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1 .  I N T R O D U C T I O N

There are three main families of public key cryptosystems
based on computational number theory. The first family
includes RSA and related variants (Rabin-Williams,
LUC, Dickson, elliptic curve embodiments of RSA-like
KMOV). The trapdoor for these relies on the extraction
of roots over finite Abelian groups of some secret order.
Root extraction is easy when the group order is known,
but believed to be hard without that knowledge. Finding
the group order is as hard as factoring a large integer.

The second family is based on Diffie-Hellman-type
schemes (ElGamal and variants, Cramer-Shoup) which
exploit properties of exponentiation over finite cyclic
groups. Here, the trapdoor depends on the knowledge of
the discrete logarithm of some public group element and
again, computing this secret information from the
description of the group alone is believed to be hard.

Finally, the third family is based on high degree residuosity
classes (Goldwasser-Micali, Benaloh, Naccache-Stern,
Okamoto-Uchiyama and variants). The trapdoor in these
schemes combines the extraction of residuosity classes over
certain groups with the intractability of computing their
order. Because residuosity classes are additive, such cryp-
tosystems look like discrete-log based ones, but the trap-
door is closer in nature to those for factoring-based systems.

We review here one particular cryptosystem belonging to
this last family that was proposed by the author of this
paper at Eurocrypt ‘99. The system, based on composite
residuosity classes, has recently gained a certain degree of
popularity mainly as a building block for cryptographic
protocols. We summarize some of these constructions
and provide state-of-the-art references to composite-
residuosity-based cryptographic tools.

2 .  D E S C R I P T I O N  O F  T H E  S C H E M E

We first briefly recall basic facts on composite residues,
referring the reader to [8] for more details. 

• We set n = pq where p and q are large primes and denote
by +(n) and ⇐ = ⇐(n) the Euler and Carmichael
functions of n respectively. Then +(n) = (p-1)(q-1) and
⇐ = lcm(p-1, q-1).

• It is a well-known fact that the group Zn2
≥ has 

+(n2) = n+(n) elements. Furthermore, w ⇐ = 1 mod n
and w n⇐ = 1 mod n2 for any element w µ Zn2

≥ .

• We say that an integer z is an n-residue modulo n2

if there exists some y µ Zn2
≥ such that z = yn mod n2. The

set of n-residues forms a subgroup of Zn2
≥ of order +(n).

Each n-residue in Zn2
≥ has exactly n roots of degree n. 

• We denote by B the set of elements of order nΣ for
some Σ µ [1, ⇐].

• Let g µ Zn2
≥ and consider the mapping over Zn 2 Zn2

≥

defined by:

(x,y) !0 g x yn mod n2.

Then, when g µ B, this map is one-to-one.

• Let g µ B. We define the n-residuosity class of an
element w µ Zn2

≥ with respect to g as the unique integer
x µ [1, n] for which there exists y µ Zn2

≥ s.t. w = g xy n

mod n2.

Following the notation of Benaloh [2], we denote the
class of w by [w]g . Note that [w]g = 0 if and only if
w is an n-residue. Additionally, 

∀w1,w2, [w1 ⋅ w2]g = [w1]g + [w2]g .
Hence, the class function  w !0 [w]g is an additive
homomorphism for any g µ B.

• Consider the subgroup of Zn2 defined by 
Sn = {u : u = 1 mod n}. For u µ Sn define:

L(u) = (u – 1)/n .

Then for u µ Sn we have L(ur)/L(u) = r. Hence,
discrete-log is easy in the group Sn.
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The n-Residuosity Class Problem in base g, denoted
Class[n, g], is defined as the problem of computing the
class function in base g. This is exactly the problem of
decrypting a given ciphertext in the cryptosystem above.

As before, one can show that Class[n, g], is random self-
reducible over its inputs. Moreover, for any w µ Zn2

≥ and
g1,g2 µ B, we have

[w]g1 = [w]g
2

[ g2]g
1

mod n

which implies that Class[n, g] is also random self-reducible
over g µ B. Hence, Class [n] is a computational number-
theoretic problem which only depends on n, very much
like factorization for instance. The Class problem is relat-
ed to other standard hard number theoretic problems. For
example, the decryption procedure shows that: 

Hence, if we can factor n and obtain ⇐ then we can solve
Class[n]. Therefore, we write:  

Class[n] ⇐ Fact[n].

One can show a slightly stronger statement. Class[n] can
be solved just given the ability to compute n’th roots in Zn.
Computing n’th roots in Zn is called the RSA problem with
public exponent e = n and is denoted by RSA[n,n].
Therefore, we have:

Class[n] ⇐ RSA [n,n].

In summary, the computational hierarchy behind compos-
ite residuosity is

CR[n] ⇐ Class[n] ⇐ RSA[n,n] ⇐ Fact[n].

We conjecture that Class[n] is polynomial-time
intractable; by analogy with the DCRA, this conjecture is
called Computational Composite Residuosity
Assumption (CCRA for short). We know that if the
DCRA is true then the CCRA is true, but the converse
implication remains open.

We are now ready to define the composite residuosity
cryptosystem. Let n = pq and g µ B. The public key is the
pair (n, g) while the factors (p,q) are the private key. The
cryptosystem is as follows.

Encryption:
Plaintext: 0 ≤ m < n
select a random 0 < r < n
Ciphertext: c = gmrn mod n2

Decryption:
Ciphertext: 0 < c < n2

Plaintext: m =                  mod n

We discuss the security of this system below. This 
cryptosystem is useful for distributed computations due
to its additive homomorphism. That is, for all m1, m2 :

D ( E(m1)⋅E(m2) mod n2 ) = m1+m2 mod n

In other words, given the two ciphertexts E(m1), E(m2) it
is easy to construct the encryption of m1 + m2. 

The additive property is particularly useful when design-
ing threshold crypto-systems and distributed protocols in
general. It also allows full self-randomization of encryp-
tions in the sense that any ciphertext can be transformed
into another without affecting the plaintext.

3 .  T H E  C L A S S  P R O B L E M

We discuss several complexity assumptions needed for the
security of the above cryptosystem.

The problem of distinguishing the set of n-residues from
non n-residues in Zn2 is denoted by CR[n]. This problem
has a random-self reduction in Zn2 (reduce CR[n] for a
worst case element x µ Zn2 to a random element). The
assumption that CR[n] is polynomial-time intractable is
referred to as the Decisional Composite Residuosity
Assumption (DCRA). 

The cryptosystem above is semantically secure (against 
chosen-plaintext attacks) assuming the DCRA assumption.
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A careful study of CR[n] and Class[n] is essential in
future research, because very few things are known about
these problems today. We note that the encryption scheme
shown above is one-way relative to the CCRA and seman-
tically secure (against chosen-plaintext attacks) relative to
the DCRA.

In [4], Catalano, Gennaro and Howgrave-Graham exam-
ined the bit security of our scheme. They showed that
given a random element w µ Zn2

≥ , predicting the least 
significant bit of [w]g is as hard as computing [w]g com-
pletely. Moreover, they proved that the scheme simultane-
ously hides |n|– b bits of [w] g under the assumption that
computing classes remains hard over {w : [w]g < 2b}. By
encrypting random-padded messages, the authors
deduced from their results a way to construct the first
encryption scheme hiding O( |n| ) plaintext bits. Note that
although their modified version of the class problem
seems to remain hard in this context, further research on its
connections with the original class problem (as well as on
possible breakthroughs) is required to validate this approach.

4 .  C R Y P T O G R A P H I C  A P P L I C A T I O N S

We now give some cryptographic applications of com-
posite residuosity. Without being exhaustive, composite
residuosity finds applications in such different fields as
encryption, signatures, distributed protocols such as vot-
ing schemes and ZK proofs. It is worthwhile noting that
among all residuosity-based schemes, taking g = 1+kn for
some k leads to higher encryption rates as gm = 1+kmn.
Because of random self-reducibility, this choice does not
affect the security level.

4 .1  A  Subgroup  Var iant

We give here a slightly modified encryption scheme in
which the ciphertext space is restricted to the subgroup 〈g〉.
Indeed, assuming that g is of order nΣ, we have for any 
w µ 〈g〉,

[w]g =

This motivates the following cryptosystem.

Encryption:
Plaintext: 0 ≤ m < n
select a random 0 < r < n
ciphertext: c = gm+rn mod n2

Decryption:
Ciphertext: 0 < c < n2

Plaintext:  m = 

This time, the secret key is Σ instead of ⇐ . The most
expensive operation while decrypting is the modular expo-
nentiation ca mod n2, which can be accelerated arbitrarily
by an adequate selection of Σ. In practice, Σ should be
typically set to a 320-bit divisor of ⇐ such that Σ = Σ pΣ q

where Σp divides p-1 but not q-1 and Σq divides q-1 
but not p-1. This can be met using an appropriate key 
generation algorithm.

In this subgroup variant, one-wayness does not rely on 
the composite residuosity class problem, because the
ciphertext is known to lie in 〈g〉. The problem consisting
in computing residuosity classes in this context is called
Partial Discrete Logarithm Problem and is a weaker
instance of the class problem. Similarly, we call Decisional
Partial Discrete Logarithm Problem the problem of
distinguishing n-residues given the public information.
The semantic security of the encryption scheme is equiv-
alent to this problem.
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4 .2  Ex tended  Var iant

In [15], Damgård and Jurik introduced a modified cryp-
tosystem in which computations are performed modulo
ns+1 where s ≥ 1. Clearly, the original scheme is contained
by setting s = 1. Damgård and Jurik’s extended scheme
relies on the observation that for any g µ Zn

≥
s+1 such that 

ns divides the order of g modulo n s+1, the function
defined over Zns x Zn

≥ by

(x,y) !0 gxyns
mod ns+1

is one-to-one. As a result, ns-residuosity classes are 
easily definable in this context and present the same 
features than in the original system. The particular choice
g = 1 + n (it is easily shown that the order of 1 + n
modulo ns+1 is ns) provides the advantage of reducing the
key size without modifying the system’s properties
(including security). The final observation is that 
computing m from w = (1 + n)m mod n s+1 is easy. Define
like in the original setting L(x) = (x – 1)/n. Clearly,

L((1+n)m mod ns+1) = (m+ (2
m)n+⋅⋅⋅+ ( s

m ) ns+1)mod ns

Damgård and Jurik then give an inductive method to
compute mi = m mod ni for successive values of i µ[1,s].
A simple alternative to their method is obtained by
observing that (1 + n)ni

= 1 + ni+1 mod ni+2 for any i, so
we actually have the more direct induction 

mi+1 = mi + L(w(1+n)-mi mod ni+2),

which also allows us to recover m = ms. Damgård and
Jurik’s cryptosystem is described as follows.

Key Generation: choose an RSA modulus n = pq. The
public key is n while the secret key is (p,q).

Encryption: given a plaintext m < ns, choose a random 
r < n s+1 and let the ciphertext be 

c = (1 + n)mrns
mod n s+1.

Decryption: compute d such that d = 1 mod n s and 
d = 0 mod⇐ (this may also be saved as some secret key
material). Given the encryption c, compute c d = (1+n)m

mod n s+1 and apply the above algorithm to recover m.

The one-wayness of this scheme is based on the assump-
tion that the class function is hard to compute in this con-
text without knowledge of (p,q). Similarly, semantic secu-
rity is achieved if and only if distinguishing n s-residues in
Zn

≥
s+1 is intractable. These assumptions were called

Generalised (Decisional) Composite Residuosity
Assumption or G(D)CRA and conjectured true by the
authors. It is easily seen that original assumptions imply
Damgård and Jurik’s generalized assumptions. 

4 .3  D ig i ta l  S ignatures

Trapdoor permutations are extremely rare objects: we refer
the reader to [12] for an exhaustive documentation on
these. Here, we show how composite residuosity allows to
design a trapdoor permutation. As before, n stands for the
product of two large primes and g µ B.

Encryption:
plaintext m < n2

split m into m =m1+nm2
ciphertext c = gm1m2

n mod n2

Decryption:
ciphertext c < n2

compute m1 = 

compute c′ = cg -m1 mod n,
compute m2 = c′n-1mod ⇐ mod n,
plaintext m = m1 + nm2 .
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As easily seen in the decryption procedure, we require 
the extraction of an n-root modulo n. Because of this
additional step, we get that this permutation is one-way if
and only if RSA[n,n] is hard. Like with any other trapdoor
permutation, digital signatures are obtained by using the
cryptosystem backwards : denoting by µ: {0,1}≥

!0 {0,1}k

some padding function with k = |n2| , we obtain a signature
scheme as follows. For a given message m, the signer com-
putes the signature (s1, s2) where

s1 =                   mod n,

s2 = (µ (m)g–s1) n- l mod⇐ mod n

and the verifier checks that

µ(m) = gs1 s2
n mod n2.

4 .4  A  D i s t r ibuted  Ver s ion

In [15], Damgård and Jurik devised a distributed cryp-
tosystem allowing threshold decryption among a set of
servers. Fouque, Poupard and Stern independently pro-
posed a similar technique in [6]. This threshold variant is
an adaptation of Shoup’s distributed RSA [17] whose
main part allows a set of servers to collectively and 
efficiently raise an input number to a secret exponent
modulo an RSA modulus. On input c, each server returns
a share of the result, together with a proof of correctness.
Given sufficiently many correct shares, these can be 
efficiently combined to compute c d mod n, where d is the
secret exponent. Damgård and Jurik transplanted 
this method in the case of a shared exponentiation 
modulo n s+1. 

Assume that there are l decryption servers, and that a mini-
mum of k of these are needed to make a correct decryption.

Key Generation: pick a pair of primes p and q satisfying 
p = 2p′+1 and q = 2q′+1 for primes p′ and q′. Set 
n = pq, m = p′q′ and decide on some s > 0, so that the
plaintext space is Zns. Then pick an number d to satisfy 
d = 1 mod n s and d = 0 mod m. Now choose a polynomial

f (X) = Σk-1 ai X
i mod nsm

by picking random coefficients ai µ Znsm for i ranging
from 1 to k–1 and a 0 = d. The secret share of server i is
si = f (i) for i µ [1, l] while the public key is n. To verify
the actions of the decryption servers, the system requires
the following fixed public values: v, generating the cyclic
group of squares in Zns+1

≥ and for each decryption server a
verification key vi = v ∆ si mod ns+1 where ∆ = l !. The entire
key setup may be executed by a trusted party, or distrib-
uted among servers using suitable multiparty computation
techniques.

Encryption: to encrypt a message m, a random r < n s+1 is
picked and the ciphertext is computed as c = (1 + n)mrn s

mod ns+1.

Share Decryption: the server i computes ci = c 2 ∆ si where c is
the ciphertext and provides a zero-knowledge proof that
log c 4 (c i

2) = log v(vi) which shows that he has indeed raised
c to his secret exponent si.

Share Combining: given a subset S of k (or more) shares
with a correct proof, the result is obtained by combining
the shares into

.

We then get 

c′ = c 4∆2f (0) = c 4∆2d = (1 + n)4∆2m mod ns+1.

The plaintext m is retrieved by applying the induction
formula described in the extended variant and multiplying
the result by (4∆2) -1 mod ns.
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The authors then showed that this threshold version is as
secure as their extended variant in the random oracle
model, provided that some trusted player performs the
share combining stage. More recently, Damgård and
Koprowski proposed a new threshold RSA technique [16]
applicable mutatis mutandis to the present setting. Its main
advantage over [15] resides in that no trusted dealer is needed.

4 .5  Other  App l i ca t ions

Boneh and Franklin [3] introduced a traitor tracing
scheme in which black box tracing is achieved using the
subgroup variant. 

Pointcheval and the author of these lines [10] proposed
security-enhanced cryptosystems provably semantically
secure against chosen-ciphertext attacks in the random
oracle model.

In [14], Poupard and Stern use the subgroup encryption
scheme to devise proofs of knowledge for the factoriza-
tion of a public composite integer. In [13], the same
authors further achieve fair encryption of secret keys, a
clever and efficient approach to key recovery systems.

Yung and I considered self-escrowed public-key infra-
structures [11], in which a joint use of Paillier and
ElGamal encryption schemes leads to a simplified implan-
tation of PKI properties.

Cramer, Damgård and Nielsen [5] propose a way of bas-
ing multiparty computation protocols on homomorphic
threshold crypto-systems instead of using secret sharing
schemes. Their general construction is shown to reach a
better efficiency in that fewer bits are needed to be trans-
mitted between parties, while security against cheating is
preserved for any minority of cheaters.

Galbraith [7] recently showed how to securely design a
composite-residuosity-based encryption scheme on non-
specific elliptic curves over rings. This implicitly provided
an answer to the quest of [9].

More recently, Baudron and Stern [1] exploited our
scheme’s homomorphic property to design a new auction
protocol where bids are submitted non-interactively and
bidders are not required to interact with each other.

Even more recently, Cramer and Shoup used our scheme
to propose an encryption scheme secure against active
adversaries in the standard model [6]. They based their
scheme’s security on the decisional composite residuosity
assumption.

5 .  I M P L E M E N T A T I O N  I S S U E S

5 .1  E ff i c i ency

The reader may find in [8] some tips about practical
aspects of computations required by composite residuos-
ity-based cryptosystems, as well as various implementa-
tion strategies for increased performance. We just recall
here the main tricks: decryption allows Chinese remain-
dering; preprocessing can be used advantageously in both
encryption and decryption; small values for g or setting 
g = 1+n (which does not affect security at all) would
greatly improve encryption rates, provided that g µ B still
holds. In the same spirit as with RSA, simple randomiza-
tion techniques may help protect hardware or software
implementations against side-channel attacks.
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