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1. In a public-key system using RSA, you intercept the ciphertext C = 20 sent to a user whose
public key is e = 13, n = 77. What is the plaintext M?

2. In a RSA system, the public key of a given user is e = 65, n = 2881. What is the private
key of this user?

3. In the RSA public-key encryption scheme, each user has a public key e and a private key
d. Suppose Bob leaks his private key. Rather than generating a new modus, he decides to
generate a new public key e and a new private key d. Is this safe?

4. Suppose Bob uses the RSA cryptosystem with a very large modulus n for which the factori-
sation cannot be found in a reasonable amount of time. Suppose Alice sends an enciphered
message to Bob containing only her phone number: numbere (mod n). Is this safe?

5. Although, since 2002, there is a published algorithm with polynomial complexity to test
primality of an integer, its performance for small sizes is too slow to be considered as usable.
What is normally used is a probabilistic test, that can be iterated the necessary number of
times so that the probability of a false positive may be made negligible. The Miller-Rabin
is a primality test of this kind.

Theorem 1. If p is an odd prime, then the equation

x2 ≡ 1 (mod p)

has only two solutions: x ≡ 1 and x ≡ −1.

Proof. If x is solution of the equation, then

x2 − 1 ≡ 0 (mod p)

(x+ 1)(x− 1) ≡ 0 (mod p)

thus
p | (x+ 1) ∨ p | (x− 1).

Suppose that p | (x+1) ∧ p | (x−1). Then we can write (x+1) = kp and (x−1) = jp for some
integers k and j. Subtracting both equations we get 2 = (k − j)p that is only satisfied with
p = 2, but the initial assumption states that p is an odd prime. Thus p | (x+1) ∨̇ p | (x−1).
Suppose that p | (x− 1). Then

(∃k)(x− 1 = kp)

and hence x ≡ 1 (mod p).

In an entirely analogous manner we proceed if x ≡ −1 (mod p).

We can look at this theorem in a different perspective: if we can find a solution for x2 ≡ 1
(mod n) that is different from x = ±1, then we can conclude that n is not prime.
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Theorem 2. Let p be an odd prime and a such that p ∤ a. We can always express p− 1 as

p− 1 = 2kd

with d odd. Thus, one of the two following is true:

(a) ad ≡ 1 (mod p),

(b) ∃i ∈ {0, . . . , k − 1} a2
id ≡ −1 (mod p).

Proof. By Fermat’s theorem, a2
kd ≡ 1 (mod p). Thus, in the following sequence

ad, a2d, a2
2d, . . . , a2

kd

at least the last is congruent with 1. But each of the powers of a is the square of the previous.
Thus, one of the following is true

(a) ad ≡ 1 (mod p);

(b) ∃i ∈ {1, . . . , k},
a2

id ≡ 1 (mod p) ∧ a2
i−1d ∕≡ 1 (mod p).

As we are in the conditions of the previous theorem, we conclude that

a2
i−1d ≡ −1 (mod p).

We can, then, write a programming function, Witness, that takes a number n and a “wit-
ness” a, with (a, n) = 1, and tests if ad ∕≡ 1 (mod n) and a2

id ∕≡ −1 (mod n), for all
0 ≤ i ≤ k. If the test succeeds we know for sure that the number is not a prime. If it fails
we cannot conclude, but we have a probability of 1

2 of n being a prime. We can repeat the
test (with a different values for a). If we try m times and all the tests are negative we can
ensure that the number n is a prime with a probability 1− 2−m.

Programming assignment: Write a python program that implements this strategy and
test it for large primes.
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