
(Applied) Cryptography
Tutorial #2

Bernardo Portela (bernardo.portela@fc.up.pt) Rogério Reis (rvreis@fc.up.pt)

MSI/MCC/MERSI – 2023/2024

Recall that a probability distribution D over a set S can be seen as a deterministic function mapping random coins
C sampled uniformly at random from a set C to S. In this case, the probability mass function is defined, for all
S′ ∈ S, as:

Pr[S = S′ : S ←$ D] = Pr[S = S′ : C ←$ C; S ← D(C)] = #{C : D(C) = S′ }
|C|

We abbreviate this, when clear from the context, to Pr[S′].

Recall also that the entropy of such a distribution is given by:∑
S′∈S

−Pr[S′] · log2(Pr[S′])

For example, the entropy associated with a perfect coin flip is − 1
2 · log2(1

2) + (− 1
2 · log2(1

2)) = 1.

Answer the following questions
1 - Consider S the set of integers in the range 0..250 and note p = 251 is a prime number. Take C to be the set of
all bit strings of length 8. Let the distribution D to be defined by the function D(C) := C (mod p), i.e. takes the
remainder of coins C divided by p.

• Calculate the probability of each value in S to be produced by D.

• Repeat the above considering now the set C to be the set of all bit strings of length 64.

• Are these distributions uniform? If not, can you think of a way to quantify how distant they are from uniform?

2 - Repeat question #1 but take p = 28, i.e., a power of 2.

3 - Use Sage to compute the entropy of the two distributions referred in questions #1 and #2. Compute also the
entropy of the uniform distribution over S.

4 - Generalize the computations from question #3 in Sage to compute the entropy of distribution D when C is the
set of bit strings of length k. Check (approximately) what is the smallest k for which the entropy computed in Sage
for D matches the entropy of the uniform distribution over S

5 - hexdump can be used to extract randomness from /dev/urandom. Explain what the following command is doing.

$ hexdump -n 32 -e '1/4 "%0X" 1 "\n"' /dev/urandom

Implement an alternative command that uses /dev/urandom to create a file with random bytes.

• HINT: use the shell dd command.

Use openSSL to do exactly the same.

• HINT: look at command rand.

6 - Use openSSL to generate a key pair where private key is protected with a password.

openssl genrsa 4096

1

See what happens when you increase/decrease the key size.

Investigate how openSSL converts the passphrase into a cryptography key for encryption/wrapping.

7 - Use openSSL to generate random Diffie-Hellman parameters.

openssl dhparam 2048

See what happens when you increase/decrease the key size. Compare to the previous case.

2

	Answer the following questions

