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How do Stream Ciphers work?

They rely in the use of Deterministic Random Bit Generators (DRBG)
instead of Pseudo Random Bit Generators (PRBG) because is the use of the
deterministic property of the RBG that allow the correct decryption of the

original data.

With a PRNG, you could encrypt but never decrypt—which is very secure,

but very useless too.
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K - the key, that should remain secret. Usually with 128 or 256 bits

key stream

N - a nonce, that does not need to be kept in secret, but it should be unique

for each key (an each “message”) and is usually between 64 and 128 bits.
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KS = SC(K,N)
C=KS®P
P=KS®C

Stream ciphers allow you to encrypt a message with key K1 and nonce N1
and then encrypt another message with key K1 and nonce N2 that is
different from N1, or with key K2, which is different from K1 and nonce N1.

However, you should never again encrypt with K1 and N1, because you

would then use twice the same keystream KS.



Then...
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If on can get the plaintext P;, then
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Stateful and Counter-Based Stream Ciphers

From a high-level perspective, there are two types of stream ciphers: stateful and

counter based.

Stateful stream ciphers have a secret internal state that evolves throughout

keystream generation.
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The cipher initialises the state from the key and the nonce and then calls an
update function to update the state value and produce one or more keystream
bits from the state.

RC4 is a famous example of a statetul cipher.
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Counter-based stream ciphers produce chunks of keystream from a key, a
nonce, and a counter value. No secret state is memorised during keystream

generation.
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The internals of the stream cipher also fall into two categories, depending on the
target platform of the cipher: hardware oriented and software oriented.
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Hardware-Oriented Stream Ciphers

A cipher’s hardware implementation is an electronic circuit that
implements the cryptographic algorithm at the bit level and that can’t be used
for anything else; in other words, the circuit is dedicated hardware.

Software implementations of cryptographic algorithms simply tell a
microprocessor what instructions to execute in order to run the algorithm.
These instructions operate on bytes or words and then call pieces of electronic
circuit that implement general-purpose operations such as addition and
multiplication. Software deals with bytes or words of 32 or 64 bits, whereas

hardware deals with bits.



Feedback Shift Registers

An FSR is simply an array of bits equipped with an update feedback function,
which we will denote as f. The FSR’s state is stored in the array, or register, and
each update of the FSR uses the feedback function to change the state’s value
and to produce one output bit.

In practice, an F'SR works like this: if RO is the initial value of the F'SR, the next
state, R1, is defined as RO left-shifted by 1 bit, where the bit leaving the register
is returned as output, and where the empty position is filled with f(RO).
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The same rule is repeated to compute the subsequent state values R2, R3, and so
on. That is, given R;, the FSR’s state at time t, the next state, Ry 1, is the
following:

Ryp1 = (R << 1) | f(Ry)

In this equation, | is the logical OR operator and << is the shift operator.

For example, a 4-bit FSR whose feedback function f XORs all 4 bits together.

Initialize the state to the following:
1100

Now shift the bits to the left, where 1 is output and the rightmost bit is set to

the following:
f(1100) =114040=0
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Now the state becomes this:
1000

The next update outputs 1, left-shifts the state, and sets the rightmost bit to
the following:

£(1000) =130®0®0=1

And the new state is: 0001

The next three updates return three 0 bits and give the following state values:

0011
0110
1100
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Thus returning to the initial state of 1100 after five iterations, and we can see
that updating the state five times from any of the values observed throughout
this cycle will return us to this initial value. We say that 5 is the period of the
FSR given any one of the values 1100, 1000, 0001, 0011, or 0110.

1100 0100 1111

0110 1000 1010 1001 0111 1110 0000

00T1 0001 0101 0010 1011 1101

The period of an FSR, from some initial state, is the number of updates needed

until the FSR enters the same state again.
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Linear Feedback Shift Registers

Linear feedback shift registers (LFSRs) are FSRs with a linear feedback function.

The choice of which bits are XORed together is crucial for the period of the
LFSR and thus for its cryptographic value.

How to choose the bits to be XORed so that the period is maximal? Let
bpbp—1++-b3b2by
be the bits of the register, and consider the polynomial

l+z4+a’ 425+ -+ 2
corresponding to the positions of the selected bits.

The period is maximal iff the corresponding polynomial is primitive.

14



Considering the following LFSR

=1 L

The corresponding polynomial is a primitive one:

and the respective period is maximal (15).

1

1+ 23+ 24

This is the sequence of configurations (orbit)

0001
0011
0101
1110

0010
0110
1011
1100
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0100
1101
0111
1000

1001
1010
1111
0001



Using an LF'SR as a stream cipher is insecure. If n is the LFSR’s bit length, an
attacker needs only n output bits to recover the LESR’s initial state, allowing
them to determine all previous bits and predict all future bits.

The upshot is that LFSRs are cryptographically weak because they’re linear.

To strengthen LFSRs, let’s thus add a pinch of nonlinearity.
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Filtered LEFSRs

To mitigate the insecurity of LFSRs, you can hide their linearity by passing their

output bits through a nonlinear function before returning them to produce what is
called a filtered LFSR
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The g function must be a nonlinear function—one that both XORs bits together and
combines them with logical AND or OR operations.
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Filtered LF'SRs are stronger than plain LE'SRs because their nonlinear function
thwarts straightforward attacks. Still, more complex attacks will break the
system.
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Nonlinear FSRs

Nonlinear FSRs (NFSRs) are like LFSRs but with a nonlinear feedback function
instead of a linear one.

One benefit of the addition of nonlinear feedback functions is that they make
NFSRs cryptographically stronger than LFSRs because the output bits depend
on the initial secret state in a complex fashion, according to equations of

exponential size.

One downside to NF'SRs is that there’s no efficient way to determine an NFSR'’s
period, or simply to know whether its period is maximal.
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Grain-128a combines a 128-bit LESR, a 128-bit NFSR, and a filter function, h. The
LFSR has a maximal period of 2'2® — 1, which ensures that the period of the whole
system is at least 212® — 1 to protect against potential short cycles in the NFSR. At
the same time, the NFSR and the nonlinear filter function h add cryptographic

strength.

20



Grain-128a takes a 128-bit key and a 96-bit nonce. It copies the 128 key bits into
the NFSR’s 128 bits and copies the 96 nonce bits into the first 96 LFSR bits, filling
the 32 bits left with ones and a single zero bit at the end. The initialisation phase
updates the whole system 256 times before returning the first keystream bit.
During initialisation, the bit returned by the h function is thus not output as a
keystream, but instead goes into the LFSR to ensure that its subsequent state

depends on both the key and the nonce.
f(L) = L3z + La7 + Lsg + Loo + L121 + L1928
The feedback polynomial of Grain-128a’s NF'SR has degree 4 and can’t be

approximated by a linear function because it is highly nonlinear.

The filter function h is a nonlinear function that takes 9 bits from the NFSR
and 7 bits from the LFSR and combines them in a way that ensures good

cryptographic properties.
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A5/1 is a stream cipher that was used to encrypt voice communications in the 2G

mobile standard. Attacks appeared in the early 2000s, and A5/1 was eventually
broken in a way that allows actual decryption of encrypted communications.
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How could this be seen as secure with only LESRs and no NFSR? The trick lies
in A5/1’s update mechanism. Instead of updating all three LEFSRs at each clock
cycle, the designers of A5/1 added a clocking rule that does the following:

1. Checks the value of the ninth bit of LE'SR 1, the 11th bit of LFSR 2, and
the 11th bit of LESR 3, called the clocking bits. Of those three bits, either
all have the same value (1 or 0) or exactly two have the same value.

2. Clocks the registers whose clocking bits are equal to the majority value, 0 or
1. Either two or three LFSRs are clocked at each update.

2G communications use A5/1 with a key of 64 bits and a 22-bit nonce, which

is changed for every new data frame.
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Two kinds of attacks

Subtle Attacks: Exploit the internal linearity of A5/1 and its simple irregular

clocking system

In a subtle attack called a guess-and-determine attack, an attacker guesses certain
secret values of the state in order to determine others. In cryptanalysis, “guessing”
means brute-forcing: for each possible value of LE'SRs 1 and 2, and all possible
values of LFSR 3’s clocking bit during the first 11 clocks, the attack reconstructs
LEFSR 3’s bits by solving equations that depend on the bits guessed. When the
guess is correct, the attacker gets the right value for LESR 3.
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For all 219 values of LFSR 1's initial state
For all 222 values of LFSR 2's initial state
For all 2 11 values of LFSR 3's clocking bit during the first 11
clocks
Reconstruct LFSR 3's initial state
Test whether guess 1s correct;
if yes, return; else continue

This attack makes at most 219 x 222 x 211 = 252 gperations in the worst case,
when the algorithm only succeeds at the very last test. That’s 212 (or about 4000)
times faster than in the bruteforce search, assuming that the last two operations
in the above pseudocode require about as much computation as testing a 64-bit
key in a brute-force search.
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The guess-and-determine attack on A5/1 can decrypt encrypted mobile
communications, but it takes a couple of hours to recover the key when run on a
cluster of dedicated hardware devices. In other words, it’s nowhere near real-time

decryption.

Brutal Attacks: The time-memory trade-off (TMTO) attack is the brutal attack
on A5/1. This attack doesn’t care about A5/1’s internals; it cares only that its
state is 64 bits long. The TMTO attack sees A5/1 as a black box that takes in a
64-bit value (the state) and spits out a 64-bit value (the first 64 keystream bits).

The idea behind the attack is to reduce the cost of a brute-force search in exchange
for using lots of memory. The simplest type of TMTO is the codebook attack. In a
codebook attack, you precompute a table of 264 elements containing a combination
of key and value pairs (key:value), and store the output value for each of the 264

possible keys.
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TMTO attacks reduce the memory required by a codebook attack at the price of
increased computation during the online phase of the attack; the smaller the
table, the more computations required to crack a key. Regardless, it will still cost
about 264 operations to prepare the table, but that needs to be done only once.

In 2010, researchers took about two months to generate two terabytes’ worth of
tables, using graphics processing units (GPUs) and running 105 instances of A5/1
in parallel. With the help of such large tables, calls encrypted with A5/1 could be
decrypted almost in real time. Telecommunication operators have implemented
workarounds to mitigate the attack, but a real solution came with the later 3G
and 4G mobile telephony standards, which ditched A5/1 altogether.
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Software-Oriented Stream Ciphers

Today, there is considerable interest in software stream ciphers for a few reasons.
First, because many devices embed powerful CPUs and hardware has become

cheaper. For example, the two stream ciphers in the mobile communications
standard 4G work with 32-bit words and not bits, unlike the older A5/1.

Second, stream ciphers have gained popularity in software at the expense of block
ciphers, notably after successful attacks to the later in CBC mode. In addition,
stream ciphers are easier to specify and to implement than block ciphers: instead
of mixing message and key bits together, stream ciphers just ingest key bits as a

secret. In fact, one of the most popular stream ciphers is actually a block cipher in
disguise: AES in counter mode (CTR).

28



RC4

Designed in 1987 by Ron Rivest of RSA Security RC4 has long been the most
widely used stream cipher. RC4 is used in the first Wi-F'i encryption standard
Wireless Equivalent Privacy (WEP) and in the Transport Layer Security (TLS)
protocol used to establish HIT'TPS connections.

How RC4 Works

It simply swaps bytes. RC4’s internal state is an array, S, of 256 bytes, first set to
S[0] =0, S[1] =1, S|2] = 2, . .., S|255] = 255, and then initialized from an n-
byte K using its key scheduling algorithm (KSA).
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j=0

S = range(256)

for i in range(256):
j = (j + S[i] + K[i % nl) % 256
S[i], S[jl = S[jl, Sl[il

Once this algorithm completes, array S still contains all the byte values from 0 to

255, but now in a random-looking order.

Given the initial state S, RC4 generates a keystream, KS, of the same length as
the plaintext, P, in order to compute a ciphertext: C = P @ KS.
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for b in range(m):
i=(i+ 1) % 256
j = (j + slil) % 256
Sslil, S[jl = S[jl, S[il
KS[b] = SL(S[i] + S[jl) % 256]

Each iteration of the for loop modifies up to 2 bytes of RC4’s internal state S: S|i]
and S|j| whose values are swapped. If j equals i, then Sli| isn’t modified.

This looks too simple to be secure, yet it took 20 years for cryptanalysts to find
exploitable flaws. Before the flaws were revealed, we only knew RC4’s weaknesses
in specific implementations, as in the first Wi-Fi encryption standard, WEP.
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RC4 in WEP

WEP, the first generation Wi-F'i security protocol, is now completely broken due
to weaknesses in the protocol’s design and in RCA4.

In its WEP implementation, RC4 encrypts payload data of 802.11 frames, the
datagrams (or packets) that transport data over the wireless network. All payloads
delivered in the same session use the same secret key of 40 or 104 bits but have
what is a supposedly unique 3-byte nonce encoded in the frame header (the part of
the frame that encodes metadata and comes before the actual payload).

The problem is that RC4 doesn’t support a nonce, at least not in its official
specification, and a stream cipher can’t be used without a nonce.

32



The WEP designers addressed this limitation with a workaround: they included a
24-bit nonce in the wireless frame’s header and prepended it to the WEP key to
be used as RC4’s secret key. That is, if the nonce is the bytes N|[0|, N[1], N|2| and
the WEP key is K|0|, K|1|, K|2|, K|3|, K|4], the actual RC4 key is N|0|, N|1|, N|2],
K|0], K|1], K[2[, K[3], K[4]. The net effect is to have 40-bit secret keys yield 64-bit
effective keys, and 104bit keys yield 128-bit effective keys.

The result? The advertised 128-bit WEP protocol actually offers only 104-bit

security, at best.
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The nonces are too small at only 24 bits . This means that if a nonce is chosen
randomly for each new message, you’ll have to wait about 224/2 = 212 packets, or
a few megabytes’ worth of traffic, until you can find two packets encrypted with
the same nonce, and thus the same keystream. Even if the nonce is a counter
running from 0 to 22* — 1, it will take a few gigabytes’ worth of data until a
rollover, when the repeated nonce can allow the attacker to decrypt packets.

Combining the nonce and key in this fashion helps recover the key. WEP’s three
non-secret nonce bytes let an attacker determine the value of S after three
iterations of the key scheduling algorithm. Because of this, cryptanalysts found
that the first keystream byte strongly depends on the first secret key byte—the
fourth byte ingested by the KSA—and that this bias can be exploited to recover
the secret key.
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Following the appearance of the first attacks on WEP in 2001, researchers found
faster attacks that required fewer ciphertexts. Today, you can even find tools such
as aircrack-ng that implement the entire attack, from network sniffing to

cryptanalysis.

WEP’s insecurity is due to both weaknesses in RC4, which takes a single one-use

key instead of a key and nonce (as in any decent stream cipher), and weaknesses in
the WEP design itself.
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RC4 in TLS

TLS is the single most important security protocol used on the internet. It is
best known for underlying HT'TPS connections, but it’s also used to protect
some virtual private network (VPN) connections, as well as email servers,
mobile applications, and many others. And sadly, TLS has long supported RCA4.

Unlike WEP, the TLS implementation doesn’t make the same blatant mistake
of tweaking the RC4 specs in order to use a public nonce. Instead, TLS just
teeds RC4 a unique 128-bit session key, which means it’s a bit less broken than

WEP.
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The weakness in TLS is due only to RC4 and its inexcusable flaws: statistical
biases, or non-randomness, which we know is a total deal breaker for a stream
cipher. For example, the second keystream byte produced by RC4 is zero, with a
probability of 1/128, whereas it should be 1/256 ideally. Crazier still is the fact
that most experts continued to trust RC4 as late as 2013, even though its

statistical biases have been known since 2001.

All of the first 256 bytes were biased as well. In 2011, it was found that the
probability that one of those bytes comes to zero equals 1/256 + ¢/256% for some
constant, c, taking values between 0.24 and 1.34. It’s not just for the byte zero but
for other byte values as well. The amazing thing about RC4 is that it fails where
even many non cryptographic PRNGs succeed—namely, at producing uniformly
distributed pseudorandom bytes.
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For example, say you want to decrypt the plaintext byte P; given many
ciphertext bytes obtained by intercepting the different ciphertexts of the same
message. The first four ciphertext bytes will therefore look like this:

C: = PoKS?
C; = P®KS?
C{ = P ®KS;}

Because of RC4’s bias, keystream bytes K.S? are more likely to be zero than any
other byte value. Therefore, C? bytes are more likely to be equal to P than to
any other value. In order to determine P; given the C? bytes, you simply count
the number of occurrences of each byte value and return the most frequent one
as P1. However, because the statistical bias is very small, you’ll need millions of

values to get it right with any certainty.
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Salsa20

Salsa20 is a simple, software-oriented cipher optimised for modern CPUs that has

been implemented in numerous protocols and libraries.

KIINII Ctr
I

Y

Salsa20
core

B
e

39



Salsa20 is a counter-based stream cipher—it generates its keystream by
repeatedly processing a counter incremented for each block. The Salsa20 core
algorithm transforms a 512-bit block using a key (K), a nonce (N), and a counter
value ( Ctr). Salsa20 then adds the result to the original value of the block to
produce a keystream block. (If the algorithm were to return the core’s
permutation directly as an output, Salsa20 would be totally insecure, because it
could be inverted. The final addition of the initial secret state K || N || Ctr makes

the transform key-to-keystream-block non-invertible.)
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The Quarter-Round Function

Salsa20’s core permutation uses a function called quarter-round (QR) to

transform four 32-bit words (a, b, ¢, and d):

b = bd((a+d) <<<7)
c = cd((b+a)<<<9)
d = do&((c+b) <<< 13)
a = a®((d+c) <<< 18)
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The initial state
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To transform the initial 512-bit state, Salsa20 first applies the QR transform to all
four columns independently (known as the column-round) and then to all four rows
independently (the row-round). Together this is called a double-round. Salsa20
repeats 10 double-rounds, for 20 rounds in total, thus the 20 in SalsaZ20.
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00000000 00000000 00000000 00000000 80040003 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000001 00000000 00000000 00000000 00000001 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00002000 00000000 00000000 00000000
9ed7eb7f 060002c0 18028b0c 57ca83c0 3ab3c25d 9f40a5¢c9 10070e30 07bd03cO
00000000 00000000 00000000 00000000 dblee2ce 43ee9401 21a702c3 48fd800c
00000001 00006000 8010006 00000000 7  403c1e72 00034003 4dc843be 700b8857
00002000 00400000 04000008 0060300 5625b75b 09c00e00 06000348 23f712d4
d93bed6d a267bf47 760c2f9f 4aa1dsab So after only four rounds, a single
0e03d792 7340e010 119e6a00 e90186af difference propagates to most of the bits

7fag9617e bbaca0d7 4f6e9aqa 564b34fd

in the 512-bit state. In cryptography,
98be796d 64908d32 4897f7ca a684a2df

this is called full diffusion.
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Breaking Salsa20 should ideally take 22°% operations, thanks to its use of a 256-bit

2256 gperations, the

key. If the key can be recovered by performing any fewer than
cipher is in theory broken. That’s exactly the case with Salsa20/8. Where,

theoretically the key can be recovered at 22°! operations.
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How Things Can Go Wrong

Alas, many things can go wrong with stream ciphers, from brittle, insecure designs to
strong algorithms incorrectly implemented.

Nonce Reuse The most common failure seen with stream ciphers is an amateur
mistake: it occurs when a nonce is used more than once with the same key. This
produces identical keystreams, allowing you to break the encryption by XORing two
ciphertexts together. The keystream then vanishes, and you're left with the XOR of
the two plaintexts.

For example, older versions of Microsoft Word and Excel used a unique nonce for
each document, but the nonce wasn’t changed once the document was modified.
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