
(Applied) Cryptography
Tutorial #4

Bernardo Portela (bernardo.portela@fc.up.pt) Rogério Reis (rvreis@fc.up.pt)

MSI/MCC/MERSI – 2023/2024

1 - Use OpenSSL to calculate the SHA256 value of the pdf slides of this week’s class. Check if it equals:

4c091014d4175c3fcda6d99b359c8d8eb1bf64789314bb266908bfaa1f763508

1.1 - What does this tell you about the integrity of the file?

1.2 - Suppose you alter the first 4 bytes of the original pdf file, and recompute the SHA256 value of this altered file.
How many bytes do you expect to be affected by this change?

2 - Use python to crack the security of predictable passwords in crack_hash.py

• The file has the twenty most common passwords of 2019.
• The code produces hash values of passwords (salted and non-salted), then they are shuffled.
• From the shuffled hashes and the list of most common passwords, retrieve the original passwords!
• Is it faster to attack salted or unsalted hashes?
• Include a succinct analysis of how long it takes to do these attacks.

3 - Use the tool available here (or any other tool that works) to construct two PDFs with the same SHA-1 value.
One of the PDFs should explain how a single SHA-1 collision allows finding infinite pairs of colliding PDFs.

4 - A length extension attack works as follows.

• Application generates secret key k, which is kept hidden
• At some point application computes h = H(k||m) for some message m and publishes (m, h).
• Intuitively it should be impossible for some attacker to compute H(k||m′) for m ̸= m′.
• However, for some hash functions, it is possible to compute such a value using only (M, h). This technique has

been explained in theoretical classes for the SHA-2 family. Demonstrate the attack by constructing:
– A Python program that generates k, computes h = SHA2(k||m) for some m and saves k, m and h into

different files.
– Another Python program that reads m and h (but not k!) and generates some m′ and h′ into different

files. Is must be the case that SHA2(k||m′) = h′ and that m ̸= m′.

1

http://alf.nu/SHA1

