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Why PKI?

All PK cryptography primitives assume public-keys are authentic.
If not true, protocols are vulnerable to man-in-the-middle attacks.
In the real-world this problem can be solved in an ad-hoc way:

manually confirm public-key belongs to intended party;

systems (e.g., GPG/PGP) supporting ad-hoc PK authentication.

When legal/regulatory coverage is required =⇒ PKI :

Technical standards: which algorithms/encoding formats to use

Regulations: how technical standards should be used

More Regulations: responsibilities and rights of involved parties

Laws: formal guarantees and penalties wrt regulations
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Public-key certificates
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Public-key certificates

Goal:

Alice sends Bob a public key pk over an insecure channel

Bob must be able to check Alice holds associated secret key

Trivial solution:

Bob has authenticated channel to Trusted-Third-Party (TTP)

Alice has previously proved to TTP that she owns pk (how?)

Bob asks TTP (on-line) if pk belongs to Alice

Problems in practice:

How does Bob build authenticated channel to TTP?

What happens if TTP is off-line?

How do Bob and Alice get to work with the same TTP?

What does “Trust” in TTP mean?
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Public-key certificates (2)

Public-key certificates use signatures to solve points 1 and 2:

TTP is called a Certification Authority (CA)

Alice proves to CA that she owns pk
◮ By signing a certificate request (PKCS#11)
◮ Because CA itself provides secret key to Alice

CA provides/checks data Alice wants on certificate:
◮ Alice identity + public key
◮ CA-specific information: serial number, issuer identity
◮ Validity (start and end dates)

CA signs data as a byte-encoded ASN.1 data structure.

PK Certificate := Alice’s data and PK + CA signature
Trust in certificate ≤ Trust in CA
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Public-key certificates (3)
What is ASN.11?

Abstract Syntax Notation 1: platform/language independent

Legacy specification language from networking standards

Standards use ASN.1 to specify data structures (packets)

DER (Distinguished Encoding Rules) specify byte encoding

How do certificates solve points 1 and 2:

Digital signature guarantees certificate is authentic to Bob

CA can be off-line: Bob can get certificate via Alice!

So can certificates be sent over insecure channels?

Other natural questions:

How does Bob know CA and verifies the CA signature?

What are Alice/Bob actually trusting the CA to do?
1See here https://datatracker.ietf.org/doc/html/rfc8017#appendix-C for some examples
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Verifying a Public-Key Certificate

Suppose Alice sends Bob a public-key certificate with:

Alice’s identity and public key

A validity period (start and end dates)

Some additional meta-information

All signed by certification authority CA

This is what Bob should do:

Check Alice’s identity is correct (e.g., DNS name for server)

Check current time is within validity period

Check meta-information makes sense for application

Check CA is trustworthy to certify this public-key

Obtain CA’s public key and verify signature in certificate

The first three are self-explanatory. PKI solves 4 and 5.
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Sanity check: did you understand how this works?

Who sends and who receives/validates a PK certificate in:

Asymmetric encryption:
◮ Public key belongs to receiver
◮ Sender must get certificate beforehand

Digital signatures
◮ Public key belongs to signer
◮ OK to sign and send certificate along (M,σ)

Key agreement
◮ If mutually authenticated, then both must send certificates
◮ What happens usually in TLS?

Example: in S/MIME (signed email) clients usually

Allow signing a message as soon as personal certificate installed

Needs signed message from Alice before allowing encryption

Does this make sense?
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Technical details about public-key certificates

Standardized in X.509 and transposed to internet by IETF
Important data structures have unique object identifiers
Current version is 3, which includes basic fields:

subject, issuer, validity, public key info, serial

Extensions (attachments), some of which may be marked critical

all extensions carry an object identifier

if marked critical but not recognized ⇒ reject!

Important extensions:

Subject/authority key identifier: fingerprint of public key

Basic constraints: flag that signals special CA certificate

Key usage: CA can restrict purpose of certificate
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Public Key Infrastructure
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Public Key Infrastructure

[Wikipedia]

A public key infrastructure (PKI) is a set of roles, policies, hardware, software and procedures
needed to create, man- age, distribute, use, store and revoke digital certificates.

All of these components serve a purpose and follow rules so that:

A certificate user (end entity) can be assured

By a trustworthy certification authority

That a PK belongs to another end entity (person, server,. . . )

And can be used for a given purpose

Under well-defined rights/responsibilities for all parties
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PKI Architecture
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Operational/Management transactions

How do certificates go around?
Operational protocols specify how certificates are:

stored in repositories (e.g., LDAP)

transferred to client software (HTTP, FTP, MIME)

encoded in non-ambiguous formats

You have seen several instances of operational protocols:

In TLS the RFC specifies how certificates are exchanged

In S/MIME certificates are included in the PKCS#7 attachments

OS certificates are managed via standard cryptographic modules
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PKI Management: Initialization

We asked an important question before:

How do users get to know a CA

How does Bob verify a CA signature in a certificate?

Answer:

All public keys are encoded in X.509 certificates

Some certificates contain the public keys of CAs

Bob obtains the CA’s public key from a certificate

Bob uses the CA’s PK to verify signature on Alice’s certificate

If certificate OK =⇒ Bob can use Alice’s public key

Therefore, Alice’s public key is authenticated if:

Bob has certificate for CA that issued Alice’s certificate

Bob trusts CA to have checked data on Alice’s certificate
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PKI Management: Initialization (2)

How does Bob know to trust CA?
In the simplest settings:

Bob gets certificate directly from CA

Bob implicitly trusts CA certificate

Examples:

We get many CA certificates pre-installed in OS

Portuguese citizen’s card is certified by state-run CA

These are examples of initialization operations.
Key generation, if done by the end entity, also part of initialization.
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PKI Management: Registration and Certification

Registration Authorities (RA):

Front-end: direct contact with end-entities

Responsible for checking data that goes into certificates

Responsible for ensuring (unique) entity possesses secret key

Certification Authorities:

Back-end: infrastructure where certificates are signed

Typically high-security: air gaps, physical security, etc.

Example: Portuguese Citizen’s Card

RA is Registo Civil, Loja do Cidadão, etc.

CA is deployed in protected facilities at INCM

CA generates keys, signs certificates and issues smartcards

RA delivers them to citizens after physical identification
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PKI Management: Revokation

Certificates outside of validity dates are, by definition, invadid.
What happens if they need to be invalidated?

E.g., lost secret key, data breach, meta-data becomes incorrect.

Certificates need to be revoked while they still look valid.
This is formally done using Certificate Revokation Lists (CRL):

CA periodically publishes a black-list of revoked certificates

Certificate consumers should check most-recent CRL

Exceptional CRL may also be published, as best-effort

How do we get revokation information?
Certificate extensions typically indicate URLs for CRLs
Traditionally low support from client software
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PKI Management: Revokation (2)

Three solutions used in the real-world.

Trusted Service Provider Lists (TSL):
◮ up to date white list of trusted certificates
◮ closed small groups (e.g., banking) and high-security applications

On-line Certificate Status Protocol (OCSP)):
◮ a trusted server checks CRLs for you
◮ usually managed by CAs themselves
◮ typically used in large organizational contexts (e.g., eGov)

Certificate pinning:
◮ web servers/browsers/applications carry their own white lists
◮ identify good certificates for important entities (e.g., Google)
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Certificate Chains and CA Hierarchy

We have seen a simple case: Bob trusts Alice’s CA implicitly.
In general this is not the case:

Bob is initialized with certificates for root CAs

Bob trusts implicitly in these CAs

Certificates for root CAs are self-signed:
◮ CA generates a key pair (sk , pk)
◮ CA creates its own certificate with subject = issuer = CA name
◮ Certificate includes pk and CA signs it with sk

Note: self-signed certificates can be generated by anyone.
Validating a self-signed certificate implies:

belief that whoever owns that secret key is a CA

belief that this CA only generates good certificates
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Certificate Chains and CA Hierarchy (2)

Root CAs typically do not issue end-entity certificates.

There is a hierarchy of CAs

If CA A signs certificate of CA B

Then trust in CA B ≤ trust in CA A

We can have many levels in this hierarchy/tree, so:

To authenticate Alice’s public key, Bob gets Alice’s certificate

To validate Alice’s certificate, Bob gets certificate of Alice’s CA

Bob verifies that Alice’s certificate is valid wrt Alice’s CA

Bob still needs to decide whether to trust Alice’s CA.
Trust = Alice’s CA is descendent of Root CA trusted by Bob

Rogério Reis Cryptography Week #11 2024.12.06 21 / 54



Certificate Chains and CA Hierarchy (3)

Bob enters a loop starting with Current CA = Alice’s CA.
The loop works as follows:

If Bob implicitly trusts Current CA certificate: Accept!

Else If Current CA is subordinate to some CA
◮ Bob gets CA certificate
◮ Bob verifies Current CA certificate is valid wrt CA
◮ Bob re-enters loop with Current CA = CA

Else Reject!

Note: this process fails if Bob cannot get certificates

All certificates can be sent by Alice except the root of trust.
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Certificate Policies

PKI can be used to give cryptography a legal meaning.
A Certificate Policy is a set of PKI operation rules:

Rights and responsibilities of end-entities

Rights and responsibilities of CAs

These rights and responsibilities can be written in law.
A certificate policy is assigned an object identifier (OID):

Certificates can be flagged to comply with a policy

This implies an accreditation system:

CA must be audited before it is authorized to use OID

Any CA that uses OID without authorization is breaking the law
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Homomorphic Encryption
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Shortly after the original RSA paper, a question was posed by Rivest, Adleman, and
Dertouzos: would it be possible to have a database of encrypted information (such as financial
or health data), stored in an external location, that would nonetheless allow computations on
the encrypted data without decrypting it? This would permit, for example, external storage,
and computation on the encrypted data stored at the external site, without having to trust the
owner or operator of the external site.

The idea of “cloud computing” is not an invention of the last years!
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Somewhat and Fully Homomorphic Encryption

There are a number of cryptosystems that have been characterized as somewhat
homomorphic. Paillier’s scheme is an example of that type of cryptography as it is only
homomorphic for one operation.
Others, that support ring homomorphisms, i.e. support two operations, are called fully
homomorphic encryptions. These normally rely heavily on algebra of ideals, thus a little more
exigent in algebra knowledge.
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Paillier’s scheme

Let n = pq, product of two primes of equal bit size, and such that

(p, q − 1) = 1 ∧ (p − 1, q) = 1.

Then, Zn × Z∗
n is isomorphic to Z∗

n2 , given by f (a, b) = (1 + n)abn mod n2. why?

As a consequence a uniform element y ∈ Z∗
n2 corresponds to a uniform element

(a, b) ∈ Zn × Z∗
n.

Call y ∈ Z∗
n2 an nth residue module n2 if exists x ∈ Z∗

n2 with y = xn mod n2. Denote the set
of the nth residues modulo n2 by Res(n2). Let us characterize the nth residues in Z∗

n2 . Taking
any x ∈ Z∗

n2 with x ↔ (a, b) and raising it to the nth power, we have

(xn mod n2) ↔ (a, b)n = (na mod n, bn mod n) = (0, bn mod n).

Moreover, we claim that that any element y that y ↔ (0, b) is a nth residue.
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To see this recall (n,Φ(n)) = 1 thus d = (n−1 mod Φ(n)) exists.So

(a, (bd mod n))n = (na mod n, bdn mod n) = (0, b) ↔ y

for any a ∈ Zn. Thus
Res(n2) = {y |b ∈ Z∗

n ∧ y ↔ (0, b)}.

This shows that the number of nth roots of any y ∈ Res(n2) is exactly n and computing the
nth power is an n-to-1 function. As such, if r ∈ Z∗

n2 is uniform then (rn mod n2) is a uniform
element of Res(n2). The decision composite residuosity problem is to distinguish a uniform
element of Z∗

n2 from a uniform element of Res(n2).
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Formally, let GenModulus be a polynomial-time algorithm that, on input 1n, outputs
(n, p, q), where n = pq, and p, q are ℓ-bit primes (except with a probability negligible in ℓ).
Then

Definition

The decisional composite residuosity problem is hard relative to GenModulus if for all
probabilistic polynomial-time algorithms D there exists a negligible function ε s.t.

|Pr [D(n, (rn mod n2)) = 1]− Pr [D(n, r) = 1]| ≤ ε(n),

where in each case the probabilities are taken over the experiment in which
GenModulus(1n) outputs (n, p, q) and then a uniform r ∈ Z∗

n2 is chosen.

The decisional composite residuosity (DCR) assumption is the assumption that there is a
GenModulus relative to which the decisional composite residuosity is hard.
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This suggests the following way to encrypt a message m ∈ Zn with respect to a public key n:
choose a uniform nth residue (0, r) and set the cyphertext to

c ↔ (m, 1)(0, r) = (m + 0, 1 · r) = (m, r).

Since a uniform nth residue (0, r) cannot be distinguished from a uniform element (r ′, r), the
cyphertext is indistinguishable (from the point of view of someone that does not know how to
factorise n) from the cybertext

c ′ ↔ (m, 1) · (r ′, r) = ((m + r ′ mod n), r)

for uniformr ′ ∈ Zn and r ∈ Z∗
n. As (m + r mod n) is uniformly distributed in Zn, c

′ is
independent of the message m.
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Encryption: The sender generates the cyphertext c ∈ Z∗
n2 by choosing a uniform r ∈ Z∗

n and
then computing

c = ((1 + n)mrn mod n2).

Observe that
c = (((1 + n)m1n)((1 + n)0rn) mod n2) ↔ (m, 1) · (0, r),

thus,
c ↔ (m, r)

as required.
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Decryption: Now, knowing n = pq, we claim to be able to decrypt efficiently c and recover m
using this steps.

ĉ = (cΦ(n) mod n2),

m̂ = (ĉ − 1)/n,

m = (m̂Φ(n)−1 mod n).

Let us see why this works. Let c ↔ (m, r), for arbitrary r ∈ Z∗
n. Then

ĉ = (cΦ(n) mod n2)

↔ (m, r)Φ(n)

= ((m Φ(n) mod n, rΦ(n) mod n)

= (mΦ(n) mod n, 1).
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This means that ĉ = (1 + n)(mΦ(n) mod n) mod n2, and we know

ĉ = (1 + n)(mΦ(n) mod n) = (1 + (mΦ(n) mod n)n) mod n2

(we proved that (1 + n)a ≡ 1 + an (mod n2))
Since 1 + (mΦ(n) mod n)n < n2 we can drop (mod n2). Thus

m̂ = (ĉ − 1)/n = (mΦ(n) mod n).

Finally,
m = (m̂Φ(n)−1 mod n).

(Φ(n) is invertible modulo n since (Φ(n), n) = 1)
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An example

Let n = 11 · 17 = 187 (n2 = 34969), and let m = 175.
Choosing r = 83 ∈ Z∗

187 we compute

c = ((1 + 187)175 · 83187 mod 34969) = 23911 ↔ (175, 83).

To decrypt, knowing Φ(187) = 10 · 16 = 160. So

ĉ = (23911160 mod 34969) = 25620,

m̂ = (25620− 1)/187 = 137, since 90 = (160−1 mod 187),

m = (137 · 90 mod 187) = 175.
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Paillier as a homomorphic encryption

The Paillier encryption scheme is useful in a number of settings because it is homomorphic.
Roughly, a homomorphic encryption scheme enables (certain) computations to be performed
on encrypted data, yielding a ciphertext containing the encrypted result. In the case of Paillier
encryption, the computation that can be performed is (modular) addition. Fix a private key
n = pq. Then the Paillier scheme has the property that multiplying an encryption of m1 and
an encryption of m2 (done (mod n2)) results in an encryption of m1 +m2 mod n; this is
because

((1 + n)m1rn1 )((1 + n)m2rn2 ) ≡ (1 + n)(m1+m2 mod n)(r1r2)
n (mod n2).
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A nice feature of Paillier encryption is that it is homomorphic over a large additive group Zn.
To see an application of this, consider the following distributed voting scheme, where voters
can vote “no” or “yes” and the goal is to tabulate the number of “yes” votes:

A voting authority generates a public key n for the Paillier encryption scheme and
publicizes n.

Let 0 stand for a “no” and let 1 stand for a “yes”. Each voter casts their vote by
encrypting it. That is, voter i casts her vote vi by computing ci = (1 +N)vi (ri )n mod n2

for a uniform ri ∈ Z∗
n.

Each voter broadcasts their vote ci . These votes are then publicly aggregated by
computing ctotal =

ℓ
i=1 ci mod n2.

The authority is given ctotal . By decrypting it, the authority obtains the vote total
vtotal =

ℓ
i=1 vi mod n.

If ℓ is small (so that vtotal < n ), there is no wrap-around modulo n and vtotal =
ℓ

i=1 vi .
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Proposition

Let n = pq the product of two primes of equal length. Then

(n,Φ(n)) = 1; Φ

∀a ≥ 0 (1 + n)a ≡ 1 + an (mod n2). As a consequence, ord(1 + n) in Z∗
n2 is n.

That is, (1 + n)n ≡ 1 (mod n2), and 1 ≤ a < n =⇒ (1 + n)a ∕≡ 1 (mod n2).

Zn × Z∗
n is isomorphic to Z∗

n2 being the isomorphism

f : Zn × Z∗
n −→ Z∗

n2

(a, b) −→ (1 + n)abn mod n2.

We will write x ↔ (a, b) if f (a, b) = x .
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Proof:

(n,Φ(n)) = 1
We know that Φ(n) = (p − 1)(q − 1). why? Assume p > q, thus p > p − 1 > q − 1. It is
clear that (p,Φ(n)) = 1 and (q, q − 1) = 1. If (q, p − 1) ∕= 1 then (q, p − 1) = q, since q
is prime. But then (p − 1)/q ≥ 2 which contradicts the assumption that p and q have
binary representations of the same size. Thus


n,Φ(n)


= 1.

∀a a ≥ 0 =⇒ (1 + n)a ≡ (1 + an) (mod n2), thus ord(1 + n) in Z∗
n2 is n. why?

The group Zn × Z∗
n is isomorphic to the group Z∗

n2 with isomorphism

f : Zn × Z∗
n −→ Z∗

n2

(a, b) −→ (1 + n)abn mod n2 why?

back
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Proposition

Let p be a prime and a a positive integer, then

Φ(pa) = pa − pa−1.

Proof: All the non-coprimes with p and its powers are: p, 2p, . . . , pa−1p, i.e., the pa−1

multiples of p. Thus the number of coprimes with pa is

pa − pa−1 = Φ(pa).
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Proposition

Let a, b be such that (a, b) = 1, then

Φ(ab) = Φ(a)Φ(b).

Proof: Let m < ab ∧ (m, ab) = 1. It is easy to see that

(m, a) = 1 ∧ (m, b) = 1 =⇒ (m mod a, a) = 1 ∧ (m mod b, b) = 1.

Thus, for each integer coprime with ab we have a pair of integers coprime with a and b,
respectively. Thus, Φ(ab) ≤ Φ(a)Φ(b).
On the other hand, consider a pair (r , s) with (r , a) = 1 ∧ (s, b) = 1. As (a, b) = 1, by CRT
CRT? then exists m > 0 s.t. m ≡ r (mod a) ∧m ≡ s (mod b). Thus, for each
m ∈ {1, 2, . . . , ab} we get a different pair (r , s), and thus Φ(ab) ≥ Φ(a)Φ(b).
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Proposition

Let p1, p2, . . . , pk be primes and a1, a2, . . . , ak positive integers. Then,

Φ

pa11 pa22 · · · pakk


=


pa11 − pa1−1

1


pa22 − pa2−1

2


· · ·


pakk − pak−1


.

Proof: (It is straightforward by induction on k .

Corollary

If n = pq with p and q primes
Φ(n) = (p − 1)(q − 1).

back
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Theorem (Chinese Remainder Theorem)

Let n = pq where p, q > 1 ∧ (p, q) = 1. Then

Zn ≃ Zp × Zq and Z∗
n ≃ Z∗

p × Z∗
q.

Moreover, let f be the function mapping elements x ∈ {0, . . . , n − 1} to pairs (xp, xq) with
xp ∈ {0, . . . , p − 1} and xq ∈ {0, . . . , q − 1} defined by

f (x) = (x mod p, x mod q).

Then, f is a n isomorphism from Zn to Zp × Zq, and the restriction of f to Z∗
n is an

isomorphism from Z∗
n to Z∗

p × Z∗
q.

Proof: It is clear that ∀x ∈ Zn, f (x) = (xp, xq) with xp ∈ Zp and xq ∈ Zq. We need to prove
that if x ∈ Z∗

n then (xp, xq) ∈ Z∗
p × Z∗

q. If xp /∈ Z∗
p then this means that (x mod p, p) ∕= 1.

But then (x , p) ∕= 1 and thus (x , n) ∕= 1 contradicting the fact that x ∈ Z∗
n.
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Let us see that f is one-to-one. Say f (x) = (xp, xq) = f (x ′). Then x ≡ xp ≡ x ′ (mod p) and
x ≡ xq ≡ x ′ (mod q). This implies that x − x ′ is divisible both by p and q. As (p, q) = 1 then
x − x ′ must be divisible by n which implies that x ≡ x ′ (mod n), which meand x = x ′. Thus f
is one-to-one. Since |Zn| = n = pq = |Zp × Zq|, f is bijective.
That f preserves the operation of the group, let us denote by ⊞ the operation in Zp × Zq.
Then we need to show that

f (a+ b) = f (a)⊞ f (b).

f (a+ b) =

(a+ b) mod p, (a+ b) mod q



= (a mod p, a mod q)⊞ (b mod p, b mod q)

= f (a)⊞ f (b).

back
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Definition (Euler’s Φ function)

Let n be an integer. Then

Φ(n) = |{k |1 ≤ k < n ∧ (n, k) = 1}| .

back
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Proposition

For all a ≥ 0, (1 + n)a ≡ (1 + an) (mod n2), and thus ord(1 + n) in Z∗
n2 is n.

Proof: By the binomial expansion

(1 + n)a =
a

i=0


a

i


ni ≡ 1 + an (mod n2).

The smallest nonzero a s.t. (1 + n)a ≡ 1 (mod n2) is, therefore, a = n. back
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Proposition

The group Zn × Z∗
n is isomorphic to teh group Z∗

n2 with isomorphism

f : Zn × Z∗
n −→ Z∗

n2

(a, b) −→ (1 + n)abn mod n2

Proof: Note that (1 + n)abn does not have a factor in common with n2 since (1 + n, n2) = 1
and (b, n2) = 1 (because b ∈ Z∗

n). Thus, ((1 + n)abn mod n2) ∈ Z∗
n2 .

Now we prove that f is an isomorphism. First we prove that is a bijection. Since

|Z∗
n2 | = Φ(n2) = p(p − 1)q(q − 1) = pq(p − 1)(q − 1) = |Zn × Z∗

n|

it suffices to show that f is one-to-one. Say a1, a2 ∈ Zn and b1, b2 ∈ Z∗
n are s.t.

f (a1, b1) = f (a2, b2)
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Then
(1 + n)a1−a2(b1/b2)

n ≡ 1 (mod n2) (1)

(as b1, b2 ∈ Z∗
n their inverses belong to Z∗

n too.)
Raising both sides to the power Φ(n), and using the fact that the order of Z∗

n2 is
Φ(n2) = nΦ(n) we get

(1 + n)(a1−a2)Φ(n)(b1/b2)
nΦ(n) ≡ 1 (mod n2) =⇒ (1 + n)(a1−a2)Φ(n) ≡ 1 (mod n2)

(because nΦ(n) = Φ(n2) =⇒ (b1/b2)
Φ(n2) ≡ 1 (mod n2)), as we already proved (1 + n) has

order n modulo n2,
(a1 − a2)Φ(n) ≡ 0 (mod n) why?

and so n | (a1 − a2)Φ(n). Since

Φ(n), n


= 1, it follows that n | (a1 − a2). Since a1, a2 ∈ Zn,

then a1 = a2. Making a1 = a2 in (1), we have b1 ≡ b2 (mod n2).
This implies b1 ≡ b2 (mod n) since b1, b2 ∈ Z∗

n. Since

n,Φ(n)


= 1, exponentiation to the

power n is a bijection in Z∗
n

why? This means that b1 ≡ b2 (mod n), but since b1, b2 ∈ Z∗
n we

have that b1 = b2. Hence f is one-to-one and, consequently, a bijection.
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To show that f is an isomorphism, we show that

f (a1, b1)f (a2, b2) = f (a1 + a2, b1b2).

Note that the multiplication on the left takes place modulo n2 while addition/multiplication on
the right takes place modulo n. We have

f (a1, b1)f (a2, b2) ≡ ((1 + n)a1bn1)((1 + n)a2bn2) (mod n2)

≡ (1 + n)a1+a2(b1b2)
n (mod n2).

Since (1 + n) has order n modulo n2, we can write

f (a1, b1)f (a2, b2) ≡ (1 + n)(a1+a2 mod n)(b1b2)
n (mod n2).

Let b1b2 = r + γn, with 1 ≤ r < n (cannot be 0 since b1, b2 ∈ Z∗
n). Note that r = b1b2

mod n.
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Thus we have

(b1b2)
n ≡ (r + γn)n (mod n2)

≡
n

k=0


n

k


rn−k(γn)k (mod n2)

≡ rn + nrn−1(γn) (mod n2)

≡ rn (mod n2)

≡ (b1b2 mod n)n (mod n2).

Thus

f (a1, b1)f (a2, b2) = ((1 + n)(a1+a2 mod n)(b1b2 mod n)n) mod n2

= f (a1 + a2, b1b2).

back
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Proposition

Let G be a finite group and g ∈ G , an element of order i . Then,

g x = g y ⇐⇒ x ≡ y (mod i).

Proof: If x = y then (x mod i) = (y mod i) and g x = g (x mod i) = g (y mod i) = g y .
On the other direction, let g x = g y . Then 1 = g x−y = g (x−y mod i). Since (x − y mod i) < i
and i is the order of g , then (x − y mod i) = 0. back
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Theorem

Let G be a finite abelian group with m = |G | the order of the group. Then for any g ∈ G,
gm = 1.

Proof: Fix an arbitrary g ∈ G , and let g1, . . . , gm be the elements of G . We claim that

g1 · g2 · · · gm = (gg1)(gg2) · · · (ggm).

To see this note that ggi = ggj implies gi = gj , thus each element in parenthesis of the
right-hand are distinct. Because there are exactly m elements in both sides of the equality
they are just a permutation of eachother. Thus

g1 · g2 · · · gm = gm · (g1 · g2 · · · gm),

which implies that gm = 1.

Rogério Reis Cryptography Week #11 2024.12.06 53 / 54



Corollary

Let G be a finite group with m = |G | > 1. Then for any g ∈ G and any integer x , we have
g x = g (x mod m).

Proof: Say x = qm + r , where q, r are integers and r = (x mod m). Then

g x = gqm+r = gqmg r = g r .

Corollary

Let G be a finite group with m = |G | > 1. Let e > 0, and define the function fe : G → G by
fe(g) = g e . If (e,m) = 1 the fe is a bijection. Moreover if d = e−1 mod m the fd is the
inverse of fe .

Proof: Since G is finite, the second part implies the first; thus, we only need to show fd = f −1
e .

This is true because for every g ∈ G

fd(fe(g)) = fd(g
e) = gde = g (de mod m) = g1 = g . back
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