
Cryptography
Week #7:

Computational Complexity & Hard problems

Rogério Reis 〈rogerio.reis@fc.up.pt〉
2024/2025
DCC FCUP

November, 8th 2024

Rogério Reis Cryptography Week #7 2024.11.08 1 / 37

Cryptography and absolute security

Given the recent evolution of capacity and speed of computers, is there a real waranty that
some cryptographic scheme is realy secure?

A cryptographic algorithm, assumed to be cryptalalytical secure, with a key of lenght 256 bits
is it secure? And, if yes, for how long?

Rogério Reis Cryptography Week #7 2024.11.08 2 / 37

Termodynamic limits of computation

A consequence from the Second Law of Termodynamics is that a minimum of energy is
necessary to change the state of a single bit.

To alter the state of a bit a system takes, at least, kT energy, where T is the absolute
temperature of the system, and k is Boltzman constant.

As k = 1.38× 10−16 erg/K, and the average temperature of the Universe is 3.2 K, using an
idealy perfect computer at that temperature, needs 4.4× 10−16 erg to “erase” a bit.

The anual average radiation energy of the Sun is 1.21× 1041 erg, which is enough to
2.7× 1056 flips of bit state. Enough to put a register to count from 0 to 2187.

Rogério Reis Cryptography Week #7 2024.11.08 3 / 37

Complexity & Cryptography

Given that the model of secrecy used by modern cryptography is not compatible with “secrecy
by obfuscation” its security must rely on the Computational Complexity results.

Rogério Reis Cryptography Week #7 2024.11.08 4 / 37

Turing Machine

A Turing machine can both write on the tape and read from it.

The read–write head can move both to the left and to the right.

The tape is infinite.

The special states for rejecting and accepting take effect immediately.

Rogério Reis Cryptography Week #7 2024.11.08 5 / 37

Turing-recognisable language

Call a language L Turing-recognisable if some Turing machine A recognises it. That is, if
given a word w ∈ L as input the TM always come to a stop giving a positive answer.

Turing-decidable language

Call a language Turing-decidable or simply decidable if some Turing machine decides it.

Some (actually the vast majority) languages are not decidable neither not recognisable.
The obvious example is the language of Turing Machines that halt with an empty input. (The
“halting problem”).

Rogério Reis Cryptography Week #7 2024.11.08 6 / 37

Turing machine that decides A = {02n|n ≥ 0}.

Rogério Reis Cryptography Week #7 2024.11.08 7 / 37

Church–Turing thesis

All models of enough expressiveness are equivalent.

Rogério Reis Cryptography Week #7 2024.11.08 8 / 37

Computational Complexity

The computational complexity of a task is the mesure of the time necessary to accomplish the
task as a function of the size of the input.

This is normally done using a Turing Machine using a single tape as reference, but (as long as
they are deterministic) other models do not give results that correspond to different classes of
complexity.

We will work on the assumption that the choice of the model of computation used is irrelevant
in what complexity classification is concern1.

1Kind of a Church-Turing thesis v2.0.
Rogério Reis Cryptography Week #7 2024.11.08 9 / 37

Bachmann-Landau notation

The “big O” notation

f : N −→ R

f (n) = O(g(n))

∃k > 0 ∃n0 ∀n > n0 : |f (n)| ≤ k g(n)

When f (n) = O(g(n)), we say that g(n) is an upper bound for f (n), or more precisely, that
g(n) is an asymptotic upper bound for f (n), to emphasise that we are suppressing constant
factors.

Rogério Reis Cryptography Week #7 2024.11.08 10 / 37

Bachmann-Landau notation

f1(n) = 5n3 + 2n2 + 55 = O(n3)

f1(n) = O(n4)

f1(n) ∕= O(n2), because, ∀k ∀n0 ∃n > n0 : |f1(n)| > k n2

f2(n) = 3n log2 n + 5n log2 log2 n + 2 = O(n log n)

Rogério Reis Cryptography Week #7 2024.11.08 11 / 37

Bachmann-Landau Notation

The “small o” notation

f (n) = o(g(n))

lim
n→∞

f (n)

g(n)
= 0

Rogério Reis Cryptography Week #7 2024.11.08 12 / 37

Complexity Theory

Traditionally Complexity Theory considers only a special kind of programs that takes an input
and and returns an answer of acceptance or rejection of that input. The set of accepted words
by one of these programs is called the language defined by the program and we say that the
program decides the language in the sense that it decides, for each word fed as input, if it
belongs to the language or not.
Although this model does not cover all the problems that are necessary to study, most of the
problems may be divided in components that follow in this definition of “decision program”.
Thus, we may see the study of the complexity of these “decision programs” as the study of
lower bounds for complexity of a more general set of programs.

Rogério Reis Cryptography Week #7 2024.11.08 13 / 37

Complexity Classes

TIME

Let f : N → R+ be a function. Define the time complexity class, TIME(t(n)), to be the
collection of all languages that are decidable by an O(t(n)) time Turing machine.

SPACE

Let t : N → R+ be a function. Define the space complexity class, SPACE(t(n)), to be the
collection of all languages that are decidable by an Turing machine using a O(t(n)) space in
their tape.

Rogério Reis Cryptography Week #7 2024.11.08 14 / 37

How important is the complexity in practice?

Rogério Reis Cryptography Week #7 2024.11.08 15 / 37

Complexity Classes

It is easy to see that if a function f is in TIME(g(n)) then it cannot but be in SPACE(g(n)).

TIME(n2) ⊆ SPACE(n2)

The most “important” of the complexity classes is P:

The class P

P =

k∈N
TIME(nk)

Thus P is the class of complexity of all the functions that can be decided in a polynomial time
by a Turing Machine.

Rogério Reis Cryptography Week #7 2024.11.08 16 / 37

Examples of languages in P

RelPrime Given two integers, decide if their greatest common divider is 1, i.e. if they are
coprime. The Euclides’ algorithm solves the problem in time O(n).

PrimeP Given an integer decide if it is a prime number. Proven in 2002 (PRIMES is in P,
Agrawal, Kayal and Saxena, 2002). The AKS algorithm runs in time
O(n12 log(n12)) = Õ(n12)2. Although this a polynomial asymptotic complexity,
in practice, and for the size of numbers one wants to use it, the AKS is
outperformed by many algorithms of non polynomial complexity.

Any CFL Any context-free language have a CFG that recognises it and CYK parser can
thus operate in time O(n3).

2This is the “soft-O” notation: Õ(f (n)) = O(f (n) log f (n)).
Rogério Reis Cryptography Week #7 2024.11.08 17 / 37

Complexity Classes

In the same manner:

The class PSPACE

PSPACE =

k∈N
SPACE(nk)

PSPACE is the class of complexity of the functions that can be decided by a Turing Machine
using polynomial space on its tape.

Rogério Reis Cryptography Week #7 2024.11.08 18 / 37

Complexity Classes

The second most “important” of the complexity classes is NP. NP does not stand for
“non-polynomial” but for “nondeterministic polynomial”, that is languages that (these
conditions are equivalent):

can be decided by a nondeterministic Turing Machine in polynomial time;

can be verified in polynomial time by a (deterministic) Turing Machine.

By “verified” one means that a Turing Machine with input 〈w , c〉 can decide if w is part of the
language using c as additional information (normally called a witness). The time dependence
of the machine only takes in account the size of w and not c .

Rogério Reis Cryptography Week #7 2024.11.08 19 / 37

Examples of languages in NP

Of course, P ⊆ NP, and thus all the previous examples are in NP.

Composites Given an integer decide if it belongs to {n | ∃p, q, (p, q < n) ∧ (n = pq)}.
Trivially is in NP because a verifier is straightforward to write using the list of
factors as witness. Although many believe that the problem is in P, we still do
not know any algorithm that ensure that.

Clique Given a graph G and an integer k , decide if G has a k-clique as a subgraph. As
a witness its enough to give the list of the vertices of the k-clique.

SubSet-Sum

〈S , t〉 | S = {x1, . . . , xk} ∧ S ′ ⊆ S ∧

x∈S ′

x = t

DiscreteLog Given p, a and n decide if there is k s.t.

ak ≡ n (mod p).

Rogério Reis Cryptography Week #7 2024.11.08 20 / 37

Complexity Classes

NTIME

Let f : N → R+ be a function. Define the time complexity class, NTIME(t(n)), to be the
collection of all languages that are decidable by an O(t(n)) time nondeterministic Turing
machine.

NP

NP =

k∈N
NTIME(nk)

Rogério Reis Cryptography Week #7 2024.11.08 21 / 37

P vs NP

P = the class of languages with quick membership decision.

NP = the class of languages with quick membership verification.

One of these is correct! Which one?

Rogério Reis Cryptography Week #7 2024.11.08 22 / 37

The best deterministic method currently known for deciding languages in NP uses exponential
time.

EXPTIME

NP ⊆ EXPTIME =

k∈N
TIME

2n

k

Rogério Reis Cryptography Week #7 2024.11.08 23 / 37

SuperPolyTime is not ExpTime

Rogério Reis Cryptography Week #7 2024.11.08 24 / 37

NP-Completness

Polynomial time computable function

A function f : Σ → Σ is a polynomial time computable function if some polynomial time
Turing machine M exists that halts with just f (w) on its tape, when started on any input w .

Rogério Reis Cryptography Week #7 2024.11.08 25 / 37

NP-Completness

Polynomial time reduction

Language A is polynomial time reducible to language B , written A ≤P B , if a polynomial
time computable function f : Σ → Σ, where

∀w w ∈ A ⇐⇒ f (w) ∈ B .

The function f is called the polynomial time reduction of A to B .

Rogério Reis Cryptography Week #7 2024.11.08 26 / 37

NP-Completness

Theorem

If A ≤P B and B ∈ P, then A ∈ P.

NP-complete

A language B is NP-complete if it satisfies:

B is in NP, and

∀A ∈ NP(A ≤P B). (we say that B is NP-hard)

Theorem

If B is NP-complete and B ∈ P, then P = NP.

Theorem

If B is NP-complete and B ≤P C for C ∈ NP, then C is NP-complete.

Rogério Reis Cryptography Week #7 2024.11.08 27 / 37

NP-Completness

The set of NP-complete languages (problems) is the set of hardest languages (problems) in
NP.

Rogério Reis Cryptography Week #7 2024.11.08 28 / 37

Examples of NP-complete languages

Traveling salesman problem Given a graph with weights labelling each edge decide if
there is a path through all the vertices with a total sum not exceeding a given x .

Clique

Knapsack Given set of integers S and two additional integers x and y decide if there is a
Q ⊆ S such that x ≤

q∈Q q ≤ y .

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME

Rogério Reis Cryptography Week #7 2024.11.08 29 / 37

The Factoring Problem

prime number

A number p is prime if its only positive factors are 1 and p.

Fundamental Theorem of Arithmetic

For any positive integer n there is a unique factorisation of n as a product of increasing primes.

The factoring problem consists of finding the prime numbers p and q given a large number,
N = pq. The widely used RSA algorithms are based on the fact that factoring a number is
difficult. In fact, the hardness of the factoring problem is what makes RSA encryption and
signature schemes secure. This problem is indeed hard, yet probably not NP-complete.

Rogério Reis Cryptography Week #7 2024.11.08 30 / 37

How to factor an integer?

To factor the number n we can try to divide n by every i ∈ {2, . . . , n − 1}. This will take a
time O(n).
But we can do better...
We can try to divide n by every i ∈ {2, . . . , ⌊

√
n⌋}. We have reduced the time to O

n

1
2

Still, we can improve.
We can only try to divide n by the primes that are smaller than

√
n. By the prime number

theorem we know that the number of primes below
√
n is approximately

√
n

log
√
n
. This makes

the task faster. But still we need 2120 operations for a 256-bit integer. Not good enough!

Rogério Reis Cryptography Week #7 2024.11.08 31 / 37

The fastest factoring algorithm is the general number field sieve (GNFS), with an average
time to operate for a number n of

e1.91n
1
3 (log n)

1
3 .

Factoring a 1024-bits integer 270 operations
Factoring a 2048-bits integer 290 operations
Factoring a 4096-bits integer 2128 operations

Rogério Reis Cryptography Week #7 2024.11.08 32 / 37

In 2005, after about 18 months of computation — and thanks to the power of a cluster
of 80 processors, with a total effort equivalent to 75 years of computation on a single
processor—a group of researchers factored a 663-bit (200-decimal digit) number.

In 2009, after about two years and using several hundred processors, with a total effort
equivalent to about 2000 years of computation on a single processor, another group of
researchers factored a 768-bit (232-decimal digit) number.

Thus the estimates are very optimistic regarding the possible performance of computers and
algorithms.

Rogério Reis Cryptography Week #7 2024.11.08 33 / 37

So we have a problem that is in NP and that looks hard, but is it as hard as the hardest NP
problems? In other words, is factoring NP- complete? Probably not.

Factoring may then be slightly easier than NP-complete in theory, but as far as cryptography is
concerned, it’s hard enough, and even more reliable than NP-complete problems. Indeed, it’s
easier to build cryptosystems on top of the factoring problem than NP-complete problems,
because it’s hard to know exactly how hard it is to break a cryptosystem based on some
NP-complete problems—in other words, how many bits of security you’d get.

On the other hand... we may have to deal with quantum computers...

Rogério Reis Cryptography Week #7 2024.11.08 34 / 37

... and if we are not careful, factoring can became easy!

To factor 17976931348623159077293051907890247336179769789423065
7273430081157739343819933842986982557174198257278917258638193
7092658191860266261806597306650627109955565786394477156084151
8689565284169198292110720231716536912489048151238855803905342
7125099290315449262324709315263256083132540461407052872832790 915388014592 takes
just a few seconds because
its factors are: 2800, 641, 6700417, 167773885276849215533569 and
37414057161322375957408148834323969.

Rogério Reis Cryptography Week #7 2024.11.08 35 / 37

The Discrete Logarithm Problem

Consider the multiplicative group Z∗
p (with p prime). The DLP consists, given g and x , in

finding y such that g y = x in Z∗
p, i.e.

g y ≡ x (mod p).

In this conditions DLP seems as hard as the integer factoring problem.

Rogério Reis Cryptography Week #7 2024.11.08 36 / 37

Rogério Reis Cryptography Week #7 2024.11.08 37 / 37

