign and send certificate along (M, ‡)

• Key agreement
• If mutually authenticated, then both must send certificates
• What happens usually in TLS?

Example: in S/MIME (signed email) clients usually

• Allow signing a message as soon as personal certificate installed
• Needs signed message from Alice before allowing encryption
• Does this make sense?

8

Rogerio Reis



Sanity check: did you understand how this works?

Who sends and who receives/validates a PK certificate in:

• Asymmetric encryption:
• Public key belongs to receiver
• Sender must get certificate beforehand

• Digital signatures
• Public key belongs to signer
• OK to sign and send certificate along (M, ‡)

• Key agreement
• If mutually authenticated, then both must send certificates
• What happens usually in TLS?

Example: in S/MIME (signed email) clients usually

• Allow signing a message as soon as personal certificate installed
• Needs signed message from Alice before allowing encryption
• Does this make sense? 8

Rogerio Reis



Technical details about public-key certificates

Standardized in X.509 and transposed to internet by IETF

Important data structures have unique object identifiers

Current version is 3, which includes basic fields:

• subject, issuer, validity, public key info, serial

Extensions (attachments), some of which may be marked critical

• all extensions carry an object identifier
• if marked critical but not recognized ∆ reject!

Important extensions:

• Subject/authority key identifier: fingerprint of public key
• Basic constraints: flag that signals special CA certificate
• Key usage: CA can restrict purpose of certificate

9

Rogerio Reis



Technical details about public-key certificates

Standardized in X.509 and transposed to internet by IETF

Important data structures have unique object identifiers

Current version is 3, which includes basic fields:

• subject, issuer, validity, public key info, serial

Extensions (attachments), some of which may be marked critical

• all extensions carry an object identifier
• if marked critical but not recognized ∆ reject!

Important extensions:

• Subject/authority key identifier: fingerprint of public key
• Basic constraints: flag that signals special CA certificate
• Key usage: CA can restrict purpose of certificate

9

Rogerio Reis



Technical details about public-key certificates

Standardized in X.509 and transposed to internet by IETF

Important data structures have unique object identifiers

Current version is 3, which includes basic fields:

• subject, issuer, validity, public key info, serial

Extensions (attachments), some of which may be marked critical

• all extensions carry an object identifier
• if marked critical but not recognized ∆ reject!

Important extensions:

• Subject/authority key identifier: fingerprint of public key
• Basic constraints: flag that signals special CA certificate
• Key usage: CA can restrict purpose of certificate

9

Rogerio Reis



Public Key Infrastructure



Public Key Infrastructure

A public key infrastructure (PKI) is a set of roles, policies,
hardware, software and procedures needed to create, man-
age, distribute, use, store and revoke digital certificates.
[Wikipedia]

All of these components serve a purpose and follow rules so that:

• A certificate user (end entity) can be assured
• By a trustworthy certification authority
• That a PK belongs to another end entity (person, server, . . . )
• And can be used for a given purpose
• Under well-defined rights/responsibilities for all parties

10

Rogerio Reis



PKI Architecture

11

Rogerio Reis



Operational/Management transactions

How do certificates go around?

Operational protocols specify how certificates are:

• stored in repositories (e.g., LDAP)
• transferred to client software (HTTP, FTP, MIME)
• encoded in non-ambiguous formats

You have seen several instances of operational protocols:

• In TLS the RFC specifies how certificates are exchanged
• In S/MIME certificates are included in the PKCS#7

attachments
• OS certificates are managed via standard cryptographic

modules

12

Rogerio Reis



Operational/Management transactions

How do certificates go around?

Operational protocols specify how certificates are:

• stored in repositories (e.g., LDAP)
• transferred to client software (HTTP, FTP, MIME)
• encoded in non-ambiguous formats

You have seen several instances of operational protocols:

• In TLS the RFC specifies how certificates are exchanged
• In S/MIME certificates are included in the PKCS#7

attachments
• OS certificates are managed via standard cryptographic

modules

12

Rogerio Reis



Operational/Management transactions

How do certificates go around?

Operational protocols specify how certificates are:

• stored in repositories (e.g., LDAP)
• transferred to client software (HTTP, FTP, MIME)
• encoded in non-ambiguous formats

You have seen several instances of operational protocols:

• In TLS the RFC specifies how certificates are exchanged
• In S/MIME certificates are included in the PKCS#7

attachments
• OS certificates are managed via standard cryptographic

modules

12

Rogerio Reis



PKI Management: Initialization

We asked an important question before:

• How do users get to know a CA
• How does Bob verify a CA signature in a certificate?

Answer:

• All public keys are encoded in X.509 certificates
• Some certificates contain the public keys of CAs

• Bob obtains the CA’s public key from a certificate
• Bob uses the CA’s PK to verify signature on Alice’s certificate
• If certificate OK ∆ Bob can use Alice’s public key

Therefore, Alice’s public key is authenticated if:

• Bob has certificate for CA that issued Alice’s certificate
• Bob trusts CA to have checked data on Alice’s certificate

13

Rogerio Reis



PKI Management: Initialization

We asked an important question before:

• How do users get to know a CA
• How does Bob verify a CA signature in a certificate?

Answer:

• All public keys are encoded in X.509 certificates
• Some certificates contain the public keys of CAs
• Bob obtains the CA’s public key from a certificate
• Bob uses the CA’s PK to verify signature on Alice’s certificate
• If certificate OK ∆ Bob can use Alice’s public key

Therefore, Alice’s public key is authenticated if:

• Bob has certificate for CA that issued Alice’s certificate
• Bob trusts CA to have checked data on Alice’s certificate

13

Rogerio Reis



PKI Management: Initialization

We asked an important question before:

• How do users get to know a CA
• How does Bob verify a CA signature in a certificate?

Answer:

• All public keys are encoded in X.509 certificates
• Some certificates contain the public keys of CAs
• Bob obtains the CA’s public key from a certificate
• Bob uses the CA’s PK to verify signature on Alice’s certificate
• If certificate OK ∆ Bob can use Alice’s public key

Therefore, Alice’s public key is authenticated if:

• Bob has certificate for CA that issued Alice’s certificate
• Bob trusts CA to have checked data on Alice’s certificate

13

Rogerio Reis



PKI Management: Initialization (2)

How does Bob know to trust CA?

In the simplest settings:

• Bob gets certificate directly from CA
• Bob implicitly trusts CA certificate

Examples:

• We get many CA certificates pre-installed in OS
• Portuguese citizen’s card is certified by state-run CA

These are examples of initialization operations.

Key generation, if done by the end entity, also part of initialization.

14

Rogerio Reis



PKI Management: Initialization (2)

How does Bob know to trust CA?

In the simplest settings:

• Bob gets certificate directly from CA
• Bob implicitly trusts CA certificate

Examples:

• We get many CA certificates pre-installed in OS
• Portuguese citizen’s card is certified by state-run CA

These are examples of initialization operations.

Key generation, if done by the end entity, also part of initialization.

14

Rogerio Reis



PKI Management: Registration and Certification

Registration Authorities (RA):

• Front-end: direct contact with end-entities
• Responsible for checking data that goes into certificates
• Responsible for ensuring (unique) entity possesses secret key

Certification Authorities:

• Back-end: infrastructure where certificates are signed
• Typically high-security: air gaps, physical security, etc.

Example: Portuguese Citizen’s Card

• RA is Registo Civil, Loja do Cidadão, etc.
• CA is deployed in protected facilities at INCM
• CA generates keys, signs certificates and issues smartcards
• RA delivers them to citizens after physical identification

15

Rogerio Reis



PKI Management: Registration and Certification

Registration Authorities (RA):

• Front-end: direct contact with end-entities
• Responsible for checking data that goes into certificates
• Responsible for ensuring (unique) entity possesses secret key

Certification Authorities:

• Back-end: infrastructure where certificates are signed
• Typically high-security: air gaps, physical security, etc.

Example: Portuguese Citizen’s Card

• RA is Registo Civil, Loja do Cidadão, etc.
• CA is deployed in protected facilities at INCM
• CA generates keys, signs certificates and issues smartcards
• RA delivers them to citizens after physical identification

15

Rogerio Reis



PKI Management: Revokation

Certificates outside of validity dates are, by definition, invadid.

What happens if they need to be invalidated?

• E.g., lost secret key, data breach, meta-data becomes incorrect.

Certificates need to be revoked while they still look valid.

This is formally done using Certificate Revokation Lists (CRL):

• CA periodically publishes a black-list of revoked certificates
• Certificate consumers should check most-recent CRL
• Exceptional CRL may also be published, as best-e�ort

How do we get revokation information?

Certificate extensions typically indicate URLs for CRLs

Traditionally low support from client software

16

Rogerio Reis



PKI Management: Revokation

Certificates outside of validity dates are, by definition, invadid.

What happens if they need to be invalidated?

• E.g., lost secret key, data breach, meta-data becomes incorrect.

Certificates need to be revoked while they still look valid.

This is formally done using Certificate Revokation Lists (CRL):

• CA periodically publishes a black-list of revoked certificates
• Certificate consumers should check most-recent CRL
• Exceptional CRL may also be published, as best-e�ort

How do we get revokation information?

Certificate extensions typically indicate URLs for CRLs

Traditionally low support from client software 16

Rogerio Reis



PKI Management: Revokation (2)

Three solutions used in the real-world.

1 - Trusted Service Provider Lists (TSL):

• up to date white list of trusted certificates
• closed small groups (e.g., banking) and high-security

applications

2 - On-line Certificate Status Protocol (OCSP)):

• a trusted server checks CRLs for you
• usually managed by CAs themselves
• typically used in large organizational contexts (e.g., eGov)

3 - Certificate pinning:

• web servers/browsers/applications carry their own white lists
• identify good certificates for important entities (e.g., Google) 17

Rogerio Reis



Certificate Chains and CA Hierarchy

We have seen a simple case: Bob trusts Alice’s CA implicitly.

In general this is not the case:

• Bob is initialized with certificates for root CAs

• Bob trusts implicitly in these CAs

• Certificates for root CAs are self-signed:

• CA generates a key pair (sk, pk)
• CA creates its own certificate with subject = issuer = CA name
• Certificate includes pk and CA signs it with sk

Note: self-signed certificates can be generated by anyone.

Validating a self-signed certificate implies:

• belief that whoever owns that secret key is a CA
• belief that this CA only generates good certificates

18

Rogerio Reis



Certificate Chains and CA Hierarchy

We have seen a simple case: Bob trusts Alice’s CA implicitly.

In general this is not the case:

• Bob is initialized with certificates for root CAs

• Bob trusts implicitly in these CAs

• Certificates for root CAs are self-signed:

• CA generates a key pair (sk, pk)
• CA creates its own certificate with subject = issuer = CA name
• Certificate includes pk and CA signs it with sk

Note: self-signed certificates can be generated by anyone.

Validating a self-signed certificate implies:

• belief that whoever owns that secret key is a CA
• belief that this CA only generates good certificates

18

Rogerio Reis



Certificate Chains and CA Hierarchy

We have seen a simple case: Bob trusts Alice’s CA implicitly.

In general this is not the case:

• Bob is initialized with certificates for root CAs

• Bob trusts implicitly in these CAs

• Certificates for root CAs are self-signed:

• CA generates a key pair (sk, pk)
• CA creates its own certificate with subject = issuer = CA name
• Certificate includes pk and CA signs it with sk

Note: self-signed certificates can be generated by anyone.

Validating a self-signed certificate implies:

• belief that whoever owns that secret key is a CA
• belief that this CA only generates good certificates

18

Rogerio Reis



Certificate Chains and CA Hierarchy

We have seen a simple case: Bob trusts Alice’s CA implicitly.

In general this is not the case:

• Bob is initialized with certificates for root CAs

• Bob trusts implicitly in these CAs

• Certificates for root CAs are self-signed:

• CA generates a key pair (sk, pk)
• CA creates its own certificate with subject = issuer = CA name
• Certificate includes pk and CA signs it with sk

Note: self-signed certificates can be generated by anyone.

Validating a self-signed certificate implies:

• belief that whoever owns that secret key is a CA
• belief that this CA only generates good certificates 18

Rogerio Reis



Certificate Chains and CA Hierarchy (2)

Root CAs typically do not issue end-entity certificates.

• There is a hierarchy of CAs
• If CA A signs certificate of CA B
• Then trust in CA B Æ trust in CA A

We can have many levels in this hierarchy/tree, so:

• To authenticate Alice’s public key, Bob gets Alice’s certificate
• To validate Alice’s certificate, Bob gets certificate of Alice’s CA
• Bob verifies that Alice’s certificate is valid wrt Alice’s CA

Bob still needs to decide whether to trust Alice’s CA.

Trust = Alice’s CA is descendent of Root CA trusted by Bob

19

Rogerio Reis



Certificate Chains and CA Hierarchy (3)

Bob enters a loop starting with Current CA = Alice’s CA.

The loop works as follows:

• If Bob implicitly trusts Current CA certificate: Accept!

• Else If Current CA is subordinate to some „CA:

• Bob gets „CA certificate
• Bob verifies Current CA certificate is valid wrt „CA
• Bob re-enters loop with Current CA = „CA

• Else Reject!

Note: this process fails if Bob cannot get certificates

• All certificates can be sent by Alice except the root of trust.

20

Rogerio Reis



Certificate Policies

PKI can be used to give cryptography a legal meaning.

A Certificate Policy is a set of PKI operation rules:

• Rights and responsibilities of end-entities
• Rights and responsibilities of CAs

These rights and responsibilities can be written in law.

A certificate policy is assigned an object identifier (OID):

• Certificates can be flagged to comply with a policy

This implies an accreditation system:

• CA must be audited before it is authorized to use OID
• Any CA that uses OID without authorization is breaking the law

21

Rogerio Reis




	Part #0: Why PKI
	Part #1: Public-key certificates
	Public Key Infrastructure

