Applied Cryptography Week 2: Randomness and Cryptographic Security

Bernardo Portela

M:CC, M:ERSI, M:SI - 24

Randomness 00000000 Security in Practice

PRGs in Practice

Cryptographic Security

Context

- Last week we used and generated keys
- How is this done?

Security in Practice

PRGs in Practice

Cryptographic Security

Context

- Last week we used and generated keys
- How is this done?

For Symmetric Crypto

- Generated uniformly at random
- Derived using a Key Derivation Function
 - From a password or low entropy secret
 - From a high-entropy master key from key exchange protocol

Security in Practice

PRGs in Practice

Cryptographic Security

Context

- Last week we used and generated keys
- How is this done?

For Symmetric Crypto

- Generated uniformly at random
- Derived using a Key Derivation Function
 - From a password or low entropy secret
 - From a high-entropy master key from key exchange protocol

For Asymmetric Crypto

- Key generation algorithm ightarrow key pair
- Private key holder generates both keys; publishes public key
- Asymmetric keys are typically much larger
 - RSA keys take roughly 4096-bits for 128-bit security
 - Elliptic-curve keys take roughly 400-bits for 128-bit security

Randomness 00000000 Security in Practice

PRGs in Practice

Cryptographic Security

Storage and Generation

Keys are often the most sensitive material a secure system holds

Security in Practice

PRGs in Practice

Cryptographic Security

Storage and Generation

Keys are often the most sensitive material a secure system holds

Ideally, in an external secure hardware

- Hardware Security Module (HSM)
- Smartcard or similar cryptographic token

Security in Practice

PRGs in Practice

Cryptographic Security

Storage and Generation

Keys are often the most sensitive material a secure system holds

Ideally, in an external secure hardware

- Hardware Security Module (HSM)
- Smartcard or similar cryptographic token

Key wrapping

- Long-term keys are often wrapped before storage
- To encrypt with another key
- Password-based encryption (low security)
- Wrap with HW-protected master key (standard security)
- Master key stored in trusted hardware (high security)

Randomness •0000000 Security in Practice

PRGs in Practice

Cryptographic Security

To Be Random

Q1: Which of these numbers are random?

- 1. 0000000
- 2. 10101010
- 3. 00100100
- 4. 10011101

Randomness •0000000 Security in Practice

PRGs in Practice

Cryptographic Security

To Be Random

Q1: Which of these numbers are random?

- 1. 00000000 Not random!
- 2. 10101010 Not random (pattern)
- 3. 00100100 Maybe not random?
- 4. 10011101 Seems random...

Randomness •0000000 Security in Practice

PRGs in Practice

Cryptographic Security

To Be Random

Q1: Which of these numbers are random?

- 1. 0000000 Not random!
- 2. 10101010 Not random (pattern)
- 3. 00100100 Maybe not random?
- 4. 10011101 Seems random...

Randomness is not a property of a bit string, but rather:

- The bit generation process
- The bit string sampling procedure

Security in Practice

PRGs in Practice

Cryptographic Security

To Be Random

Q1: Which of these numbers are random?

- 1. 0000000 Not random!
- 2. 10101010 Not random (pattern)
- 3. 00100100 Maybe not random?
- 4. 10011101 Seems random...

Randomness is not a property of a bit string, but rather:

- The bit generation process
- The bit string sampling procedure

Q2: Which of these numbers will more likely appear in a fair randomness generator?

Security in Practice

PRGs in Practice

Cryptographic Security

Randomness Distributions

Randomized processes described using randomness distributions.

We start with the **uniform distribution** over a finite field S.

A process U samples from the uniform distribution if

$$orall s^* \in S, \mathsf{Pr}[s=s^*:s \leftarrow U] = rac{1}{|S|}$$

Security in Practice

PRGs in Practice

Cryptographic Security

Randomness Distributions

Randomized processes described using randomness distributions.

We start with the **uniform distribution** over a finite field S.

A process U samples from the uniform distribution if

$$orall s^* \in S, \Pr[s = s^* : s \leftarrow U] = rac{1}{|S|}$$

Q1: If we roll a fair dice, what is the probability of getting 1?

Security in Practice

PRGs in Practice

Cryptographic Security

Randomness Distributions

Randomized processes described using randomness distributions.

We start with the **uniform distribution** over a finite field S.

A process U samples from the uniform distribution if

$$orall s^* \in S, \Pr[s = s^* : s \leftarrow U] = rac{1}{|S|}$$

Q1: If we roll a fair dice, what is the probability of getting 1?

 $rac{1}{6}pprox 0.1667$

Security in Practice

PRGs in Practice

Cryptographic Security

Randomness Distributions

Randomized processes described using randomness distributions.

We start with the **uniform distribution** over a finite field S.

A process U samples from the uniform distribution if

$$orall s^* \in S, \Pr[s = s^* : s \leftarrow U] = rac{1}{|S|}$$

Q1: If we roll a fair dice, what is the probability of getting 1?

$$rac{1}{6}pprox 0.1667$$

Q2: If we do a fair sampling of a byte, what is the probability of getting 00000000 or 10011101?

Security in Practice

PRGs in Practice

Cryptographic Security

Randomness Distributions

Randomized processes described using randomness distributions.

We start with the **uniform distribution** over a finite field S.

A process U samples from the uniform distribution if

$$orall s^* \in S, \Pr[s = s^* : s \leftarrow U] = rac{1}{|S|}$$

Q1: If we roll a fair dice, what is the probability of getting 1?

$$rac{1}{6}pprox 0.1667$$

Q2: If we do a fair sampling of a byte, what is the probability of getting 00000000 or 10011101?

$$\frac{2}{2^8} \approx 0.0078$$

Randomness 0000000 Security in Practice

PRGs in Practice

Cryptographic Security

Quantifying Randomness

As you might have inferred, for the uniform sampling of λ bits, the probability of each element in the set is $\frac{1}{2^{\lambda}}$.

Randomness

Security in Practice

PRGs in Practice

Cryptographic Security

Quantifying Randomness

As you might have inferred, for the uniform sampling of λ bits, the probability of each element in the set is $\frac{1}{2^{\lambda}}$.

We do not always want to generate "nicely structured" bit strings

- E.g. a value from 0...254
- How to use uniformly generated bytes for this?

Randomness

Security in Practice

PRGs in Practice

Cryptographic Security

Quantifying Randomness

As you might have inferred, for the uniform sampling of λ bits, the probability of each element in the set is $\frac{1}{2^{\lambda}}$.

We do not always want to generate "nicely structured" bit strings

- E.g. a value from 0...254
- How to use uniformly generated bytes for this?

Q1: Get a byte, compute the result mod 255. Is it uniform?

Randomness

Security in Practice

PRGs in Practice

Cryptographic Security

Quantifying Randomness

As you might have inferred, for the uniform sampling of λ bits, the probability of each element in the set is $\frac{1}{2^{\lambda}}$.

We do not always want to generate "nicely structured" bit strings

- E.g. a value from 0...254
- How to use uniformly generated bytes for this?

Q1: Get a byte, compute the result mod 255. Is it uniform?

Bad corner case: bytes 0 and 255 both give us 0!

Randomness 00000000 Security in Practice

PRGs in Practice

Cryptographic Security

Quantifying Randomness

As you might have inferred, for the uniform sampling of λ bits, the probability of each element in the set is $\frac{1}{2^{\lambda}}$.

We do not always want to generate "nicely structured" bit strings

- E.g. a value from 0...254
- How to use uniformly generated bytes for this?

Q1: Get a byte, compute the result mod 255. **Is it uniform?** Bad corner case: bytes 0 and 255 both give us 0!

Q2: Get a byte, exclude value 255 and retry. Is it uniform?

Randomness 00000000 Security in Practice

PRGs in Practice

Cryptographic Security

Quantifying Randomness

As you might have inferred, for the uniform sampling of λ bits, the probability of each element in the set is $\frac{1}{2^{\lambda}}$.

We do not always want to generate "nicely structured" bit strings

- E.g. a value from 0...254
- How to use uniformly generated bytes for this?

Q1: Get a byte, compute the result mod 255. **Is it uniform?** Bad corner case: bytes 0 and 255 both give us 0!

Q2: Get a byte, exclude value 255 and retry. Is it uniform?

It is, and is called rejection sampling. Q3: what is the downside?

Security in Practice

PRGs in Practice

Cryptographic Security

Entropy

We will mostly use entropy as an intuitive concept

• It measures uncertainty w.r.t. a sampling output

Security in Practice

PRGs in Practice

Cryptographic Security

Entropy

We will mostly use entropy as an intuitive concept

• It measures uncertainty w.r.t. a sampling output

Mathematically, it can be defined for a distribution X as

$$H(X) = \sum_{s^* \in S} -\Pr[s^*] \cdot \log_b(\Pr[s^*])$$

Security in Practice

PRGs in Practice

Cryptographic Security

Entropy

We will mostly use entropy as an intuitive concept

• It measures uncertainty w.r.t. a sampling output

Mathematically, it can be defined for a distribution X as

$$H(X) = \sum_{s^* \in S} -\Pr[s^*] \cdot \log_b(\Pr[s^*])$$

• It is maximized by the uniform distribution, with entropy λ

$$2^8 \cdot (-\frac{1}{2^8} \cdot \log_2(\frac{1}{2^8})) = 8$$

- Entropy here quantifies the number of uncertainty bits
 - In this example, we are uncertain of exactly 8 bits
- If a sampling is biased, it has less uncertainty, i.e. entropy

Randomness 00000000 Security in Practice

PRGs in Practice

Cryptographic Security 00000000

Random Number Generators

How do we get uniform coins?

Randomness 00000000 Security in Practice

PRGs in Practice

Cryptographic Security

Random Number Generators

How do we get uniform coins?

- It starts with a physical process
 - A source of entropy, e.g., some natural process that is believed to sample *I*-bits from a high-entropy distribution
 - Typically *l* >> λ where λ is the assumed entropy
 - Randomness extractors (often a hash function) compress such bit strings down to λ bits
 - The result bit strings are assumed to be uniform

Randomness 00000000 Security in Practice

PRGs in Practice

Cryptographic Security

Random Number Generators

How do we get uniform coins?

- It starts with a physical process
 - A source of entropy, e.g., some natural process that is believed to sample *I*-bits from a high-entropy distribution
 - Typically *l* >> λ where λ is the assumed entropy
 - Randomness extractors (often a hash function) compress such bit strings down to λ bits
 - The result bit strings are assumed to be uniform
- The combined process is called a Random Number Generator
- High-security RNGs currently exploit quantum effects

Security in Practice

PRGs in Practice

Cryptographic Security

Pseudorandom Generators - Part 1

Good randomness is hard to generate, so RNGs are usually slow

Pseudorandom Generators are crypto's response to this problem:

- PRG takes a small, uniform seed of length λ
- Generates long, random-looking bit strings $l >> \lambda$
- PRGs are deterministic algorithms!

Security in Practice

PRGs in Practice

Cryptographic Security

Pseudorandom Generators - Part 1

Good randomness is hard to generate, so RNGs are usually slow

Pseudorandom Generators are crypto's response to this problem:

- PRG takes a small, uniform seed of length λ
- Generates long, random-looking bit strings $l >> \lambda$
- PRGs are deterministic algorithms!

A Pseudorandom generator is a function $G: \{0,1\}^{\lambda} \rightarrow \{0,1\}^{I}$

Security: (without delving deep in probability) an attacker must be unable of distinguishing PRG outputs from a truly random string

Randomness 00000000 Security in Practice

PRGs in Practice

Cryptographic Security

Pseudorandom Generators - Part 2

$\textit{PRG}: \{0,1\}^\lambda \to \{0,1\}^I$

Reasoning

- Use a strong RNG to generate seed r of (small) size λ
- Use the PRG on seed r to generate (much larger) r' of size l

Randomness 00000000 Security in Practice

PRGs in Practice

Cryptographic Security

Pseudorandom Generators - Part 2

$\textit{PRG}: \{0,1\}^\lambda \rightarrow \{0,1\}^{\textit{I}}$

Reasoning

- Use a strong RNG to generate seed r of (small) size λ
- Use the PRG on seed r to generate (much larger) r' of size l

Q: Can we have secure PRGs (indistinguishable from uniform distribution), considering adversaries with unbound power?

Randomness

Security in Practice

PRGs in Practice

Cryptographic Security

- Randomness is a property of the generator, not the number
- Entropy allows us to measure uncertainty in randomness
 - More entropy means more uncertainty
 - I.e. harder for an adversary to predict

Randomness

Security in Practice

PRGs in Practice

Cryptographic Security

- Randomness is a property of the generator, not the number
- Entropy allows us to measure uncertainty in randomness
 - More entropy means more uncertainty
 - I.e. harder for an adversary to predict
- Pseudorandom generators expand randomness
- But they do not make the output *more random*!

Security in Practice

PRGs in Practice

Cryptographic Security 00000000

Security of Pseudorandom Generators

$U:\,\{0,1\}^{\prime}\rightarrow\{0,1\}^{\prime}$

- An adversary can simply test all 2^{λ} cases
- Security refers to a computationally limited adversary
- One that cannot (realistically) test all possible PRG inputs

PRGs in Practice

Cryptographic Security

Security in Practice

Redefine "impossible to break"

- With reasonable resources (time, memory, HW power)
- With probability higher than *negligible*
Cryptographic Keys

PRGs in Practice

Cryptographic Security

Security in Practice

Redefine "impossible to break"

- With reasonable resources (time, memory, HW power)
- With probability higher than *negligible*

Practical schemes are *computationally impossible* to break

Take an encryption scheme and an attacker that does not know k

- Attacker chooses non-repeating inputs X_i and gets
 - Y_i chosen uniformly at random if b = 1

•
$$Y_i = E(k, X_i)$$
 if $b = 0$

• Attacker guesses b and wins if b = b'

PRGs in Practice

Cryptographic Security

Security in Practice

Redefine "impossible to break"

- With reasonable resources (time, memory, HW power)
- With probability higher than *negligible*

Practical schemes are computationally impossible to break

Take an encryption scheme and an attacker that does not know k

- Attacker chooses non-repeating inputs X_i and gets
 - Y_i chosen uniformly at random if b = 1

•
$$Y_i = E(k, X_i)$$
 if $b = 0$

• Attacker guesses b and wins if b = b'

We define the adversary's advantage ϵ as

$$\epsilon = |\mathsf{Pr}[b'=1|b=1] - \mathsf{Pr}[b'=1|b=0]|$$

Best attack for $\epsilon=2^{-40}$ takes 2^{80} steps

PRGs in Practice

Cryptographic Security

Concrete Numbers - Part 1

Some numbers for scale

- Not easy to perceive very very large numbers
- The estimated age of the universe in nanosecs is around 288
- The number of atoms in the universe is roughly 2²⁵⁶

PRGs in Practice

Cryptographic Security

Concrete Numbers - Part 1

Some numbers for scale

- Not easy to perceive very very large numbers
- The estimated age of the universe in nanosecs is around 288
- The number of atoms in the universe is roughly 2²⁵⁶

A common security parameter

- A common size for keys is 128 bits
- Consider the following events
 - Winning a lottery with 9 million participants (all of Portugal)
 - Guessing a 2¹²⁸ size key at the first try

PRGs in Practice

Cryptographic Security

Concrete Numbers - Part 1

Some numbers for scale

- Not easy to perceive very very large numbers
- The estimated age of the universe in nanosecs is around 288
- The number of atoms in the universe is roughly 2²⁵⁶

A common security parameter

- A common size for keys is 128 bits
- Consider the following events
 - Winning a lottery with 9 million participants (all of Portugal)
 - Guessing a 2¹²⁸ size key at the first try

Q1: Which event is more likely?

PRGs in Practice

Cryptographic Security

Concrete Numbers - Part 1

Some numbers for scale

- Not easy to perceive very very large numbers
- The estimated age of the universe in nanosecs is around 288
- The number of atoms in the universe is roughly 2²⁵⁶

A common security parameter

- A common size for keys is 128 bits
- Consider the following events
 - Winning a lottery with 9 million participants (all of Portugal)
 - Guessing a 2¹²⁸ size key at the first try

Q1: Which event is more likely?

Q2: By how much?

Security in Practice

PRGs in Practice

Cryptographic Security

Concrete Numbers - Part 2

Security is defined as (t, ϵ) -security

- For some well-defined attack model
- Any attacker must run in at most t steps
- Has at most ϵ success advantage/probability
- t is a lower-bound on the work needed to break the scheme

Security in Practice

PRGs in Practice

Cryptographic Security

Concrete Numbers - Part 2

Security is defined as (t, ϵ) -security

- For some well-defined attack model
- Any attacker must run in at most t steps
- Has at most ϵ success advantage/probability
- *t* is a lower-bound on the work needed to break the scheme

Define security of the best possible encryption with key space 2128

Q1: For $t = 2^{128}$, what is ϵ ?

Security in Practice

PRGs in Practice

Cryptographic Security

Concrete Numbers - Part 2

Security is defined as (t, ϵ) -security

- For some well-defined attack model
- Any attacker must run in at most t steps
- Has at most ϵ success advantage/probability
- t is a lower-bound on the work needed to break the scheme

Define security of the best possible encryption with key space 2¹²⁸

- **Q1:** For $t = 2^{128}$, what is ϵ ? $\epsilon = 1$
- **Q2:** For t = 1, what is ϵ ?

Security in Practice

PRGs in Practice

Cryptographic Security

Concrete Numbers - Part 2

Security is defined as (t, ϵ) -security

- For some well-defined attack model
- Any attacker must run in at most t steps
- Has at most ϵ success advantage/probability
- t is a lower-bound on the work needed to break the scheme

Define security of the best possible encryption with key space 2¹²⁸

Q1: For $t = 2^{128}$, what is ϵ ? $\epsilon = 1$

Q2: For
$$t = 1$$
, what is ϵ ? $\epsilon = 2^{-128}$

Q3: For $t = 2^{64}$, what is ϵ ?

Security in Practice

PRGs in Practice

Cryptographic Security

Concrete Numbers - Part 2

Security is defined as (t, ϵ) -security

- For some well-defined attack model
- Any attacker must run in at most t steps
- Has at most ϵ success advantage/probability
- t is a lower-bound on the work needed to break the scheme

Define security of the best possible encryption with key space 2¹²⁸

Q1: For $t = 2^{128}$, what is ϵ ? $\epsilon = 1$

Q2: For
$$t = 1$$
, what is ϵ ? $\epsilon = 2^{-128}$

Q3: For
$$t = 2^{64}$$
, what is ϵ ? $\epsilon = 2^{-64}$

The more tries you get, the greater ϵ becomes: $(t, t/2^{128})$ security

Security in Practice

PRGs in Practice

Cryptographic Security

Quantifying Security

Lower bound on the work required for a successful attack Number of steps of the best attack

- *n*-bits security
- Best attack to break the scheme requires 2ⁿ steps
- *n*-bit keys cannot ever give more than *n*-bit security

Security in Practice

PRGs in Practice

Cryptographic Security

Quantifying Security

Lower bound on the work required for a successful attack

Number of steps of the best attack

- *n*-bits security
- Best attack to break the scheme requires 2ⁿ steps
- *n*-bit keys cannot ever give more than *n*-bit security

Security in Practice

PRGs in Practice

Cryptographic Security

Quantifying Security

Lower bound on the work required for a successful attack

Number of steps of the best attack

- *n*-bits security
- Best attack to break the scheme requires 2ⁿ steps
- *n*-bit keys cannot ever give more than *n*-bit security

- Brute-force attack allows finding the correct key
- *I*-bit keys could lead to *n*-bit security s.t. n << t

Security in Practice

PRGs in Practice

Cryptographic Security

Quantifying Security

Lower bound on the work required for a successful attack

Number of steps of the best attack

- *n*-bits security
- Best attack to break the scheme requires 2ⁿ steps
- *n*-bit keys cannot ever give more than *n*-bit security

- Brute-force attack allows finding the correct key
- *I*-bit keys could lead to *n*-bit security s.t. *n* << *t*
 - Q2: When?

Security in Practice

PRGs in Practice

Cryptographic Security

Quantifying Security

Lower bound on the work required for a successful attack

Number of steps of the best attack

- *n*-bits security
- Best attack to break the scheme requires 2ⁿ steps
- *n*-bit keys cannot ever give more than *n*-bit security

- Brute-force attack allows finding the correct key
- I-bit keys could lead to n-bit security s.t. n << t
 - Q2: When?
 - Best attack is more efficient than brute-force
 - Common in asymmetric cryptography
 - Keys must follow specific structures, not random bit strings
- Quantifying using *n*-bit security permits comparing schemes

PRGs in Practice

Cryptographic Security

Good Security Values for Real-world Crypto

The 2^{128} rule of thumb

• Designs for which best attacks are at $(t, \epsilon) = (2^{88}, 2^{-40})$

PRGs in Practice

Cryptographic Security

Good Security Values for Real-world Crypto

The 2¹²⁸ rule of thumb

• Designs for which best attacks are at $(t, \epsilon) = (2^{88}, 2^{-40})$

For how long do we need security to hold?

- Moore's law: computational power doubles every 2 years
- *n*+1 bit security every 2 years
- This no longer seems to be true, but...
- Maybe we will have quantum computers soon

```
Long-term security: pprox 256-bit keys
```

Short-term security: pprox 80-bit keys may be OK

- Similarly to encryption, randomness can also be described as experiments
- Advantage is never zero!

- Similarly to encryption, randomness can also be described as experiments
- Advantage is never zero!
- (t,ϵ) -security allows for quantifying appropriate probabilities
- Often the magical number is 128 bits
 - 2¹²⁸ steps to break security
 - Long-term: 256 bits
 - Short-term: 80 bits (sometimes)

Security in Practice

PRGs in Practice

Cryptographic Security

Stateful PRGs in Operating Systems

Randomness generation is statful

- ... in modern OSs
- PRG keeps a state
- OS mixes output of entropy source into PRG state

Security in Practice

PRGs in Practice

Cryptographic Security

Stateful PRGs in Operating Systems

Randomness generation is statful

- ... in modern OSs
- PRG keeps a state
- OS mixes output of entropy source into PRG state

Extract and expand randomness

- *st* ← init(): SO initializes state
- st ← refresh(R, st): SO adds entropy (reseeds)
- $(C, st) \leftarrow next(N, st)$: SO returns N random bits

PRGs in Practice

Cryptographic Security

Dealing With a Compromised State

$Backtracking \leftarrow resistance$

- Suppose an adversary corrupts the PRG state
- Past randomness should not be compromised
 - We might have used it to generate cryptographic material
- A.k.a. forward secrecy (for past secret keys)

Dealing With a Compromised State

$Backtracking \leftarrow resistance$

- Suppose an adversary corrupts the PRG state
- Past randomness should not be compromised
 - We might have used it to generate cryptographic material
- A.k.a. forward secrecy (for past secret keys)

$\mathsf{Prediction} \Rightarrow \mathsf{resistance}$

- Suppose the adversary corrupts the PRG state
- SO adds extra (hidden) entropy to PRG state
- Future output should look random once more
- Hence refresh must be called regularly

Cryptographic Keys

Randomness 00000000 Security in Practice

PRGs in Practice

Cryptographic Security

Linux systems

- PRG is accessible at /dev/urandom
 - In *nix-style, PRG is mapped to a file
 - Careful to make sure system calls are successful!

Cryptographic Keys

Randomness 00000000 Security in Practice

PRGs in Practice

Cryptographic Security

Linux systems

- PRG is accessible at /dev/urandom
 - In *nix-style, PRG is mapped to a file
 - Careful to make sure system calls are successful!

Link to code from LibreSSL

In some variants, there is a blocking $/\mathit{dev}/\mathit{random}$ based on an entropy simulator

- Check if there is "sufficient entropy"
- Blocks otherwise
- Current consensus indicates that, for most applications, this is not useful (see **this link** for more information)

Caution: statistical tests are not sufficient

• Q: What type of tests can we do over "random" inputs?

Caution: statistical tests are not sufficient

• Q: What type of tests can we do over "random" inputs?

- Count number of 1s and 0s
- Check distribution of 8-bit words
- Look for patterns
- ...

Irrelevant for Security

- Possible to pass statistical tests
- Totally insecure for cryptographic purposes

Caution: statistical tests are not sufficient

• Q: What type of tests can we do over "random" inputs?

- Count number of 1s and 0s
- Check distribution of 8-bit words
- Look for patterns
- . . .

Irrelevant for Security

- Possible to pass statistical tests
- Totally insecure for cryptographic purposes

Cryptographic PRGs come with a proof of security

- Goal: Given *n* bits of input, can an adversary guess bit n + 1?
- Secure PRGs used directly, or as building blocks to other PRGs

Security in Practice

PRGs in Practice

Cryptographic Security

Security Assurance

There are two main ways in which security is ensured:

- Heuristically
- Provably (not probably!)

Security in Practice

PRGs in Practice

Cryptographic Security •0000000

Security Assurance

There are two main ways in which security is ensured:

- Heuristically
- Provably (not probably!)

Heuristic Security

- Large community constantly trying to break schemes
- Cryptanalysts trying to disprove *n*-bit security
- The AES block cipher is an example

Security in Practice

PRGs in Practice

Cryptographic Security •0000000

Security Assurance

There are two main ways in which security is ensured:

- Heuristically
- Provably (not probably!)

Heuristic Security

- Large community constantly trying to break schemes
- Cryptanalysts trying to disprove n-bit security
- The AES block cipher is an example

Provable Security

- Mathematical proof
- Breaking a scheme implies solving a hard problem
- A mathematical problem, or breaking another scheme!

Security in Practice

PRGs in Practice

Cryptographic Security

Provable Security

Assumption: mathematical problem P cannot be efficiently solved

Goal: Breaking scheme *C* cannot be efficiently done

Security in Practice

PRGs in Practice

Cryptographic Security

Provable Security

Assumption: mathematical problem P cannot be efficiently solved

Goal: Breaking scheme C cannot be efficiently done

Methodology: building a reduction

- Take any (hypothetical) attacker \mathcal{A} that breaks C
- Construct (concrete) reduction $\mathcal{B}^{\mathcal{A}}$
- I.e. \mathcal{B} uses \mathcal{A} as a subroutine
- Show that $\mathcal B$ solves P when $\mathcal A$ succeeds

We never state that C is secure by itself We state that C is as secure as the hardness of P Candomness

Security in Practice

PRGs in Practice

Cryptographic Security

An Example of Provable Security - Part 1

Assume that AES is a semantic secure scheme, i.e.

An adversary with non-negligible victory probability (over $\frac{1}{2}$), i.e a successful A must not exist!

Cryptographic Keys

Randomness

Security in Practice

PRGs in Practice

Cryptographic Security

An Example of Provable Security - Part 2

Consider an encryption scheme that just repeats AES 2 times.

E(k,m) = AES(k,m) | AES(k,m)

Q: given that AES is secure, is this secure?
Cryptographic Keys

Randomness

Security in Practice

PRGs in Practice

Cryptographic Security

An Example of Provable Security - Part 2

Consider an encryption scheme that just repeats AES 2 times.

E(k,m) = AES(k,m) | AES(k,m)

Q: given that AES is secure, is this secure?

- It should be...
- We are just repeating the encryption
- Can we demonstrate this?

Cryptographic Keys

Condomness

Security in Practice

PRGs in Practice

Cryptographic Security

An Example of Provable Security - Part 3

- Suppose a successful *B* exists
- Then, we can construct a concrete $\mathcal A$ to break AES like this
- Contradiction! We assumed that no such A can exist!

Cryptographic Keys

Randomness

Security in Practice

PRGs in Practice

Cryptographic Security

An Example of Provable Security - Part 3

- Suppose a successful *B* exists
- Then, we can construct a concrete $\mathcal A$ to break AES like this
- Contradiction! We assumed that no such A can exist!

Corollary

- No $\mathcal{B}^{\mathcal{A}}$ can exist (AES is secure)
- As such, no $\mathcal A$ can exist
- So, scheme *E* must be secure!

PRGs in Practice

Cryptographic Security

Caveats of Provable Security

Problem *P* is called a *hardness assumption*

- It can be a mathematical problem, such as factoring
- It can be some other cryptogaphic construction

PRGs in Practice

Cryptographic Security

Caveats of Provable Security

Problem *P* is called a *hardness assumption*

- It can be a mathematical problem, such as factoring
- It can be some other cryptogaphic construction

Proof assurance \leq assumption assurance

- Proofs of security are relative to assumptions
- Security only holds if assumptions are true

Most of the assumptions are validated via heuristic security

Randomness 00000000 Security in Practice

PRGs in Practice

Cryptographic Security

Heuristic Security

Validating hardness assumptions is crucial for modern cryptography

Methodology for heuristic security has been progressing

- Standards take years to define
- Competitions where proposals are scrutinized
 - It is how AES was established as the *de facto* encryption standard for the overwhelming majority of applications
 - And is how PQ encryption schemes are being selected
- "My construction wins if I break your construction"
 - Yet again we see the value of the Kerckhoffs's principle!

Randomness 00000000 Security in Practice

PRGs in Practice

Cryptographic Security

- Security can be shown heuristically ...
 - Heuristic: cryptanalysis
 - Disproving *n*-bit security
 - E.g. AES

yptographic Keys

Randomness 00000000 Security in Practice

PRGs in Practice

Cryptographic Security

- Security can be shown heuristically ...
 - Heuristic: cryptanalysis
 - Disproving *n*-bit security
 - E.g. AES
- ... or provably
 - Provable security: mathematical proofs
 - Reduce security to another problem/scheme

ptographic Keys

Randomness 00000000 Security in Practice

PRGs in Practice

Cryptographic Security

- Security can be shown heuristically ...
 - Heuristic: cryptanalysis
 - Disproving *n*-bit security
 - E.g. AES
- ... or provably
 - Provable security: mathematical proofs
 - Reduce security to another problem/scheme

These are complementary. Heuristic arguments are done over building block ciphers, which are the basis for more complex security systems (soon!) Applied Cryptography Week 2: Randomness and Cryptographic Security

Bernardo Portela

M:CC, M:ERSI, M:SI - 24