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The Public Key Cryptography (PKC) model

• Instead of one key per channel, each agent has two keys.
• A public key kp.
• A secret (or private) key ks.
• One needs Dks(Ekp(m)) = m.
• Dkp(Ekp(m)) ∕= m.
• Even better if Dkp(Eks(m)) = m, but this is not necessary.



To achieve such model we will need some
mathematical notions and results...



a | b ⇐⇒ ∃k ∈ Z, ak = b

1 a | 1 ⇒ a = ±1
2 ((a | b) ∧ (b | a)) ⇒ a = ±b

3 (∀b)(b | 0)
4 (b | g) ∧ (b | h) ⇒ ((∀m, n ∈ Z)(b | (mg + nh)))

5 ((a | (b + c)) ∧ (a | b)) ⇒ a | c

a | b ⇒ b = ak

a | (b + c) ⇒ (b + c) = ak
′ = (ak + c)

ak
′ = ak + c ⇒ a(k ′ − k) = c

⇒ a | c



Definition (prime number)
The integer p > 1 is called a prime number if its only positive divisors are itself
and the unity.

Definition (greatest common divisor)
The greatest common divisor g of two integers a and b, g = (a, b) if

g | a ∧ g | b ∧ ((∀d)(d | a ∧ d | b) ⇒ d | g).

Definition (coprime integers)
Two positive integers, a and b, are coprime if (a, b) = 1.



Theorem
g = (a, g) is the smallest positive linear combination of a and b.

Let S = {ax + by : x , y ∈ Z ∧ ax + by > 0}. S ∕= ∅ (as a2 + b2 ∈ S). Let
d = min(S).

• Let d ′ be s.t. d ′ | a ∧ d ′ | b, thus

d = ax + by = d
′
q1x + d

′
q2y = d

′(q1x + q2y)

thus, d ′ | d .

• a = dq + r , 0 ≤ r < d , then

r = a − dq = a − (ax + by)q = a(1 − xq) + b(−yq)

i.e. r is linear combination of a and b.
r > 0 =⇒ r ∈ S, but as r < d that would be absurd as d = min(S). Thus.
0 ≤ r ⇒ r = 0., and d | a.. With the same argument we show that d | b.

Thus, d = (a, b).



Theorem
A integer p is prime if and only if

(∀a, b ∈ Z \ {0})(p | ab =⇒ p | a ∨ p | b). (1)

(⇒) Let p be a prime and p | ab. If p | a the proof is done. If p ∤ a then, as
p has no divisors

(p, a) = 1

Thus
(∃x , y) 1 = ax + py ⇒ b = bax + bpy ⇒ p | b.

(⇐) Let p be s.t. (1) and S = {n | n > 1 ∧ n | p}. S ∕= ∅ because p ∈ S.
Let m = min(S),

m | p ∧ (∃k) mk = p

as p satisfies(1), p | m ∨ p | k . But

p | k ⇒ k ≥ p ⇒ p = k ⇒ m = 1

(a contradiction!) Then

p m p m



Theorem (fundamental theorem of arithmetic)
Every positive integer can be written in a unique way as a product of ascending

primes.

Definition
Let a, b ∈ Z, q ∈ Z and r ∈ N s.t. 0 ≤ r < b ∧ a = bq + r , then one writes

a mod b = r or a ≡ r (mod b).

a ≡ r (mod b) ⇐⇒ b | (a − r)



Let Zn = {0, 1, . . . , n − 1}.
Observe that

1 (w + x) mod n = (x + w) mod n

2 (w × x) mod n = (x × w) mod n

3 ((w + x) + y) mod n = (w + (x + y)) mod n

4 ((w × x)× y) mod n = (w × (x × y)) mod n

5 (w × (x + y)) mod n = ((w × x) + (w × y)) mod n

6 (0 + w) mod n = w mod n

7 (1 × w) mod n = w mod n

8 (∀w ∈ Zn)(∃z ∈ Zn)(w + z = 0 mod n)



Observe that an additive cancelation rule valid:

(a + b) ≡ (a + c) (mod n) ⇒ b ≡ c (mod n)

because ∀a ∈ Zn∃b ∈ Zn a + b ≡ 0 (mod n), but

((a × b) ≡ (a × c) (mod n) ⇒ b ≡ c (mod n)) if (a, n) = 1

if (a, n) ∕= 1
f : Zn −→ Zn

z 2−→ a × z (mod n)

then f is not surjective.Let m = (a, n), thus m | a ∧ m | n, hence
((∃x)(∃y) a = xm ∧ n = ym). Then f (0) = a × 0 = 0 and
f (y) = ay = xym = xn ≡ 0 (mod n).



Theorem (Fermat)
Let p be a prime and a s.t. p ∤ a, then ap−1 ≡ 1 (mod p).

f : Z∗
p −→ Z∗

p
z 2−→ az (mod p)

is surjective thus

{a mod p, 2a mod p, . . . , (p − 1)a mod p} = {1, 2, . . . , p − 1}
p−1!

i=1

ai (mod p) =

p−1!

i=1

i

a
p−1(p − 1)! ≡ (p − 1)! (mod p)

As
"
(p − 1)!, p

#
= 1 one can conclude ap−1 ≡ 1 (mod p).



φ(n) =
$${i | i < n ∧ (i , n) = 1}

$$

If p is a prime then φ(p) = p − 1.
If p and q are primes, then the set of elements n of Zpq s.t. (n, pq) ∕= 1 is
{p, 2p, . . . , (q − 1)p, q, 2q, . . . , (p − 1)q}. Thus,

φ(pq) = (pq − 1)− ((q − 1) + (p − 1))
= pq − (p + q) + 1
= (p − 1)(q − 1)
= φ(p)φ(q).



Theorem (Euler)

(a, n) = 1 =⇒ a
φ(n) ≡ 1 (mod n).

R = {x ∈ N : 0 < x < n ∧ (n, x) = 1} = {x1, x2, . . . , xφ(n)}
S = {ax1 (mod n), ax2 (mod n), . . . , axφ(n)}
(((a, n) = 1) ∧ ((xi , n) = 1)) ⇒ ((axi , n) = 1), thus S ⊆ R.But
((axi mod n) = (axj mod n)) ⇒ xi = xj thus S = R.

φ(n)!

i=1

axi ≡
φ(n)!

i=1

xi (mod n)

a
φ(n) ×

φ(n)!

i=1

xi ≡
φ(n)!

i=1

xi (mod n)

a
φ(n) ≡ 1 (mod n)



Theorem (Corollary)
Let p and q be prime numbers, n = pq and 0 < m < n, then

m
φ(n)+1 ≡ m (mod n).

(m, n) ∕= 1 ⇐⇒ p|m ∨ q|m. p|m (m = cp) =⇒ (q,m) = 1, else,

p | m ∧ q | m ∧ m < pq

m
φ(q) ≡ 1 (mod q)

(mφ(q))φ(p) ≡ 1 (mod q)

m
φ(n) ≡ 1 (mod q)

(∃k ∈ N)(mφ(n) = 1 + kq)

m
φ(n)+1 = m + kcpq = m + kcn

m
φ(n)+1 ≡ m (mod n)



RSA



RSA

Alice creates her pair of keys (public, private) using the following recipe:
1 Generates two big primes of comparable magnitude: p and q.
2 Defines n = pq.
3 Generates e < φ(n) = (p − 1)(q − 1) s.t. (e,φ(n)) = 1.
4 Computes d = e−1 (mod φ(n)).

The public key is 〈n, e〉 and the private key is 〈n, d〉.
If Bob wants to send a message m to Alice, sends me (mod n).
Alice deciphers the message computing:

(me (mod n))
d

(mod n) = m
ed (mod n)

= m
kφ(n)+1 (mod n)

= m



A toy example
1 Let p = 7 and q = 17.
2 Thus n = pq = 119.
3 φ(n) = (p − 1)(q − 1) = 96.
4 Choose e s.t. e < φ(n) and (φ(n), e) = 1. Let e = 5.
5 Compute d = e−1 (mod φ(n)). d = 77 (77 × 5 = 385 = 4 × 96 + 1).
6 If m = 19, enciphered message will be

195 = 2476099 ≡ 66 (mod 119).

7 To decipher

6677 = 127316015002712725024996823827450919411351129158
643807873318778077633686286816610254398613549028
148573790434899358326117107662397756833529856

≡ 19 (mod 119).



RSA (and in general all PKC ciphers) is about 1000 times slower than normal
symetric ciphers, this alone make them unusable to directly cipher texts.

There is, however, an even stronger reason. Because public key is public (duh!) it
makes PKC vulnerable to a dictionary attack if the message comes from a
relatively small set of admissible messages.

Moreover RSA is a multiplicative homomorfism, i.e.

Ek (x1)Ek (x2) = (xe
1 (mod n))(xe

2 (mod n)) =

= (x1x2)
e (mod n) = Ek (x1x2)

and this can get origin to some attacks in some contexts. We say that this
weakness makes textbook RSA encryption malleable.



Strong RSA Encryption: OAEP

In order to make RSA ciphertexts nonmalleable, the ciphertext should consist of
the message data and some additional data called padding.

Optimal Asymmetric Encryption Padding (OAEP)



OAEP’s Security

OAEP uses a pseudorandom number generator (PRNG) to ensure the
indistinguishability and nonmalleability of ciphertexts by making the encryption
probabilistic. It has been proven secure as long as the RSA function and the
PRNG are secure and, to a lesser extent, as long as the hash functions aren’t too
weak. You should use OAEP whenever you need to encrypt with RSA.





Signing with RSA

To sign a message m an agent just need to compute

m
d (mod n).

The verification is just a “deciphering” with the public key.



Breaking simple RSA signature

First, it is worthwhile to note that

0d (mod n) = 0
1d (mod n) = 1

(n − 1)d (mod n) = (−1)d mod 2,

thus, disregarding the value of the private key, an attacker can forge signatures of
0, 1 and (n − 1).

More troublesome is the possibility of a blinding attack. If one finds a value r such
that rem (mod n) is a message that is plausible of being signed, then

s = (re
m)d = rm

d

and thus is simple to obtain md .



The PSS Signature Standard



1 Pick an r -byte random string r using the PRNG.
2 m′ = 0000000000000000||Hash1(m)||r
3 Compute the h-byte string h = Hash1(m′).
4 Set l = 00 · · · 00||01||r
5 Set l = l ⊕ Hash2(h)
6 Convert p = l ||h||bc to a number, x < n, lower than n.
7 Given the value x just obtained, compute the RSA function xd (mod n) to

obtain the signature.



Like OAEP, PSS is provably secure, standardised, and widely deployed. Also like
OAEP, it looks needlessly complex and is prone to implementation errors and
mishandled corner cases. But unlike RSA encryption, there’s a way to get around
this extra complexity with a signature scheme that doesn’t even need a PRNG,
thus reducing the risk of insecure RSA signatures caused by an insecure PRNG.



Full Domain Hash Signatures

It could not be simpler, but PSS has a better provable security.



These stronger theoretical guarantees are the main reason cryptographers prefer
PSS over FDH, but most applications using PSS today could switch to FDH with
no meaningful security loss. In some contexts, however, a viable reason to use
PSS instead of FDH is that PSS’s randomness protects it from some attacks on its
implementation, such as fault attacks.



Fast exponentiation

How to compute a14? a × a × a × · · ·× a needs 13 operations.

a2, a4, a8, only takes 3, and... a14 = a2a4a8, only 6 operations.

To speedup decryption we need a little more wisdom...



The Chinese remainder theorem

Theorem (Chinese remainder theorem)
Let

m =
r!

i=1

mi

with (∀i , j)(i ∕= j =⇒ (mi ,mj) = 1). Then

%
&'

&(

x ≡ a1 (mod m1)
.
.
.

x ≡ ar (mod mr )

has a solution for x, and all solutions y of the system are such

y ≡ x (mod m).



First let us show that all solutions are congruent (mod m). Let x ′ and x ′′ be
solutions, make x = x ′ − x ′′. Thus x ≡ 0 (mod m) because (∀i)(x ≡ 0 mod mi).
Thus

x
′ ≡ x

′′ mod m.

Let m′
i =

m
mi

. Clearly (mi ,m
′
i) = 1, for all i . Thus

(∀i)(∃ni)(m
′
ini ≡ 1 mod mi).

Make

x =
r)

i=1

aim
′
ini .

For each i ∕= j mj | aim
′
ini , hence

(∀i)

*
x =

r)

i=1

aim
′
ini ≡ ai mod mi

+
.



Applying the CRT to RSA is quite simple, because there are only two factors for
each n (namely p and q). Given a ciphertext y to decrypt, instead of computing yd

(mod n), you use the CRT to compute xp = ys (mod p), where s = d (mod (p˘1))
and xq = y t (mod q),where t = d (mod (q˘1)). You now combine these two
expressions and compute x to be the following:

x = xpq(1/q (mod p)) + xqp(1/p (mod q)) (mod n).

This makes the computation 4 times faster.



Attacks!


