Applied Cryptography
 Week 2: Randomness and Cryptographic Security

Bernardo Portela

M:ERSI, M:SI - 23

Context

- Last week we used and generated keys
- How is this done?

Context

- Last week we used and generated keys
- How is this done?

For Symmetric Crypto

- Generated uniformly at random
- Derived using a Key Derivation Function
- From a password or low entropy secret
- From a high-entropy master key from key exchange protocol

Context

- Last week we used and generated keys
- How is this done?

For Symmetric Crypto

- Generated uniformly at random
- Derived using a Key Derivation Function
- From a password or low entropy secret
- From a high-entropy master key from key exchange protocol

For Asymmetric Crypto

- Key generation algorithm \rightarrow key pair
- Private key holder generates both keys; publishes public key
- Asymmetric keys are typically much larger
- RSA keys take roughly 4096 -bits for 128 -bit security
- Elliptic-curve keys take roughly 400 -bits for 128 -bit security

Storage and Generation

Keys are often the most sensitive material a secure system holds

Storage and Generation

Keys are often the most sensitive material a secure system holds
Ideally, in an external secure hardware

- Hardware Security Module (HSM)
- Smartcard or similar cryptographic token

Storage and Generation

Keys are often the most sensitive material a secure system holds
Ideally, in an external secure hardware

- Hardware Security Module (HSM)
- Smartcard or similar cryptographic token

Key wrapping

- Long-term keys are often wrapped before storage
- To encrypt with another key
- Password-based encryption (low security)
- Wrap with HW-protected master key (standard security)
- Master key stored in trusted hardware (high security)

To Be Random

Q1: Which of these numbers are random?

1. 00000000
2. 10101010
3. 00100100
4. 10011101

To Be Random

Q1: Which of these numbers are random?

1. 00000000 - Not random!
2. 10101010 - Not random (pattern)
3. 00100100 - Maybe not random?
4. 10011101-Seems random...

To Be Random

Q1: Which of these numbers are random?

1. 00000000 - Not random!
2. 10101010-Not random (pattern)
3. 00100100 - Maybe not random?
4. 10011101-Seems random...

Randomness is not a property of a bit string, but rather:

- The bit generation process
- The bit string sampling procedure

To Be Random

Q1: Which of these numbers are random?

1. 00000000 - Not random!
2. 10101010 - Not random (pattern)
3. 00100100 - Maybe not random?
4. 10011101-Seems random...

Randomness is not a property of a bit string, but rather:

- The bit generation process
- The bit string sampling procedure

Q2: Which of these numbers will more likely appear in a fair randomness generator?

Randomness Distributions

Randomized processes described using randomness distributions.
We start with the uniform distribution over a finite field S.
A process U samples from the uniform distribution if

$$
\forall s^{*} \in S, \operatorname{Pr}\left[s=s^{*}: s \leftarrow U\right]=\frac{1}{|S|}
$$

Randomness Distributions

Randomized processes described using randomness distributions.
We start with the uniform distribution over a finite field S.
A process U samples from the uniform distribution if

$$
\forall s^{*} \in S, \operatorname{Pr}\left[s=s^{*}: s \leftarrow U\right]=\frac{1}{|S|}
$$

Q1: If we roll a fair dice, what is the probability of getting 1 ?

Randomness Distributions

Randomized processes described using randomness distributions.
We start with the uniform distribution over a finite field S.
A process U samples from the uniform distribution if

$$
\forall s^{*} \in S, \operatorname{Pr}\left[s=s^{*}: s \leftarrow U\right]=\frac{1}{|S|}
$$

Q1: If we roll a fair dice, what is the probability of getting 1 ?

$$
\frac{1}{6} \approx 0.1667
$$

Randomness Distributions

Randomized processes described using randomness distributions.
We start with the uniform distribution over a finite field S.
A process U samples from the uniform distribution if

$$
\forall s^{*} \in S, \operatorname{Pr}\left[s=s^{*}: s \leftarrow U\right]=\frac{1}{|S|}
$$

Q1: If we roll a fair dice, what is the probability of getting 1 ?

$$
\frac{1}{6} \approx 0.1667
$$

Q2: If we do a fair sampling of a byte, what is the probability of getting 00000000 or 10011101 ?

Randomness Distributions

Randomized processes described using randomness distributions.
We start with the uniform distribution over a finite field S.
A process U samples from the uniform distribution if

$$
\forall s^{*} \in S, \operatorname{Pr}\left[s=s^{*}: s \leftarrow U\right]=\frac{1}{|S|}
$$

Q1: If we roll a fair dice, what is the probability of getting 1 ?

$$
\frac{1}{6} \approx 0.1667
$$

Q2: If we do a fair sampling of a byte, what is the probability of getting 00000000 or 10011101 ?

$$
\frac{2}{2^{8}} \approx 0.0078
$$

Quantifying Randomness

As you might have inferred, for the uniform sampling of λ bits, the probability of each element in the set is $\frac{1}{2^{\lambda}}$.

Quantifying Randomness

As you might have inferred, for the uniform sampling of λ bits, the probability of each element in the set is $\frac{1}{2^{\lambda}}$.

We do not always want to generate "nicely structured" bit strings

- E.g. a value from 0... 254
- How to use uniformly generated bytes for this?

Quantifying Randomness

As you might have inferred, for the uniform sampling of λ bits, the probability of each element in the set is $\frac{1}{2^{\lambda}}$.

We do not always want to generate "nicely structured" bit strings

- E.g. a value from 0... 254
- How to use uniformly generated bytes for this?

Q1: Get a byte, compute the result mod 255 . Is it uniform?

Quantifying Randomness

As you might have inferred, for the uniform sampling of λ bits, the probability of each element in the set is $\frac{1}{2^{\lambda}}$.

We do not always want to generate "nicely structured" bit strings

- E.g. a value from 0... 254
- How to use uniformly generated bytes for this?

Q1: Get a byte, compute the result mod 255 . Is it uniform?
Bad corner case: bytes 0 and 255 both give us 0 !

Quantifying Randomness

As you might have inferred, for the uniform sampling of λ bits, the probability of each element in the set is $\frac{1}{2^{\lambda}}$.

We do not always want to generate "nicely structured" bit strings

- E.g. a value from $0 \ldots 254$
- How to use uniformly generated bytes for this?

Q1: Get a byte, compute the result mod 255 . Is it uniform?
Bad corner case: bytes 0 and 255 both give us 0 !
Q2: Get a byte, exclude value 255 and retry. Is it uniform?

Quantifying Randomness

As you might have inferred, for the uniform sampling of λ bits, the probability of each element in the set is $\frac{1}{2^{\lambda}}$.

We do not always want to generate "nicely structured" bit strings

- E.g. a value from 0... 254
- How to use uniformly generated bytes for this?

Q1: Get a byte, compute the result mod 255 . Is it uniform?
Bad corner case: bytes 0 and 255 both give us 0 !
Q2: Get a byte, exclude value 255 and retry. Is it uniform?
It is, and is called rejection sampling. Q3: what is the downside?

Entropy

We will mostly use entropy as an intuitive concept

- It measures uncertainty w.r.t. a sampling output

Entropy

We will mostly use entropy as an intuitive concept

- It measures uncertainty w.r.t. a sampling output Mathematically, it can be defined for a distribution X as

$$
H(X)=\sum_{s^{*} \in S}-\operatorname{Pr}\left[s^{*}\right] \cdot \log _{b}(\operatorname{Pr}[s])
$$

Entropy

We will mostly use entropy as an intuitive concept

- It measures uncertainty w.r.t. a sampling output

Mathematically, it can be defined for a distribution X as

$$
H(X)=\sum_{s^{*} \in S}-\operatorname{Pr}\left[s^{*}\right] \cdot \log _{b}(\operatorname{Pr}[s])
$$

- It is maximized by the uniform distribution, with entropy λ

$$
2^{8} \cdot\left(-\frac{1}{2^{8}} \cdot \log _{2}\left(\frac{1}{2^{8}}\right)\right)=8
$$

- Entropy here quantifies the number of uncertainty bits
- In this example, we are uncertain of exactly 8 bits
- If a sampling is biased, it has less uncertainty, i.e. entropy

Random Number Generators

How do we get uniform coins?

Random Number Generators

How do we get uniform coins?

- It starts with a physical process
- A source of entropy, e.g., some natural process that is believed to sample I-bits from a high-entropy distribution
- Typically I >> λ where λ is the assumed entropy
- Randomness extractors (often a hash function) compress such bit strings down to λ bits
- The result bit strings are assumed to be uniform

Random Number Generators

How do we get uniform coins?

- It starts with a physical process
- A source of entropy, e.g., some natural process that is believed to sample I-bits from a high-entropy distribution
- Typically $I \gg \lambda$ where λ is the assumed entropy
- Randomness extractors (often a hash function) compress such bit strings down to λ bits
- The result bit strings are assumed to be uniform
- The combined process is called a Random Number Generator
- High-security RNGs currently exploit quantum effects

Pseudorandom Generators - Part 1

Good randomness is hard to generate, so RNGs are usually slow
Pseudorandom Generators are crypto's response to this problem:

- PRG takes a small, uniform seed of length λ
- Generates long, random-looking bit strings $I \gg \lambda$
- PRGs are deterministic algorithms!

Pseudorandom Generators - Part 1

Good randomness is hard to generate, so RNGs are usually slow
Pseudorandom Generators are crypto's response to this problem:

- PRG takes a small, uniform seed of length λ
- Generates long, random-looking bit strings $I \gg \lambda$
- PRGs are deterministic algorithms!

A Pseudorandom generator is a function $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\prime}$
Security: (without delving deep in probability) an attacker must be unable of distinguishing PRG outputs from a truly random string

Pseudorandom Generators - Part 2

$$
P R G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\prime}
$$

Reasoning

- Use a strong RNG to generate seed r of (small) size λ
- Use the PRG on seed r to generate (much larger) r^{\prime} of size I

Pseudorandom Generators - Part 2

$$
P R G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\prime}
$$

Reasoning

- Use a strong RNG to generate seed r of (small) size λ
- Use the PRG on seed r to generate (much larger) r^{\prime} of size $/$

Q: Can we have secure PRGs (indistinguishable from uniform distribution), considering adversaries with unbound power?

Security of Pseudorandom Generators

$$
U:\{0,1\}^{\prime} \rightarrow\{0,1\}^{\prime}
$$

$$
P R G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\prime}
$$

- An adversary can simply test all 2^{λ} cases
- Security refers to a computationally limited adversary
- One that cannot (realistically) test all possible PRG inputs

Security in Practice

Redefine "impossible to break"

- With reasonable resources (time, memory, HW power)
- With probability higher than negligible

Security in Practice

Redefine "impossible to break"

- With reasonable resources (time, memory, HW power)
- With probability higher than negligible

Practical schemes are computationally impossible to break
Take an encryption scheme and an attacker that does not know k

- Attacker chooses non-repeating inputs X_{i} and gets
- Y_{i} chosen uniformly at random if $b=1$
- $Y_{i}=E\left(k, X_{i}\right)$ if $b=0$
- Attacker guesses b and wins if $b=b^{\prime}$

Security in Practice

Redefine "impossible to break"

- With reasonable resources (time, memory, HW power)
- With probability higher than negligible

Practical schemes are computationally impossible to break
Take an encryption scheme and an attacker that does not know k

- Attacker chooses non-repeating inputs X_{i} and gets
- Y_{i} chosen uniformly at random if $b=1$
- $Y_{i}=E\left(k, X_{i}\right)$ if $b=0$
- Attacker guesses b and wins if $b=b^{\prime}$

We define the adversary's advantage ϵ as

$$
\epsilon=\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]\right|
$$

Best attack for $\epsilon=2^{-40}$ takes 2^{80} steps

Concrete Numbers - Part 1

Some numbers for scale

- Not easy to perceive very very large numbers
- The estimated age of the universe in nanosecs is around 2^{88}
- The number of atoms in the universe is roughly 2^{256}

Concrete Numbers - Part 1

Some numbers for scale

- Not easy to perceive very very large numbers
- The estimated age of the universe in nanosecs is around 2^{88}
- The number of atoms in the universe is roughly 2^{256}

A common security parameter

- A common size for keys is 128 bits
- Consider the following events
- Winning a lottery with 9 million participants (all of Portugal)
- Guessing a 2^{128} size key at the first try

Concrete Numbers - Part 1

Some numbers for scale

- Not easy to perceive very very large numbers
- The estimated age of the universe in nanosecs is around 2^{88}
- The number of atoms in the universe is roughly 2^{256}

A common security parameter

- A common size for keys is 128 bits
- Consider the following events
- Winning a lottery with 9 million participants (all of Portugal)
- Guessing a 2^{128} size key at the first try

Q1: Which event is more likely?

Concrete Numbers - Part 1

Some numbers for scale

- Not easy to perceive very very large numbers
- The estimated age of the universe in nanosecs is around 2^{88}
- The number of atoms in the universe is roughly 2^{256}

A common security parameter

- A common size for keys is 128 bits
- Consider the following events
- Winning a lottery with 9 million participants (all of Portugal)
- Guessing a 2^{128} size key at the first try

Q1: Which event is more likely?
Q2: By how much?

Concrete Numbers - Part 2

Security is defined as (t, ϵ)-security

- For some well-defined attack model
- Any attacker must run in at most t steps
- Has at most ϵ success advantage/probability
- t is a lower-bound on the work needed to break the scheme

Concrete Numbers - Part 2

Security is defined as (t, ϵ)-security

- For some well-defined attack model
- Any attacker must run in at most t steps
- Has at most ϵ success advantage/probability
- t is a lower-bound on the work needed to break the scheme

Define security of the best possible encryption with key space 2^{128}
Q1: For $t=2^{128}$, what is ϵ ?

Concrete Numbers - Part 2

Security is defined as (t, ϵ)-security

- For some well-defined attack model
- Any attacker must run in at most t steps
- Has at most ϵ success advantage/probability
- t is a lower-bound on the work needed to break the scheme

Define security of the best possible encryption with key space 2^{128}
Q1: For $t=2^{128}$, what is ϵ ? $\epsilon=1$
Q2: For $t=1$, what is ϵ ?

Concrete Numbers - Part 2

Security is defined as (t, ϵ)-security

- For some well-defined attack model
- Any attacker must run in at most t steps
- Has at most ϵ success advantage/probability
- t is a lower-bound on the work needed to break the scheme

Define security of the best possible encryption with key space 2^{128}
Q1: For $t=2^{128}$, what is $\epsilon \boldsymbol{?} \epsilon=1$
Q2: For $t=1$, what is ϵ ? $\epsilon=2^{-128}$
Q3: For $t=2^{64}$, what is ϵ ?

Concrete Numbers - Part 2

Security is defined as (t, ϵ)-security

- For some well-defined attack model
- Any attacker must run in at most t steps
- Has at most ϵ success advantage/probability
- t is a lower-bound on the work needed to break the scheme

Define security of the best possible encryption with key space 2^{128}
Q1: For $t=2^{128}$, what is ϵ ? $\epsilon=1$
Q2: For $t=1$, what is ϵ ? $\epsilon=2^{-128}$
Q3: For $t=2^{64}$, what is ϵ ? $\epsilon=2^{-64}$
The more tries you get, the greater ϵ becomes: $\left(t, t / 2^{128}\right)$ security

Quantifying Security

Lower bound on the work required for a successful attack
Number of steps of the best attack

- n-bits security
- Best attack to break the scheme requires 2^{n} steps
- n-bit keys cannot ever give more than n-bit security

Quantifying Security

Lower bound on the work required for a successful attack
Number of steps of the best attack

- n-bits security
- Best attack to break the scheme requires 2^{n} steps
- n-bit keys cannot ever give more than n-bit security
- Q1: Why?

Quantifying Security

Lower bound on the work required for a successful attack
Number of steps of the best attack

- n-bits security
- Best attack to break the scheme requires 2^{n} steps
- n-bit keys cannot ever give more than n-bit security
- Q1: Why?
- Brute-force attack allows finding the correct key
- l-bit keys could lead to n-bit security s.t. $n \ll t$

Quantifying Security

Lower bound on the work required for a successful attack
Number of steps of the best attack

- n-bits security
- Best attack to break the scheme requires 2^{n} steps
- n-bit keys cannot ever give more than n-bit security
- Q1: Why?
- Brute-force attack allows finding the correct key
- l-bit keys could lead to n-bit security s.t. $n \ll t$
- Q2: When?

Quantifying Security

Lower bound on the work required for a successful attack
Number of steps of the best attack

- n-bits security
- Best attack to break the scheme requires 2^{n} steps
- n-bit keys cannot ever give more than n-bit security
- Q1: Why?
- Brute-force attack allows finding the correct key
- l-bit keys could lead to n-bit security s.t. $n \ll t$
- Q2: When?
- Best attack is more efficient than brute-force
- Common in asymmetric cryptography
- Keys must follow specific structures, not random bit strings
- Quantifying using n-bit security permits comparing schemes

Good Security Values for Real-world Crypto

The 2^{128} rule of thumb

- Designs for which best attacks are at $(t, \epsilon)=\left(2^{88}, 2^{-40}\right)$

Good Security Values for Real-world Crypto

The 2^{128} rule of thumb

- Designs for which best attacks are at $(t, \epsilon)=\left(2^{88}, 2^{-40}\right)$

For how long do we need security to hold?

- Moore's law: computational power doubles every 2 years
- $n+1$ bit security every 2 years
- This no longer seems to be true, but...
- Maybe we will have quantum computers soon

Long-term security: ≈ 256-bit keys
Short-term security: ≈ 80-bit keys may be OK

Stateful PRGs in Operating Systems

Randomness generation is statful

- ... in modern OSs
- PRG keeps a state
- OS mixes output of entropy source into PRG state

Stateful PRGs in Operating Systems

Randomness generation is statful

- ... in modern OSs
- PRG keeps a state
- OS mixes output of entropy source into PRG state

Extract and expand randomness

- st $\leftarrow \operatorname{init}(): \mathrm{SO}$ initializes state
- $s t \leftarrow \operatorname{refresh}(R, s t)$: SO adds entropy (reseeds)
- $(C, s t) \leftarrow \operatorname{next}(N, s t)$: SO returns N random bits

Dealing With a Compromised State

Backtracking \Leftarrow resistance

- Suppose an adversary corrupts the PRG state
- Past randomness should not be compromised
- We might have used it to generate cryptographic material
- A.k.a. forward secrecy (for past secret keys)

Dealing With a Compromised State

Backtracking \Leftarrow resistance

- Suppose an adversary corrupts the PRG state
- Past randomness should not be compromised
- We might have used it to generate cryptographic material
- A.k.a. forward secrecy (for past secret keys)

Prediction \Rightarrow resistance

- Suppose the adversary corrupts the PRG state
- SO adds extra (hidden) entropy to PRG state
- Future output should look random once more
- Hence refresh must be called regularly

Linux systems

- PRG is accessible at / dev/urandom
- In *nix-style, PRG is mapped to a file
- Careful to make sure system calls are successful!

Linux systems

- PRG is accessible at / dev/urandom
- In $*$ nix-style, PRG is mapped to a file
- Careful to make sure system calls are successful!

Link to code from LibreSSL
In some variants, there is a blocking / dev/random based on an entropy simulator

- Check if there is "sufficient entropy"
- Blocks otherwise
- Current consensus indicates that, for most applications, this is not useful (see this link for more information)

Caution: statistical tests are not sufficient

- Q: What type of tests can we do over "random" inputs?

Caution: statistical tests are not sufficient

- Q: What type of tests can we do over "random" inputs?
- Count number of 1 s and 0 s
- Check distribution of 8-bit words
- Look for patterns
- ...

Irrelevant for Security

- Possible to pass statistical tests
- Totally insecure for cryptographic purposes

Caution: statistical tests are not sufficient

- Q: What type of tests can we do over "random" inputs?
- Count number of 1 s and 0 s
- Check distribution of 8-bit words
- Look for patterns
- ...

Irrelevant for Security

- Possible to pass statistical tests
- Totally insecure for cryptographic purposes

Cryptographic PRGs come with a proof of security

- Goal: Given n bits of input, can an adversary guess bit $n+1$?
- Secure PRGs used directly, or as building blocks to other PRGs

Security Assurance

There are two main ways in which security is ensured:

- Heuristically
- Provably (not probably!)

Security Assurance

There are two main ways in which security is ensured:

- Heuristically
- Provably (not probably!)

Heuristic Security

- Large community constantly trying to break schemes
- Cryptanalysts trying to disprove n-bit security
- The AES block cipher is an example

Security Assurance

There are two main ways in which security is ensured:

- Heuristically
- Provably (not probably!)

Heuristic Security

- Large community constantly trying to break schemes
- Cryptanalysts trying to disprove n-bit security
- The AES block cipher is an example

Provable Security

- Mathematical proof
- Breaking a scheme implies solving a hard problem
- A mathematical problem, or breaking another scheme!

Provable Security

Assumption: mathematical problem P cannot be efficiently solved
Goal: Breaking scheme C cannot be efficiently done

Provable Security

Assumption: mathematical problem P cannot be efficiently solved
Goal: Breaking scheme C cannot be efficiently done

Methodology: building a reduction

- Take any (hypothetical) attacker \mathcal{A} that breaks C
- Construct (concrete) reduction $\mathcal{B}^{\mathcal{A}}$
- I.e. \mathcal{B} uses \mathcal{A} as a subroutine
- Show that \mathcal{B} solves P when \mathcal{A} succeeds

We never state that C is secure by itself
We state that C is as secure as the hardness of P

An Example of Provable Security - Part 1

Assume that AES is a semantic secure scheme, i.e.

An adversary with non-negligible victory probability (over $\frac{1}{2}$), i.e a successful \mathcal{A} must not exist!

An Example of Provable Security - Part 2

Consider an encryption scheme that just repeats AES 2 times.

$$
E(k, m)=\operatorname{AES}(k, m) \mid \operatorname{AES}(k, m)
$$

Q: given that AES is secure, is this secure?

An Example of Provable Security - Part 2
Consider an encryption scheme that just repeats AES 2 times.

$$
E(k, m)=\operatorname{AES}(k, m) \mid \operatorname{AES}(k, m)
$$

Q: given that AES is secure, is this secure?

- It should be...
- We are just repeating the encryption
- Can we demonstrate this?

An Example of Provable Security - Part 3

- Suppose a successful \mathcal{B} exists
- Then, we can construct a concrete \mathcal{A} to break AES like this
- Contradiction! We assumed that no such \mathcal{A} can exist!

An Example of Provable Security - Part 3

- Suppose a successful \mathcal{B} exists
- Then, we can construct a concrete \mathcal{A} to break AES like this
- Contradiction! We assumed that no such \mathcal{A} can exist!

Corollary

- No $\mathcal{B}^{\mathcal{A}}$ can exist (AES is secure)
- As such, no \mathcal{A} can exist
- So, scheme E must be secure!

Caveats of Provable Security

Problem P is called a hardness assumption

- It can be a mathematical problem, such as factoring
- It can be some other cryptogaphic construction

Caveats of Provable Security

Problem P is called a hardness assumption

- It can be a mathematical problem, such as factoring
- It can be some other cryptogaphic construction

Proof assurance \leq assumption assurance

- Proofs of security are relative to assumptions
- Security only holds if assumptions are true

Most of the assumptions are validated via heuristic security

Heuristic Security

Validating hardness assumptions is crucial for modern cryptography
Methodology for heuristic security has been progressing

- Standards take years to define
- Competitions where proposals are scrutinized
- It is how AES was established as the de facto encryption standard for the overwhelming majority of applications
- And is how PQ encryption schemes are being selected
- "My construction wins if I break your construction"
- Yet again we see the value of the Kerckhoffs's principle!

Applied Cryptography
 Week 2: Randomness and Cryptographic Security

Bernardo Portela

M:ERSI, M:SI - 23

