(Applied) Cryptography

Tutorial \#6

Bernardo Portela (bernardo.portela@fc.up.pt) Rogério Reis (rogerio.reis@fc.up.pt)

MSI/MCC/MERSI - 2023/2024

1. In a public-key system using RSA, you intercept the ciphertext $C=20$ sent to a user whose public key is $e=13, n=77$. What is the plaintext M ?
2. In a RSA system, the public key of a given user is $e=65, n=2881$. What is the private key of this user?
3. In the RSA public-key encryption scheme, each user has a public key e and a private key d. Suppose Bob leaks his private key. Rather than generating a new modus, he decides to generate a new public key e and a new private key d. Is this safe?
4. Suppose Bob uses the RSA cryptosystem with a very large modulus n for which the factorisation cannot be found in a reasonable amount of time. Suppose Alice sends an enciphered message to Bob containing only her phone number: number ${ }^{e}(\bmod n)$. Is this safe?
5. Although, since 2002, there is a published algorithm with polynomial complexity to test primality of an integer, its performance for small sizes is too slow to be considered as usable. What is normally used is a probabilistic test, that can be iterated the necessary number of times so that the probability of a false positive may be made negligible. The Miller-Rabin is a primality test of this kind.

Theorem 1. If p is an odd prime, then the equation

$$
x^{2} \equiv 1 \quad(\bmod p)
$$

has only two solutions: $x \equiv 1$ and $x \equiv-1$.
Proof. If x is solution of the equation, then

$$
\begin{array}{rlr}
x^{2}-1 & \equiv 0 \quad(\bmod p) \\
(x+1)(x-1) & \equiv 0 \quad(\bmod p)
\end{array}
$$

thus

$$
p|(x+1) \vee p|(x-1)
$$

Suppose that $p|(x+1) \wedge p|(x-1)$. Then we can write $(x+1)=k p$ and $(x-1)=j p$ for some integers k and j. Subtracting both equations we get $2=(k-j) p$ that is only satisfied with $p=2$, but the initial assumption states that p is an odd prime. Thus $p|(x+1) \dot{\vee} p|(x-1)$. Suppose that $p \mid(x-1)$. Then

$$
(\exists k)(x-1=k p)
$$

and hence $x \equiv 1(\bmod p)$.
In an entirely analogous manner we proceed if $x \equiv-1(\bmod p)$.
We can look at this theorem in a different perspective: if we can find a solution for $x^{2} \equiv 1$ $(\bmod n)$ that is different from $x= \pm 1$, then we can conclude that n is not prime.

Theorem 2. Let p be an odd prime and a such that $p \nmid a$. We can always express $p-1$ as

$$
p-1=2^{k} d
$$

with d odd. Thus, one of the two following is true:
(a) $a^{d} \equiv 1(\bmod p)$,
(b) $\exists i \in\{0, \ldots, k-1\} a^{2^{i} d} \equiv-1(\bmod p)$.

Proof. By Fermat's theorem, $a^{2^{k} d} \equiv 1(\bmod p)$. Thus, in the following sequence

$$
a^{d}, a^{2 d}, a^{2^{2} d}, \ldots, a^{2^{k} d}
$$

at least the last is congruent with 1 . But each of the powers of a is the square of the previous. Thus, one of the following is true
(a) $a^{d} \equiv 1(\bmod p)$;
(b) $\exists i \in\{1, \ldots, k\}$,

$$
a^{2^{i} d} \equiv 1 \quad(\bmod p) \wedge a^{2^{i-1} d} \not \equiv 1 \quad(\bmod p) .
$$

As we are in the conditions of the previous theorem, we conclude that

$$
a^{2^{i-1} d} \equiv-1 \quad(\bmod p)
$$

We can, then, write a programming function, Witness, that takes a number n and a "witness" a, with $(a, n)=1$, and tests if $a^{d} \not \equiv 1(\bmod n)$ and $a^{2^{i} d} \not \equiv-1(\bmod n)$, for all $0 \leq i \leq k$. If the test succeeds we know for sure that the number is not a prime. If it fails we cannot conclude, but we have a probability of $\frac{1}{2}$ of n being a prime. We can repeat the test (with a different values for a). If we try m times and all the tests are negative we can ensure that the number n is a prime with a probability $1-2^{-m}$.
Programming assignment: Write a python program that implements this strategy and test it for large primes.

