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Defining Block Ciphers
A block cipher is defined by two deterministic algorithms

Encrypt: E (k , p)
• Takes a key k ∈ {0, 1}λ

• Takes a plaintext block p ∈ {0, 1}B

• Outputs a ciphertext block c ∈ {0, 1}B

Decrypt: D(k , c)
• Takes a key k ∈ {0, 1}λ

• Takes a ciphertext block c ∈ {0, 1}B

• Outputs a plaintext block p ∈ {0, 1}B

A block cipher is invertible: k defines a permutation
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Defining Security for Block Ciphers
Block cipher should be a pseudorandom permutation (PRP)

Q1: How can we define this concretely?

Using an experiment:
• Experiment samples uniformly at random:

• k ∈ {0, 1}λ

• permutation π : {0, 1}B ⇒ {0, 1}B

• bit b
• Attacker can ask for encryptions:

• Attacker selects p ∈ {0, 1}B

• If b = 0, experiment returns E (k, p)
• Otherwise, experiment returns π(p)

• Attacker outputs b′ and wins if b = b′

Q2: How do we calculate the adversarial advantage?

Advantage: |Pr[b = b′]− 1
2 |
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Implications of PRP Security

Our scheme is indistinguishable from a random permutation.
What is a random permutation (π : {0, 1}B ⇒ {0, 1}B), exactly?

• Huge table with 2B entries, indexed by plaintext p
• Each entry contains C
• Each C is sampled uniformly at random, without repeats

• Q: Why must Cs never repeat?
• PRPs are invertible!
• Different from purely random functions

Implications
• Ciphertext blocks look totally random
• Different inputs ⇒ independent outputs
• Must be impossible to recover key
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Selecting the Block Size

E and D work on bitstrings of size B – the block size

Data Encryption Standard (DES, 70s-90s): B = 64 (8 bytes)

Advanced Encryption Standard (AES, 2000s-): B = 128 (16 bytes)

• Block must be small for efficient SW/HW implementation
• Block cannot be too small

• Constructions based on block ciphers
• Key space 2λ

• Block size must be close to the security parameter B ≈ λ

Some encryption schemes based on block constructions are
insecure if the block size is too small (64 can be problematic).
More information here
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Iterated Ciphers: Rounds
Shorter descriptions and code/HW footprints:
• Simple and efficient round algorithm R
• Round algorithm is not as secure as a block cipher
• Block cipher iterates round algorithm n times

• Each round takes a different key
• Round key derived from block cipher key
• Sequence of round keys called key schedule

• Decrypting follows the same method in reverse
• E.g. for a 3 round scheme:

c ← E (k, p) = R3(k3, R2(k2, R1(k1, p)))
p ← D(k, c) = R−1

1 (k1, R−1
2 (k2, R−1

3 (k3, c)))
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Round Functions #1: Substitution-Permutation Networks

• Substitution: S-boxes are small lookup tables (4-8 bits)
designed to introduce non-linearity in the round function.
They create confusion
• Permutation: Bit-level transformations (e.g. switches) or

algebraic functions that introduce dependencies across the
whole block (diffusion)

Q: Why is diffusion necessary?
Consider the encryption of “Attack at dawn” and “Attack at dusk”

S-boxes heuristically designed to
• Create complex relations between input and output
• Minimize statistical bias in outputs

Example block cipher: AES
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Substitution-Permutation Networks - High-level View

(from Wikipedia)
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Round Functions #2: Feistel Networks

Round function processes half of the block
• Input block seen as pair (l , r)
• Output block is (r ⊕ R(ki , l), l)
• R is the round function

Unprocessed half-block is masked to the next round

Decryption is identical to encryption
• Only key scheduling is inverted
• Very important for HW optimization in the 70s

Example block cipher: DES, GOST
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Feistel Networks - High-level View

l0 r0

R(k0)

R(k1)

R(k2)

l2 r2

l2 r2

R(k2)

R(k1)

R(k0)

l0 r0

DecryptEncrypt
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Round Functions for Feistel Networks

Contrary to SPNs, Feistel Network’s R don’t have to be invertible

• These can be Pseudorandom Functions (PRFs)
• A PRF is similar to a PRP, but not necessarily invertible
• Input size can be different from output size
• Security experiment is similar to that of the PRP:

• Experiment chooses a random f
• Rather than a random permutation π
• Q: Is the domain space of random functions larger or

smaller than that of all permutations?
• If the round function is secure, 4 rounds ensure a PRP!
• Practical block ciphers use extra rounds

• Round functions heuristically designed
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Advanced Encryption Standard (AES)
AES was standardized in 2000
• DES was still standard (56-bit keys)
• 3DES was a common solution for short keys (112-bit security)
• 3DES: use DES 3 times with 3 independent keys
• 3DES chains E (k1, D(k2, E (k3, p)))

• Q: Why EDE and not EEE?

AES is now the most used block cipher, by far
• Available in mainstream CPUs as HW implementation

Selected as a result of a competition
• 1997-2000 public competition run by NIST
• This process has since become the norm
• Open to proposals, scrutinized by the community
• Criteria: performance and resistance to cryptanalysis
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Internals of AES
• Block size 128-bits and varying key size (128, 192, 256)-bits
• Keeps a 128-bit internal state: 4 x 4 array of 16-bits
• State is transformed using a substitution-permutation network

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

Substitutions/permutations have an algebraic description
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Internals of AES - Explained

The substitution-permutation network uses:
• AddRoundKey - ⊕ with the state
• SubBytes - Replace each byte using lookup table (S-Box)
• ShiftRows - Matrix rows shifted 0..3 positions
• MixColumns - Columns transformed

SubBytes performs the substitution part

ShiftRows and MixColumns are the permutation

Last round has no MixColumns. Not necessary. Read more here

14 / 33

https://crypto.stackexchange.com/questions/1346/why-is-mixcolumns-omitted-from-the-last-round-of-aes


Block Ciphers Building Block Ciphers Advanced Encryption Standard Symmetric Encryption

Internals of AES - Explained

The substitution-permutation network uses:
• AddRoundKey - ⊕ with the state
• SubBytes - Replace each byte using lookup table (S-Box)
• ShiftRows - Matrix rows shifted 0..3 positions
• MixColumns - Columns transformed

SubBytes performs the substitution part

ShiftRows and MixColumns are the permutation

Last round has no MixColumns. Not necessary. Read more here

14 / 33

https://crypto.stackexchange.com/questions/1346/why-is-mixcolumns-omitted-from-the-last-round-of-aes


Block Ciphers Building Block Ciphers Advanced Encryption Standard Symmetric Encryption

Internals of AES - High Level View

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey
K

ey
 e

xp
an

si
on

p k

7 rounds

c

k0

k1

k9

k10
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Internals of AES - SubBytes

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s'0

s'1
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s'9
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S-Box
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Internals of AES - ShiftBytes

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s'0

s'5

s'10

s'15

s'4

s'9

s'14

s'3

s'8

s'13

s'2

s'7
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s'11

ShiftRows
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Internals of AES - MixColumns

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s'0

s'1
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s'3
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MixColumns
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Implementing AES

The not so good
• AES is hard to implement in software
• Naive implementations using tables leak via side-channels
• Removing side-channels in software is hard

The good
• AES is super fast in mainstream processors
• AES-NI - AES Native Instructions
• From SW one can resort to HW AES
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Security of AES

There is no mathematical proof that AES is a PRP

All practical applications based on AES assume this

AES has been around for 25 years:
• No significant cryptanalysis progress
• AES scrutiny is an important area of research
• Direct attack on AES unlikely to be the weakest link

Assuming AES is a PRP gives us provably secure and very
efficient symmetric encryption schemes
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Using Block Ciphers Directly

Recall our secure PRP block cipher building block:

Encrypt: E (k , p)
• Takes a key k ∈ {0, 1}λ

• Takes a plaintext block p ∈ {0, 1}B

• Outputs a ciphertext block c ∈ {0, 1}B

Decrypt: D(k , c)
• Takes a key k ∈ {0, 1}λ

• Takes a ciphertext block c ∈ {0, 1}B

• Outputs a plaintext block p ∈ {0, 1}B

Q: What problem arises in using this to encrypt messages?
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Modes of Operation

Modern cryptography clearly defines these concepts

• Block-ciphers are a primitive
• On their own, they’re not very useful
• There are insecure ways to encrypt with a block cipher
• Encryption schemes have their own security definitions
• Encryption schemes built from block ciphers
• We prove encryption secure assuming a block cipher PRP

22 / 33
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Defining Symmetric Encryption

Syntax
• Key Generation: Often uniform sampling in {0, 1}λ

• Encryption: Probabilistic algorithm c←$ E (k, m)
• Decryption: Deterministic algorithm m/⊥ ← D(k, c)

Security (IND-CPA)
• Experiment samples k and bit b uniformly at random
• Attacker can query encryptions of chosen messages
• Attacker outputs (m0, m1) s.t. |m0| = |m1|
• Attacker gets c←$ E (k, mb)
• Attacker outputs b′ and wins if b = b′

Advantage: |Pr[b = b′]− 1
2 |
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Defining Symmetric Encryption

Syntax
• Key Generation: Often uniform sampling in {0, 1}λ

• Encryption: Probabilistic algorithm c←$ E (k, m)
• Decryption: Deterministic algorithm m/⊥ ← D(k, c)
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Insecure Encryption from Secure Block Ciphers
Electronic-Code-Book Mode (ECB)
• Break message into plaintext blocks p0, . . . , pn
• Last block may need padding

• That’s a can of worms in and of itself
• More on that later

• Independently encrypt each block ci ← E (k, pi)

• Q: Why is this insecure?

ECB is broken because you can see the penguin!
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Breaking ECB

What is the issue?
• Equal input blocks ⇒ Equal output blocks
• Preserves patterns that vary slower than block size

Q1: Can we prove it is insecure (win the game)?
• Output m0 ̸= m1, |m0| = |m1|, get c
• Request an encryption of m0 to get c∗

• If b′ = 0 iff c = c∗

This attack works against all deterministic encryption schemes

Q2: Can we prove it is insecure not querying exactly m0/m1?
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Cipher Block Chaining
Engineers designed a secure encryption scheme before security
proofs were well understood

p0 p1

E(k)

p2

IV

c0 c1 c2

E(k) E(k)

• Main difference to ECB is the Initialization Vector (IV)
• Blocks depend on each other
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Cipher Block Chaining: Performance and Security

Intuition of CBC security
• Random IV makes first block-cipher input random
• Block cipher security implies c1 looks random and independent
• CBC uses c1 as the IV for the second block
• Same argument for c2
• Two encryptions of the same plaintext look independent
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Working with CBC

p0 p1

E(k)

p2

IV

c0 c1 c2

E(k) E(k)

• Q1: How can we do decryption?

• Q2: Can we speed encrypt/decrypt with parallelism?
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CBC: Padding

There are several padding methods
• Some schemes require message size as multiple of block size
• Padding schemes re-encode message so that is true
• To avoid ambiguity: padding is always added

The most common padding scheme is specified in PKCS#7:
• Let k > |M| be the next multiple of B (in bytes)
• Add k − |M| bytes with value k − |M|
• The last byte always reveals how much padding was added

• 0x01 means 1 byte of padding with that value
• 0x03 means 3 bytes of padding with that value

Q: What is the minimum and maximum of added padding?
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Counter Block Mode
Often Counter Block Mode (CTR) is used in Nonce-based form

N || 0 N || 1

E(k)

N || 2

c0 c1 c2

p0

E(k)

p1

E(k)

p2

• N must be unique, but not necessarily random
• Encryption becomes stateful

• Q: How can this be faster than CBC?
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Advantages of CTR

Counter mode is very efficient
• Key stream can be pre-processed

• Block cipher not applied to the message!
• Any part of the data can be accessed efficiently
• This includes read/write access
• Decryption/encryption can be parallelized

As such, many modern protocols rely on CTR mode
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Errors in Designing Modes of Operation

Recall the guarantees of IND-CPA
• Attacker has access to encryptions
• Can’t extract any information about messages
• What if it has access to side information on decryption?
• No guarantee that modified ciphertext is rejected: what leaks?

A (very real) practical example:
• Padding oracle attacks against AES-CBC (TLS 1.*)
• Attacker gets to observe padding check error
• This is enough to recover plaintext (e.g. cookies)

At the root of the problem: allowing non-authenticated ciphertexts
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