Applied Cryptography

Week #10 Extra

Bernardo Portela and Rogério Reis

2024,/2025

Important

» Your answers must always be accompanied by a justification. Presenting the final result (e.g. the
result of a calculation) without the rationale that laid to said result will result in a grade of 0.

e Submit your answers via e-mail to bernardo.portela@fc.up.pt, with adequate identification of the
group and its members.

Q1: Man-in-the-Middle

Implement a prototype that demonstrates how a Man-in-the-Middle attack can occur in a standard
unauthenticated Diffie-Hellman key exchange. As usual, this happens between usual suspects Alice
and Bob. In appendix, you can find four files:

e config_alice and config_bob are configuration files that are used by Alice and Bob to know
who to talk to.

o alice.py establishes a connection with Bob (hopefully), and performs the Diffie-Hellman key
exchange.

e bob.py mirrors the behavior of Alice.

The goal of the work is to design the man-in-the-middle adversary code: mitm.py. Your code must
convince Alice and Bob to instead talk to him, and perform a key exchange with him. Your attack
must not change the source code of Alice or Bob. Your attack is successful if Alice and Bob
are not agreeing on the same secret, and the secrets they have agreed to are both known to the
adversary.

Suggestion: Start by analysing the code for Alice and Bob, what are they using to communicate?
How can we subvert this mechanism to be more... convenient?

To facilitate communication, this code uses pwntools (reference). It is not mandatory to use this, but
the library considerably facilitates communication.

Q2: ECC

The following is a naive attempt at an elliptic curve signature scheme. Consider a global elliptic curve,
prime p and generator G. The scheme works as follows.

« Alice picks a private signing key sk 4 and forms the public verifying key by computing pks < ska-G

o To sign message m, Alice picks a random value k, and computes the signature o < m —k-sk-G.
It then sends to Bob the tuple (m, k, o)

o To verify the signature, Bob checks that m = o + k- pk 4. If this is true, the signature is validated.


https://github.com/Gallopsled/pwntools

Question - P1: Show that the scheme works, i.e. show that, for correctly signed messages, the
verification algorithm works accordingly.

Question - P2: Show that this scheme is vulnerable, by describing a simple technique for forging
a signature on an arbitrary message, without knowledge of the secret key sk. Hint: consider what
computations can one do using simply pka

Q3: ElGamal

ElGamal is a public-key encryption scheme. Its reasoning is similar to that of classical Diffie-Hellman,
using ¢g* as the public key, and having the encryption encapsulate the message with g¥.

The algorithms are presented below, assuming operations in the group Z,, with generator g. Encryption
assumes that m is an element of Z,, whcih can be achieved by having a reversible mapping function

from the message domain to the group domain. s~! means the inverse of s.

Algorithm Gen(): Algorithm Enc(X, m): Algorithm Dec(z, (Y,¢)):
z${1,...,(g— 1} yes{l...,(¢—1)} SeYE
X « g* s+ XY mé—c-s5 1
Return (X, ) Yé—g¥ cém-s Return m
Return (Y, ¢)

Figure 1: ElGamal encryption scheme

Question - P1: Describe why decryption works — show how m is recovered
Question - P2: Explain how the hardness of the discrete logarithm ensures confidentiality

Question - P3: ElGamal is malleable — show how it can be done. Consider an adversary that can
request the encryption of message m, receiving ciphertext ¢, and show how can he present another
ciphertext ¢’ that will decrypt in a related way.



	Q1: Man-in-the-Middle
	Q2: ECC
	Q3: ElGamal

