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Why PKI?
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Why PKI?

All PK cryptography primitives assume public-keys are authentic.
If not true, protocols are vulnerable to man-in-the-middle attacks.
In the real-world this problem can be solved in an ad-hoc way:

o manually confirm public-key belongs to intended party;

o systems (e.g., GPG/PGP) supporting ad-hoc PK authentication.
When legal /regulatory coverage is required — PKI:

o Technical standards: which algorithms/encoding formats to use

o Regulations: how technical standards should be used

o More Regulations: responsibilities and rights of involved parties

o Laws: formal guarantees and penalties wrt regulations
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Public-key certificates

Goal:
o Alice sends Bob a public key pi over an insecure channel
o Bob must be able to check Alice holds associated secret key
Trivial solution:
o Bob has authenticated channel to Trusted-Third-Party (TTP)
o Alice has previously proved to TTP that she owns py (how?)
o Bob asks TTP (on-line) if pi belongs to Alice
Problems in practice:
@ How does Bob build authenticated channel to TTP?
@ What happens if TTP is off-line?
@ How do Bob and Alice get to work with the same TTP?
@ What does “Trust” in TTP mean?

Rogério Reis Cryptography Week #11 2025.12.05 5 /54



Public-key certificates (2)

Public-key certificates use signatures to solve points 1 and 2:
o TTP is called a Certification Authority (CA)
o Alice proves to CA that she owns p
» By signing a certificate request (PKCS#11)
» Because CA itself provides secret key to Alice
o CA provides/checks data Alice wants on certificate:
» Alice identity + public key

» CA-specific information: serial number, issuer identity
» Validity (start and end dates)

o CA signs data as a byte-encoded ASN.1 data structure.

PK Certificate := Alice’s data and PK + CA signature
Trust in certificate < Trust in CA
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Public-key certificates (3)

What is ASN.11?

Abstract Syntax Notation 1: platform/language independent
Legacy specification language from networking standards
Standards use ASN.1 to specify data structures (packets)
DER (Distinguished Encoding Rules) specify byte encoding
How do certificates solve points 1 and 2:

©

©

©

©

o Digital signature guarantees certificate is authentic to Bob
o CA can be off-line: Bob can get certificate via Alice!

So can certificates be sent over insecure channels?

Other natural questions:
o How does Bob know CA and verifies the CA signature?

o What are Alice/Bob actually trusting the CA to do?

!See here https://datatracker.ietf.org/doc/html/rfc8017#appendix-C for some examples
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Verifying a Public-Key Certificate

Suppose Alice sends Bob a public-key certificate with:
o Alice's identity and public key
o A validity period (start and end dates)
o Some additional meta-information
o All signed by certification authority CA
This is what Bob should do:
@ Check Alice's identity is correct (e.g., DNS name for server)
@ Check current time is within validity period
® Check meta-information makes sense for application
@ Check CA is trustworthy to certify this public-key
® Obtain CA's public key and verify signature in certificate
The first three are self-explanatory. PK/ solves 4 and 5.
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Sanity check: did you understand how this works?

Who sends and who receives/validates a PK certificate in:
o Asymmetric encryption:

» Public key belongs to receiver
» Sender must get certificate beforehand

o Digital signatures

» Public key belongs to signer
» OK to sign and send certificate along (M, o)

o Key agreement

» If mutually authenticated, then both must send certificates
» What happens usually in TLS?

Example: in S/MIME (signed email) clients usually
o Allow signing a message as soon as personal certificate installed
o Needs signed message from Alice before allowing encryption

o Does this make sense?
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Technical details about public-key certificates

Standardized in X.509 and transposed to internet by IETF
Important data structures have unique object identifiers
Current version is 3, which includes basic fields:

o subject, issuer, validity, public key info, serial
Extensions (attachments), some of which may be marked critical
o all extensions carry an object identifier
o if marked critical but not recognized = reject!
Important extensions:
o Subject/authority key identifier: fingerprint of public key
o Basic constraints: flag that signals special CA certificate

o Key usage: CA can restrict purpose of certificate
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Public Key Infrastructure

[Wikipedia]

A public key infrastructure (PKI) is a set of roles, policies, hardware, software and procedures
needed to create, man- age, distribute, use, store and revoke digital certificates.

All of these components serve a purpose and follow rules so that:

©

A certificate user (end entity) can be assured

©

By a trustworthy certification authority

©

That a PK belongs to another end entity (person, server,...)

©

And can be used for a given purpose

©

Under well-defined rights/responsibilities for all parties
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PKI Architecture
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Operational/Management transactions

How do certificates go around?
Operational protocols specify how certificates are:

o stored in repositories (e.g., LDAP)
o transferred to client software (HTTP, FTP, MIME)
o encoded in non-ambiguous formats
You have seen several instances of operational protocols:
o In TLS the RFC specifies how certificates are exchanged
o In S/MIME certificates are included in the PKCS#7 attachments

o OS certificates are managed via standard cryptographic modules
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PKI Management: Initialization

We asked an important question before:

o How do users get to know a CA

o How does Bob verify a CA signature in a certificate?
Answer:

o All public keys are encoded in X.509 certificates

o Some certificates contain the public keys of CAs

©

Bob obtains the CA's public key from a certificate

©

Bob uses the CA’s PK to verify signature on Alice’s certificate

©

If certificate OK = Bob can use Alice's public key
Therefore, Alice's public key is authenticated if:
o Bob has certificate for CA that issued Alice's certificate

o Bob trusts CA to have checked data on Alice’s certificate
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PKI Management: Initialization (2)

How does Bob know to trust CA?
In the simplest settings:

o Bob gets certificate directly from CA
o Bob implicitly trusts CA certificate
Examples:
o We get many CA certificates pre-installed in OS
o Portuguese citizen's card is certified by state-run CA

These are examples of initialization operations.

Key generation, if done by the end entity, also part of initialization.
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PKI Management: Registration and Certification

Registration Authorities (RA):

o Front-end: direct contact with end-entities

o Responsible for checking data that goes into certificates

o Responsible for ensuring (unique) entity possesses secret key
Certification Authorities:

o Back-end: infrastructure where certificates are signed

o Typically high-security: air gaps, physical security, etc.
Example: Portuguese Citizen's Card

o RA is Registo Civil, Loja do Cidad3o, etc.

o CA is deployed in protected facilities at INCM

o CA generates keys, signs certificates and issues smartcards

o RA delivers them to citizens after physical identification
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PKI Management: Revokation

Certificates outside of validity dates are, by definition, invadid.
What happens if they need to be invalidated?

o E.g., lost secret key, data breach, meta-data becomes incorrect.

Certificates need to be revoked while they still look valid.
This is formally done using Certificate Revokation Lists (CRL):

o CA periodically publishes a black-list of revoked certificates
o Certificate consumers should check most-recent CRL
o Exceptional CRL may also be published, as best-effort

How do we get revokation information?
Certificate extensions typically indicate URLs for CRLs
Traditionally low support from client software
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PKI Management: Revokation (2)

Three solutions used in the real-world.
@ Trusted Service Provider Lists (TSL):

» up to date white list of trusted certificates
» closed small groups (e.g., banking) and high-security applications

@ On-line Certificate Status Protocol (OCSP)):

» a trusted server checks CRLs for you
» usually managed by CAs themselves
» typically used in large organizational contexts (e.g., eGov)
@ Certificate pinning:
» web servers/browsers/applications carry their own white lists
» identify good certificates for important entities (e.g., Google)
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Certificate Chains and CA Hierarchy

We have seen a simple case: Bob trusts Alice’s CA implicitly.
In general this is not the case:

o Bob is initialized with certificates for root CAs

o Bob trusts implicitly in these CAs

o Certificates for root CAs are self-signed:

» CA generates a key pair (sk, pk)
» CA creates its own certificate with subject = issuer = CA name
» Certificate includes pk and CA signs it with sk

Note: self-signed certificates can be generated by anyone.
Validating a self-signed certificate implies:

o belief that whoever owns that secret key is a CA

o belief that this CA only generates good certificates
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Certificate Chains and CA Hierarchy (2)

Root CAs typically do not issue end-entity certificates.
o There is a hierarchy of CAs
o If CA A signs certificate of CA B
o Then trust in CA B < trust in CA A

We can have many levels in this hierarchy/tree, so:
o To authenticate Alice’s public key, Bob gets Alice's certificate
o To validate Alice’s certificate, Bob gets certificate of Alice’s CA
o Bob verifies that Alice’s certificate is valid wrt Alice's CA

Bob still needs to decide whether to trust Alice's CA.
Trust = Alice’s CA is descendent of Root CA trusted by Bob
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Certificate Chains and CA Hierarchy (3)

Bob enters a loop starting with Current CA = Alice's CA.
The loop works as follows:

o If Bob implicitly trusts Current CA certificate: Accept!

o Else If Current CA is subordinate to some CA
» Bob gets CA certificate
» Bob verifies Current CA certificate is valid wrt CA
» Bob re-enters loop with Current CA = CA

o Else Reject!
Note: this process fails if Bob cannot get certificates

o All certificates can be sent by Alice except the root of trust.
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Certificate Policies

PKI can be used to give cryptography a legal meaning.
A Certificate Policy is a set of PKI operation rules:

o Rights and responsibilities of end-entities
o Rights and responsibilities of CAs

These rights and responsibilities can be written in law.
A certificate policy is assigned an object identifier (OID):

o Certificates can be flagged to comply with a policy
This implies an accreditation system:
o CA must be audited before it is authorized to use OID
o Any CA that uses OID without authorization is breaking the law
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Homomorphic Encryption
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Shortly after the original RSA paper, a question was posed by Rivest, Adleman, and
Dertouzos: would it be possible to have a database of encrypted information (such as financial
or health data), stored in an external location, that would nonetheless allow computations on
the encrypted data without decrypting it? This would permit, for example, external storage,
and computation on the encrypted data stored at the external site, without having to trust the
owner or operator of the external site.

The idea of “cloud computing” is not an invention of the last years!
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Somewhat and Fully Homomorphic Encryption

There are a number of cryptosystems that have been characterized as somewhat
homomorphic. Paillier's scheme is an example of that type of cryptography as it is only
homomorphic for one operation.

Others, that support ring homomorphisms, i.e. support two operations, are called fully

homomorphic encryptions. These normally rely heavily on algebra of ideals, thus a little more
exigent in algebra knowledge.

Rogério Reis Cryptography Week #11 2025.12.05 27 / 54



Paillier's scheme

Let n = pq, product of two primes of equal bit size, and such that
(p,g—1)=1A(p—1,q)=1.

Then, Z, x Z} is isomorphic to Z*,, given by f(a, b) = (1+ n)?b" mod n?.

As a consequence a uniform element y € Z*, corresponds to a uniform element

(a,b) € Zn X Z},

Call y € Z7, an nth residue module n? if exists x € L7, with y = x" mod n?. Denote the set

of the nth residues modulo n? by Res(n?). Let us characterize the nth residues in Z*,. Taking
any x € Z*, with x <> (a, b) and raising it to the nth power, we have

(x™ mod n?) < (a,b)" = (na mod n,b” mod n) = (0,b" mod n).

Moreover, we claim that that any element y that y <> (0, b) is a nth residue.
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To see this recall (n,®(n)) = 1 thus d = (n~! mod ®(n)) exists.So
(a,(b? mod n))" = (na mod n, b mod n) = (0,b) <y

for any a € Z,. Thus
Res(n®) = {y|b € ZX Ny < (0,b)}.

This shows that the number of nth roots of any y € Res(n?) is exactly n and computing the
nth power is an n-to-1 function. As such, if r € Z*; is uniform then (r" mod n?) is a uniform
element of Res(n?). The decision composite residuosity problem is to distinguish a uniform
element of Z*, from a uniform element of Res(n?).
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Formally, let GENMODULUS be a polynomial-time algorithm that, on input 1”, outputs
(n, p,q), where n = pq, and p, g are ¢-bit primes (except with a probability negligible in ¢).
Then

Definition

The decisional composite residuosity problem is hard relative to GENMoDULUS if for all
probabilistic polynomial-time algorithms D there exists a negligible function ¢ s.t.

|Pr[D(n,(r" mod n2)) = 1] — Pr[D(n,r) = 1]| < e(n),

where in each case the probabilities are taken over the experiment in which
GENMoDULUS(1") outputs (n, p, g) and then a uniform r € Z7, is chosen.

The decisional composite residuosity (DCR) assumption is the assumption that there is a
GENMODULUS relative to which the decisional composite residuosity is hard.
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This suggests the following way to encrypt a message m € Z, with respect to a public key n:
choose a uniform nth residue (0, r) and set the cyphertext to

¢4+ (m1)(0,r)=(m+0,1-r)=(m,r).

Since a uniform nth residue (0, r) cannot be distinguished from a uniform element (', r), the
cyphertext is indistinguishable (from the point of view of someone that does not know how to
factorise n) from the cybertext

< (m1)-(r',ry=((m+r modn),r)

for uniform r' € Z, and r € Z}. As (m+r mod n) is uniformly distributed in Z,, ¢’ is
independent of the message m.
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Encryption: The sender generates the cyphertext ¢ € Z7, by choosing a uniform r € Z;, and

then computing
c=((1+n)™r" mod n?).

Observe that
c=(((T+ ™11+ n)°r") mod n?) < (m,1)-(0,r),

thus,
c < (m,r)

as required.
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Decryption: Now, knowing n = pq, we claim to be able to decrypt efficiently ¢ and recover m
using this steps.

e = (®" mod n?),
m o= (e-1)/n,
m = (md(n)~! mod n).

Let us see why this works. Let ¢ <> (m, r), for arbitrary r € Z¥. Then
(D

c mod n?)
m, r)¢(n)
(

m®(n) mod n, r®™  mod n)

c =

T

(
(
=
(m®(n) mod n,1).
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This means that & = (1 4 n)(m®(") mod n) mod n?, and we know
¢ = (14 n)m®) modn) — (1 L (md(n) mod n)n) mod n?

(we proved that (1 +n)? =1+ an (mod n?))
Since 1+ (m®(n) mod n)n < n? we can drop (mod n?). Thus

m=(&—1)/n=(m®(n) mod n).

Finally,
m=(m®(n)™! mod n).
(®(n), n) =

(n),n) =1)

(®(n) is invertible modulo n since
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An example

Let n=11-17 = 187 (n? = 34969), and let m = 175.
Choosing r = 83 € Z]g; we compute

c=((1+187)'75 .83 mod 34969) = 23911 « (175, 83).
To decrypt, knowing ®(187) = 10- 16 = 160. So

= (23911%°  mod 34969) = 25620,
(25620 — 1)/187 = 137, since 90 = (160~ mod 187),
— (137-90 mod 187) = 175.

o>

I 3>
I
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Paillier as a homomorphic encryption

The Paillier encryption scheme is useful in a number of settings because it is homomorphic.
Roughly, a homomorphic encryption scheme enables (certain) computations to be performed
on encrypted data, yielding a ciphertext containing the encrypted result. In the case of Paillier
encryption, the computation that can be performed is (modular) addition. Fix a private key

= pq. Then the Paillier scheme has the property that multiplying an encryption of m; and

an encryption of mp (done (mod n?)) results in an encryption of m; + my mod n; this is
because

(1 4+ )™ i)((L+ n)™ ) = (1 + n)mtme medn)(y ) (mod n?).

Rogério Reis Cryptography Week #11 2025.12.05 36 / 54



A nice feature of Paillier encryption is that it is homomorphic over a large additive group Z,.
To see an application of this, consider the following distributed voting scheme, where voters
can vote “no” or “yes” and the goal is to tabulate the number of “yes" votes:

@ A voting authority generates a public key n for the Paillier encryption scheme and
publicizes n.

@ Let 0 stand for a “no” and let 1 stand for a “yes”. Each voter casts their vote by
encrypting it. That is, voter i casts her vote v; by computing ¢; = (1 + n)“i(r;)n mod n?
for a uniform r; € Z,.

@ Each voter broadcasts their vote ¢;. These votes are then publicly aggregated by
computing Crotal = Hle ¢, mod n?.

@ The authority is given cioay. By decrypting it, the authority obtains the vote total
¢
Viotal = » ;—1 Vi mod n.

If £ is small (so that vioray < n), there is no wrap-around modulo n and vy = fo:l V.
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Proposition

Let n = pqg the product of two primes of equal length. Then
@ (n,®(n))=1,®

@ Va>0(1+4n)=1+an (mod n?). As a consequence, ord(1 + n) in Z%, is n.
Thatis, (1+n)"=1 (mod n?),and 1 <a<n = (1+n)? #1 (mod n?).
® Zn X Zy, is isomorphic to Z7, being the isomorphism

filnx T — I
(a,b) — (1+n)?b" mod n°.

We will write x <> (a, b) if f(a, b) = x.
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Proof:

@ (n,o(n))=1
We know that ®(n) = (p — 1)(qg — 1). Assume p > q, thusp>p—1>qg—1. ltis
clear that (p,®(n)) =1and (q,g—1)=1. If (g,p—1) # 1 then (q,p— 1) = g, since q
is prime. But then (p — 1)/q > 2 which contradicts the assumption that p and g have
binary representations of the same size. Thus

(n,®(n)) = 1.

@ Vaa>0 = (1+n)®=(1+an) (mod n?), thus ord(1 + n) in Z*, is n.
@ The group Z, x Zj, is isomorphic to the group Z*, with isomorphism

f:ZnXZ: — Z:2
(a,b) +—— (1+n)?b" mod n?

neD
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Proposition

Let p be a prime and a a positive integer, then

o(p%) = p> — p* .

Proof: All the non-coprimes with p and its powers are: p,2p,...

multiples of p. Thus the number of coprimes with p? is

pa _ pa—l — q)(pa)'
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Proposition
Let a, b be such that (a, b) = 1, then

®(ab) = d(a)d(b).

Proof: Let m < ab A (m,ab) = 1. It is easy to see that
(ma)=1A(mb)=1 = (m mod a,a)=1A(m mod b,b) =1.

Thus, for each integer coprime with ab we have a pair of integers coprime with a and b,
respectively. Thus, ®(ab) < ®(a)d(b).

On the other hand, consider a pair (r,s) with (r,a) =1A(s,b) = 1. As (a,b) =1, by CRT
then exists m > 0s.t. m=r (mod a) A m=s (mod b). Thus, for each

m € {1,2,...,ab} we get a different pair (r,s), and thus ®(ab) > ®(a)P(b). O
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Proposition

Let p1,p2, ..., px be primes and as, ap, ..., ax positive integers. Then,
O (p7pg - p) = (P2 = P (P32 = P2 1) - (7 — P 7Y).
Proof: (It is straightforward by induction on k.
Corollary
If n = pg with p and g primes
®(n) =(p—1)(q—1).
W boch )
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Theorem (Chinese Remainder Theorem)

Let n = pq where p,q > 1A (p,q) =1. Then
Zn~7Zpx ZLq and Z*:ZZXZ;.

Moreover, let f be the function mapping elements x € {0,...,n— 1} to pairs (xp, xq) with
xp €{0,...,p—1} and x4 € {0,...,q — 1} defined by

f(x)=(x mod p,x mod gq).

Then, f is a n isomorphism from Z, to Zp X Zq, and the restriction of f to Zy, is an
isomorphism from Zj, to Z, X Zq.

Proof: It is clear that Vx € Z,, f(x) = (Xp, Xq) With X, € Z, and xq € Z4. We need to prove

that if x € Z}; then (xp, xq) € Zj, X Zg. If x, ¢ Zj, then this means that (x mod p, p) # 1.
But then (x, p) # 1 and thus (x, n) # 1 contradicting the fact that x € Z}.
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Let us see that f is one-to-one. Say f(x) = (xp, xq) = f(x’). Then x = x, = x’ (mod p) and
x = xq = x' (mod g). This implies that x — x is divisible both by p and q. As (p, q) =1 then
x — x" must be divisible by n which implies that x = x’ (mod n), which meand x = x’. Thus f
is one-to-one. Since |Z,| = n = pq = |Zp X Zg|, f is bijective.

That f preserves the operation of the group, let us denote by [ the operation in Z, x Zg.

Then we need to show that
f(a+ b) = f(a) B f(b).

flatb) = ((a+ mod p,(a+b) mod q)
= (a mod p,a mod q)HBH (b mod p,b mod q)
= f(a)Bf(b).

0 e
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Let n be an integer. Then

®(n) = |{k|L < k < nA(n k) =1}|.




Proposition
Forall a>0, (1+ n)? = (1+ an) (mod n?), and thus ord(1 + n) in Z*, is n. J

Proof: By the binomial expansion

a

(1+n)?= (7) n'=1+an (mod n?).
i=0

The smallest nonzero a s.t. (1 +n)? =1 (mod n?) is, therefore, a = n. O
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Proposition
The group Z, X Zj, is isomorphic to the group Z, with isomorphism
f:ZnxZy, — 7%
(a,b) > (1+n)®p" mod n?

Proof: Note that (1 + n)?b" does not have a factor in common with n? since (1 + n, n?) =1

and (b, n?) =1 (because b € Z). Thus, ((1+ n)?b" mod n?) € Z%,.
Now we prove that f is an isomorphism. First we prove that is a bijection. Since

|Zsa| = &(n%) = p(p — 1)g(g — 1) = pa(p — 1)(q — 1) = |Zn x Zp|

it suffices to show that f is one-to-one. Say aj, a» € Z, and by, by € Z}, are s.t.
f(al7 bl) = f(a27 b2)
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Then
(14 n)""%(by/b)" =1 (mod n?) (1)
(as b1, by € Z}, their inverses belong to Z}, too.)

Raising both sides to the power ®(n), and using the fact that the order of Z*, is
®(n?) = nd(n) we get

(14 n)(@=32)®(M) (b /)" =1 (mod n?) = (1+ n)@~2)%() =1 (mod n?)

(because n®(n) = ®(n?) = (by/b)®(™) =1 (mod n?)), as we already proved (1 + n) has
order n modulo n?,

(a1 — a2)®(n) =0 (mod n)

and so n | (a1 — a2)®(n). Since (®(n), n) =1, it follows that n | (a1 — a2). Since a1, ar € Zp,
then a; = ap. Making a; = a in (1), we have by = by (mod n?).

This implies by = by (mod n) since by, by € Z,. Since (n, ®(n)) = 1, exponentiation to the
power n is a bijection in Z} This means that by = by (mod n), but since by, by € Z}, we
have that b; = by. Hence f is one-to-one and, consequently, a bijection.
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To show that f is an isomorphism, we show that

f(a1, b1)f(az, bo) = f(a1 + a2, b1b2).

Note that the multiplication on the left takes place modulo n? while addition/multiplication on
the right takes place modulo n. We have

f(a1, b1)f(a2, b2) = ((14 n)bY)((1+ n)®2b3) (mod n?)
= (1+n)2(bby)" (mod n?).

Since (1 + n) has order n modulo n?, we can write
f(ay, b1)f(az, bo) = (1 + n)(ata2 medn)(p pY" (mod n?).

Let biby = r + yn, with 1 < r < n (cannot be 0 since by, b, € Z7,). Note that r = by by
mod n.
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Thus we have

(b1b2)"

Il
—~
s
+
-2
S
~—
3
—~
3
o
o
S
N
~

“yn)  (mod n?)
r"  (mod n?)

= (biby mod n)" (mod n?).

Il
~
+
3
S

Thus

f(a, b1)f(ao, b)) = ((1+ )@t mdn(p b mod n)") mod n?
= f(a1 + a2, b1bo).

0 D
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Proposition
Let G be a finite group and g € G, an element of order i. Then,

g=g" < x=y (modi).

Proof: If x = y then (x mod i) = (y mod i) and g¥ = glx mod i) — gly modi) — gy
On the other direction, let g¥ = g¥. Then 1 = g ¥ = glx=y mod ) Gjpce (x—y mod i) <i
and / is the order of g, then (x —y mod i) = 0. O
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Theorem

Let G be a finite abelian group with m = |G| the order of the group. Then for any g € G,
gmn =1

Proof: Fix an arbitrary g € G, and let g1, ..., gm be the elements of G. We claim that

g1-& - 8m = (gg1)(g&2) - - - (88m)-

To see this note that gg; = gg; implies g; = gj, thus each element in parenthesis of the
right-hand are distinct. Because there are exactly m elements in both sides of the equality
they are just a permutation of eachother. Thus

g8  &n=28" (g1 -8 &m),

which implies that g™ = 1. O
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Corollary

Let G be a finite group with m = |G| > 1. Then for any g € G and any integer x, we have
g5 = g(x mod m)

Proof: Say x = gm + r, where q, r are integers and r = (x mod m). Then

gx — gqurr — gqmgr — gr' ]

Corollary

Let G be a finite group with m = |G| > 1. Let e > 0, and define the function f. : G — G by
fo(g) = g°. If (e,m) = 1 the f, is a bijection. Moreover if d = e~} mod m the fy is the
inverse of fe.

Proof: Since G is finite, the second part implies the first; thus, we only need to show fy = fe_l.
This is true because for every g € G

fd(fe(g)) — fd(ge) _ gde — g(de mod m) _ gl = g. ]
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