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Quantum Computation
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All considerations made up to now, were based in a very well known model of computation:
the Von Neuman machine model.

Although it should be called as the Turing model!!

In this model only one instruction (or step of program) is executed at each turn1 and each
instruction only acts over a very small number of memory bits. Although all the huge advances
in computer performance and speed, that took place in the last 60 years, the considerations on
tractability of computer solutions made in the beginning of the sixties (of the last century) are
essentially valid today, needing only to consider dimention of problems one or two orders of
magnitude larger.

1And parallel and matrix models of execution do not make a big difference to what computational
complexity is concern.

Rogério Reis Cryptography Week #12 2025.12.12 3 / 67



The increase in speed in classical computers is directly related to the frequency at which these
work. But this frequency at which they work is limited by the energy required to change the
state of a “bit”, which in turn is directly related to the degree of integration of referred
computer.
In other words, to have more efficient computers quickly we have to make them
smaller...
This size cannot be reduce indefinitely, and some say we are one or two decades beyond an
reasonable limit, without starting to feel the serious instability problems that will force us to
question the very model of computing.
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Reversible Computation

One of the biggest problems with miniaturization of classical computers is that of energy
dissipation.
R. Landauer showed, in 1961, that physical limitations resulting from the heat dissipation
could be avoided for almost all operations performed by a CPU, making them invertible.
The exception is for the “delete” operation of one bit, all other operations can be made
reversible.
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The first condition for a device to be reversible (logical reversibility) is that input and output
can be obtained from the other. If Furthermore the device can effectively put to work in the
opposite sense then it is said physically reversible and the second law of thermodynamics
guarantees that does not dissipate energy.

In a quantum computer, programs are evaluated by unitary evolution of an input given by the
state of the system. As all unitary operators are invertible, we can always “uncompute” the
calculation performed.
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Universal (classical) machines and logic ports

Any calculation on a classical computer can be expressed as a circuit using a set of logic gates.
That set of gates must be such that “any” computation can be expressed with it. A set of
gates with such characteristic is called universal set of gates, as per example:
{AND,OR ,NOT}. In fact we can have universal sets of gates with just two gates:
{AND,NOT} or {OR ,NOT}. We can use other ports like XOR , and then {XOR ,AND}
constitutes a universal setof gates. The computational complexity is only affected by a
multiplicative factor when the set of logic gates in which the programme is express is
modified.
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Although the previous logic gates are sufficient for any calculation, are not enough to build a
computing machine. For a computer to be usable, it is necessary also:

A

A

A

A

FANOUT ERASE

First let us consider the FANOUT port. Is it reversible? No information is destroyed, so it is
logically reversible. Landauer showed that can be implemented in a physically reversible
way.
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As for ERASE , it is necessary to “clear” the memory of the computer, periodically. There is a
type of ERASE that can be done in a (logically) reversible way, when there are multiple copies
of the information to be erased, and ERASE can be computed by “uncomputing” a FANOUT .
The difficulty appears when you want to delete the last copy of a given piece of information
(what we usually call a primitive ERASE ). In this case an ERASE , carried out at a
temperature T dissipates kBT ln 2 (a result known as the Landauer Principle).
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Fortunately, ERASE primitives are not absolutely essential to computation.
To see how, let’s consider what we need to evaluate any function using reversible logic (hence
where primitive ERASE are prohibited).
It is possible to calculate the function f (a) by keeping a copy of the input:

f : a → (a, f (a))
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Let us consider the following port (Toffoli port)

where:

B ⊕ (A ∧ C ) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

A ∧ C , for B = 0 (AND)
A⊕ B , for C = 1 (XOR)

A, for B = C = 1 (NOT )
A, to B ∕= C = 1 (FANOUT )

this port constitutes, by itself, a universal set. It is evidently invertible because applied to
itself results in the identity:

(B ⊕ (A ∧ C ))⊕ (A ∧ C ) = B .
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But since we can’t use ERASE primitives, the more ports are used, more “useless” bits are
accumulated, because in each port we must preserve the input bits to preserve its reversibility.
So a computer built at the using only reversible logic (instead of conventional one) behaves
like:

f : a → (a, j(a), f (a))

with lots of “superfluous” bits j(a).
Bennet showed that these extra bits can be reversibly erased” in intermediate stages with a
minimum of time costs and memory.
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The solution can be seen as:

f : a → (a, j(a), f (a))

FANOUT : (a, j(a), f (a)) → (a, j(a), f (a), f (a))

f ∗ : (a, j(a), f (a), f (a)) → (a, f (a))

where f ∗ denotes the “uncomputation” of function f .
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Elementary quantum notation

A simple quantum system is that of a particle with its two spin-12 . Its base states are, spin
down | ↓〉 and spin to up | ↑〉, which can without represented as the binaries 0 and 1, that is,
|0〉 and |1〉, respectively. The state of such a particle is described by

φ = α|0〉+ β|1〉 , with α,β ∈ C

that is, a linear superposition of the two “base” states of the system. The squares of the
complex coefficients |α|2 and |β|2 represent the probabilities of finding the particle in the
respective states. Generalizing for k spin-12 particles, we have a base with 2k states (vectors
that generate the Hilbert space) corresponding to the 2k possible binary strings of size k .
Therefore the dimension of Hilbert space grows exponentially with k .
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Logical gates for quantum bits (qbits)

Let’s start with just one qubit. If we represent the states | ↓〉 and | ↑〉 (i.e. |0〉 and |1〉) by the
vectors

󰀃1
0

󰀄
and

󰀃0
1

󰀄
, respectively, any transformation unit corresponds to a matrix of the form

Uθ ≡
󰀕

e i(δ+
σ
2
+ τ

2
) cos( θ2) e i(δ+

σ
2
− τ

2
) sin( θ2)

−e i(δ−
σ
2
+ τ

2
) sin( θ2) e i(δ−

σ
2
− τ

2
) cos( θ2)

󰀖

where normally δ = σ = τ = 0. Using this operator we can swap the bits:

Uπ|0〉 = −|1〉 e Uπ|1〉 = |0〉

The extra signal represents a phase factor that does not affect the ogical operation of the
gates.
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Another important one-bit gate is U−π
2
(Hadamard operator) that transforms a particle with

spin down into one with equiprobable overlap of spin down and spin up:

Uπ
2
|0〉 = 1√

2
(|0〉+ |1〉).
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Let us consider a string of k particles of spin-12 initially with the spin down. If we apply this
gate, independently, for each particle we obtain the superposition of all possible binary strings
of size k :

|0〉 → 1
√
q

q−1󰁛

a=0

|a〉,

with q = 2k . This register formed by these k particles contains the overlap of all integers from
0 to 2k − 1.
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Suppose we can construct a unitary operator that transforms a pair of strings |a; 0〉 into the
pair |a; f (a)〉, for a given function f . Such operator applied to the previous one superposition
of states

1
√
q

q−1󰁛

a=0

|a; 0〉 → 1
√
q

q−1󰁛

a=0

|a; f (a)〉

calculates the value of the function (f (a) in a parallel for all values of a. It is this phenomenon
that we will call quantum parallelism.
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To see how such a unitary operator could be constructed, at the using elementary gates, let’s
start by constructing the operator XOR . For a two-particle system, we have a basis

|00〉 =

󰀳

󰁅󰁅󰁃

1
0
0
0

󰀴

󰁆󰁆󰁄 |01〉 =

󰀳

󰁅󰁅󰁃

0
1
0
0

󰀴

󰁆󰁆󰁄 |10〉 =

󰀳

󰁅󰁅󰁃

0
0
1
0

󰀴

󰁆󰁆󰁄 |11〉 =

󰀳

󰁅󰁅󰁃

0
0
0
1

󰀴

󰁆󰁆󰁄
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We can represent the unitary operator corresponding to XOR as

UXOR ≡

󰀳

󰁅󰁅󰁃

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

󰀴

󰁆󰁆󰁄

which corresponds to the following quantum circuit:

|A〉 |A〉

|B〉 ⊕ |A⊕ B〉
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The first particle acts as a conditional to change the state of the second. The circuit is
equivalent to

if (|A〉 = 1)|B〉 = not|B〉.

The XOR gate allows you to move information:

|B〉 ⊕ ⊕ |A〉

|A〉 ⊕ |B〉

Rogério Reis Cryptography Week #12 2025.12.12 21 / 67



In particular, we show that the XOR gate along with some one-bit ports are enough to express
any transformation of a finite set of bits.
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Quantum Cryptanalysis
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Use of quantum parallelism to determine the period of a sequence

Let us consider the sequence
f (0), f (1), ..., f (q − 1),

where q = 2k . We want to use quantum parallelism to determine the period of the function.
Let’s start with a set of particles with spin down, divided into two groups (two registers formed
by qubits):

|0; 0〉 = | ↓, ↓, ..., ↓; ↓, ↓, ..., ↓〉

where the first group has k qubits and the second has “the sufficient number of qubits”.
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To each qubit of the first register we apply the Hadamard (U−π
2
) obtaining the superposition

of all possible integers from 0 to 2k − 1:

→ 1
√
q

q−1󰁛

a=0

|a; 0〉.

The next step consists of decomposition of the calculation of f (a) into a set of unitary 1 bit or
two bits operators. This sequence will correspond to |a; 0〉 the state |a; f (a)〉 for any input a.
The number of bits in the second register has be sufficiently large to store the largest value of
f (a).
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When we apply this sequence of unitary operators to superposition of states from our records,
rather than to a input simple, we get

→ 1
√
q

q−1󰁛

a=0

|a; f (a)〉.

With the same “cost”, we compute, at once, the value of the function f for all the values of a.
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Now let us consider the “quantum” version of the discrete Fourier transformation

|a〉 → 1
√
q

q−1󰁛

a=0

e2πiac |c〉

which is trivially unitary. There exists an efficient way to calculate such a transform with 1 and
2 bit unitary operators:
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|ak−1〉 Uπ
4

|ak−2〉 X1 Uπ
4

|ak−2〉 X2 X1 Uπ
4

...
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When this transformation is applied to the superposition of states saved in our register of
qubits, we get

→ 1

q

q−1󰁛

a=0

q−1󰁛

c=0

e
2πiac

q |c ; f (a)〉

The computation is finished, and we can “measure” the spins of the particles that constitute
the first register. What will be the result? Suppose that f (a) has period r , that is
f (a+ r) = f (a). The sumation over a will contain the constructive interference of the

coefficients e
2πiac

q only when c
q is a multiple of 1

r .
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Therefore, the measured result will be a value of c
q . In order to get the period it is enough to

repeat this quantum calculation log log r
k times to have, with a high probability of one of the

multiples be coprime of r , determining it. The algorithm is probabilistic, but this failure
probability can be made as small as we want.
All this work seems a bit pointless, just to calculate the period of a function, but this process
will support a very strong cryptographic attack.
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Shor’s algorithm for factoring integers

Suppose we want to factor the number n. If we can find a factor, we reduce the size of the
problem and thus the time needed with your calculation. Let’s first choose a number x such
that gcd(x , n) = 1. Let us consider the sequence

x i (mod n)

i.e. consider the function
f (a) = xa (mod n).

We can use the previous quantum algorithm to calculate the period of such a function.
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Let r be the period of f . If r is odd, we just choose a new x and start again.2. Then let r be
even.

x r ≡ 1 (mod n)

(x
r
2 )2 − 1 ≡ 0 (mod n)

(x
r
2 + 1)(x

r
2 − 1) ≡ 0 (mod n)

i.e. (x
r
2 + 1) or (x

r
2 − 1) have a common factor with n, and therefore using the Euclid’s

algorithm we obtain this factor, and we have n factored.

2For a x random the probability of r being even is 1
2
and therefore, few attempts will be necessary.
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This algorithm has a complexity
O((log n)3)

which is much lower than

O(e
64
9

1
3 (ln n)

1
3 (ln ln n)

2
3 )

which is the best result for conventional algorithms.
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Quantum cryptography
- Bennet & Brassard’s protocol

Quantum computing is, for now, nothing more than a theoretical model of a possible
cryptographic attack, or at most of a promise (or a menace) in this field. Until now it has not
been possible to build quantum computing with much more than a few (hundreds) qubits
stable for just a few minutes, whereas we need to keep millions of qubits stable for weeks to
break any crypto. Also, qubits must be kept at extremely low temperatures (close to absolute
zero) to remain stable. Even at freezing temperatures, the state of qubits decays, and they
eventually become useless. As of this writing, we don’t yet know how to make qubits that last
for more than a couple of seconds (their coherence time). Another challenge is that the
environment, such as heat and magnetic fields, can affect the qubits’ states and lead to
computation errors. In theory, it’s possible to correct these errors, but it’s difficult to do so.
Correcting qubits’ errors requires quantum error-correcting codes, which in turn require many
additional qubits and a low enough rate of error.”
The results in cryptography are already a reality, with practical applications and comercial
existence.
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One way of transmitting information can be through the orientation of a photon’s wave. We
can transmit a 1 whit a photon with a wave axis ↑ and to transmit a 0 a photon with wave
axis →. For the receiver to “read” this information, he only needs to use a polarizer filter. If
he chooses to set this filter in a ↑ orientation, and the photon passes the polarizer it means
that it was a 1 that was supposed to be transmited, otherwise he can conclude that was a 0.
In exactly the same way Alice could encode her message transmitting a ↗ photon for a 1 and
a ↖ photon for a 0.
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What happens if Alice sends a 1 in this new base × (a photon ↗) and Bob make a mistake
and try to “read” it with a base polarizer +?
If Bob uses a polarizer ↑ (or →) has a probability of 1

2 of “reading” a 1 and the same
probability for a 0, and has no way to realize that he is not receiving the information that
Alice is transmiting.
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This is the basis of the BB protocol

Alice generates two pseudo-random sequences of bits r1 and r2.

r1 = 11010110

r2 = 01000111

Interprets the first sequence as the sequence of bases to be use.

1 1 0 1 0 1 1 0
× × + × + × × +
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Encodes the second sequence using the orientation bases obtained by first.

× × + × + × × +
0 1 0 0 0 1 1 1
↖ ↗ → ↖ → ↗ ↗ ↑

Alice then sends Bob the message like this encoded.
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Bob cannot read Alice’s message because he doesn’t know r1 and therefore does not
know which bases to use to “read” each one of the photons. It then also generates a
pseudo-random sequence bit r ′

r ′ = 00010101

and “try to read” the photons with a sequence of bases given by this sequence

0 0 0 1 0 1 0 1
+ + + × + × + ×
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As the probability of each of the bits of r ′ being equal to respective bit of r1 is just 1
2 , this

is proportion of bits read correctly. Bob could “read” something like

written × × + × + × × +
0 1 0 0 0 1 1 1
↖ ↗ → ↖ → ↗ ↗ ↑

read + + + × + × + ×
0 0 0 0 0 1 0 1
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Alice now sends r1 over an open channel.

Bob can know which bits of r1 he had “achieved to guess” and which correspond to a
correct reading.

Bob sends r ′ to Alice via the same channel, who finds out which bits were read
successfully.

The sequence of bits read successfully is therefore known to two intervening

0001

and can be used to determine the polarization bases to use in future communication

+ + +×
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If Eve was observing the entire process, it would know which bits contain information about
the new communication base, but as it was not able to guess neither r1 nor r ′ cannot guess
which bits of r2 correspond to the coincidences of the two random first ones. She cannot
therefore read the information that will be transmitted coded in this fashion from now on.
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Post-Quantum Cryptography
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The coined term of Post-Quantum Cryptography denotes the cryptogtaphic primitives that
are not menaced by the speedup possible to achieve by the quantum parallelism. Several
different kinds of cryptography primitives are today proposed with this aim:

Code-Based Cryptography (e.g. McEliece cryptosystem (1978) based in error-corrected
codes)

Lattice-Based Cryptography (e.g NTRU (1988) based on the “shortest vector problem”)

Non-Comutative Algebra Cryptography (e.g Anshel–Anshel–Goldfeld protocol (1999)
based on non-abelian group algebra)

Linear Automata Cryptography (e.g. R.Tao and S.Chen (1985) based on Linear Finite
Automata)

Multivariate Cryptography (e.g. T.Matsumoto and H.Imai (1988) based on multivariate
polinomials)
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Lattice-Based Cryptography

Definition (Vector Space)

A real vector space V is a subset of Rm with the property that

(∀v1, v2 ∈ V )(∀α1,α2 ∈ R) α1v1 + α2v2 ∈ V .

Definition (Linear Combinations)

Let v1, v2, . . . , vk ∈ V . A linear combination of this vectors is a vector of the form

w = α1v1 + α2v2 + · · ·+ αnvn with α1,α2, . . . ,αn ∈ R.

The colection of all such linear combinations

{α1v1 + α2v2 + · · ·+ αnvn | α1,α2, . . . ,αn ∈ R},

is called the span of {v1, v2, . . . , vn}.
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Definition (Linear Independence)

A set of vectors v1, v2, . . . , vk ∈ V is (linearly) independent if

α1v1 + α2v2 + · · ·+ αnvn = 0 =⇒ α1,α2, . . . ,αn = 0.

Otherwise it is said to linearly dependent.

Definition (Bases)

A basis of V is a set o linearly indpendent vectors v1, v2, . . . , vk with span V .
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Proposition

Let V ⊆ Rm be a vector space.

There existes a basis for V .

Any two basis for V have the same number of elements. The number of elements in a
basis for V is called the dimension of V .

Let v1, v2, . . . , vk be a basis for V and let w1,w2, . . . ,wk ∈ V be another set of vectors in
V . Write each wj as a linear combination of the vi ,

w1 = α11v1 + α12v2 + · · ·+ α1nvn,
...

wn = αn1v1 + αn2v2 + · · ·+ αnn.

Then w1,w2, . . . ,wk is also a basis for V if and only if the determinant of the
corresponding matrix is not null.
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Definition

Let v ,w ∈ V ⊆ Rm and write v and w using coordinates as

v = (x1, x2, . . . , xm) w = (y1, y2, . . . , ym).

The dot product of v and w is the quantity

v · w = x1y1 + x2y2 + · · ·+ xmym.

We say that v and w are orthogonal to one another if v · w = 0.
The length, or Euclidean norm, of v is

||v || =
󰁴

x21 + x22 + · · ·+ x2m.
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Proposition

Let θ be the angle between the vectors v and w , where we place the starting point of v
and w at the origin. Then

v · w = ||v || ||w || cos(θ),

(Cauchy-Schwartz inequality)
|v · w | ≤ ||v || ||w ||.

Definition (Orthogonal Basis)

An orthogonal basis for a vector space V is a basis v1, . . . , vn such that

(∀i , j)(i ∕= j) =⇒ (vi · vj = 0).

The basis is ortonormal if in addition, ||vi || = 1, for all i .
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Theorem (Gram-Scmhidt algorithm)

Let v1, . . . , vn be a basis for a vector space V ⊆ Rm. The following algorithm creates an
orthogonal basis v∗1 , . . . , v

∗
n for V :

1: v∗1 ← v1
2: for i ← 2 . . . n do
3: for j ← 1 . . . i − 1 do
4: µj = vi · v∗j /||v∗j ||2

5: v∗i ← vi −
󰁓i−1

j=1 µjv
∗
j .

The two bases are such that

(∀i) Span(v1, . . . , vn) = Span((v∗1 , . . . , v
∗
n ).
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Lattices: definition and properties

Definition (Lattice)

Let v1, . . . , vn ∈ Rm be a set of lineatly independent vectors. The Lattice L generated by
v1, . . . , vn is

L = {a1v1 + a2v2 + · · ·+ anvn | a1, a2, . . . , an ∈ Z}.

A basis for L is any set of independent vectors that generates L.

Proposition

Any two bases for a lattice L are related by a matrix having integer coefficients and
determinant equal to ±1.

Definition (Integral Lattice)

An integral (or integer) lattice is a lattice all of whose vectors have integer coordinates, thus a
subgroup of Zm for some m ≥ 1.
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Definition

A subset L ⊆ Rm is an addictive subgroup if it is closed under addition and subtraction. It is
called a discrete addictive subgroup if there is a positive constant ε > 0 s.t.

L ∩ {w ∈ Rm | ||v − w || < ε} = {v}.

Theorem

A subset of Rm is a lattice if and only iff it is a discrete addictive subgroup.

Definition (Fundamental domain)

Let L be a lattice of dimention n and let v1, . . . , vn be a basis of L. The fundamental domain
for L corresponding to this basis is the set

F(v1, . . . , vn) = {t1v1 + t2v2 + · · ·+ tnvn | 0 ≤ ti < 1}.
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Proposition

Let L ⊆ Rn be a lattice of dimension n and let F be a fundamental domain for L. Then every
vector w ∈ Rn can be written in the form

w = t + v for a unique t ∈ F and a unique v ∈ L.

Definition (Determinant of a fundamental domain)

Let L be a lattice of dimension n and let F be a fundamental domain of L. Then the
n-dimention volume of F is called the determinant of L and denoted by det L.

Proposition (Hadamard’s Inequality)

Let L be a lattice, take any basis v1, . . . , vn for L, and let F be a fundamental domain for L.
Then

det L = Vol(F) ≤ ||v1|| ||v2|| · · · ||vn||.
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Proposition

Let L ∈ Rn be a lattice of dimension n, let v1, . . . , vn be a basis for L, and let
F = F(v1, . . . , vn) be the associated fundamental domain. Write the coordinates of the i th

basis vector as
vi = (ri1, ri2, . . . , rin)

and use the coordinates of the vi as rows of a matrix.

F = F (v1, . . . , vn) =

󰀳

󰁅󰁅󰁅󰁃

r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
. . .

...
rn1 rn2 · · · rnn

󰀴

󰁆󰁆󰁆󰁄
.

Then the volume of F is given by

Vol(F(v1, . . . , vn)) = | detF (v1, . . . , vn)|.

Rogério Reis Cryptography Week #12 2025.12.12 54 / 67



Corollary

Let L ⊆ Rn be a lattice of dimention n. Then every fundamental domain for L has the same
volume. Hence det L is an invariant of the lattice L, indeendent of the particular fundamental
domain used to compute it.
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Two fundamental lattice problems

The Shortest Vector Problem (SVP): Find a shortest nonzero vector in a lattice L, i.e., find a
nonzero vector v ∈ L that minimises the euclidean norm ||v ||.

The Closest Vector Problem (CVP): Given a vector w ∈ Rm that ins not in L, find a vector
v ∈ L that is the closest to w , i.e., find a vector v ∈ L that minimises the
euclidean norm ||w − v ||.
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Theorem (Hermite’s Theorem)

Every lattice L of dimension n contains a nonzero vector v ∈ L satisfying

||v || ≤
√
n(det L)

1
n .

For a given dimension n, Hermite’s constant γn is the smallest value such that every lattice L
of dimension n contains a nonzero vector v ∈ L satisfying

||v ||2 ≤ γn(det L)
2
n .

The previous theorem states that γn ≤ n. The exact value of γn is on known for
n = 1, 2, 3, 4, 5, 6, 7, 8, 24.
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Definition (Hadamard ratio)

We define the Hadamard ratio of the basis B = {v1, . . . , vn} of a lattice L to be

H =

󰀕
det L

||v1|| ||v2|| · · · ||vn||

󰀖 1
n

.
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Definition (Closed Ball)

For any a ∈ Rn and any R > 0, the (closed) ball of radius R centered in a is the set

BR(a) = {x ∈ Rn | ||x − a|| ≤ R}.

Definition

Let S be a subset of Rn.

S is bounded if there is R such that S ⊆ BR(0).

S is symmetric if for every point a ∈ S , −a ∈ S .

S is convex if for all a, b ∈ S the entire segment connecting a and b lies in S .

S is closed if a ∈ Rn is such that every BR(a) ∩ S ∕= ∅, then a ∈ S .
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Theorem (Minkowski’s Theorem)

Let L ⊆ Rn be a lattice of dimension n and let S ⊆ Rn be a symmetric convex set whose
volume satisfies

Vol(S) > 2n det L.

Then S contains a nonzero lattice vector.
If S is also closed, then it suffices to take Vol(S) ≥ 2n det L.
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Babai’s algorithm

Theorem (Babai’s Closest Vertex Algorithm)

Let L ⊆ Rn be a lattice with basis v1, . . . , vn, and let w ∈ Rn an arbitrary vector. If the vectors
in the basis are “sufficiently orthogonal” to another, then the following algorithm solves CVP.

1: w = t1v1 + t2v2 + · · ·+ tnvn with t1, t2, . . . , vn ∈ R.
2: ai ← ⌊ti⌉ for i = 1, 2, . . . , n.
3: return a1v1 + a2v2 + · · ·+ anvn.

If the basis vectors are highly nonorthogonal, then the vector returned by the algorithm is
generally far from the closest lattice vector to w.
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The Goldreich, Goldwasser and Halevi (GGH) cryptosystem

The scheme is based in the CVP.
Key generation: Alice chooses a “good basis” v1, . . . , vn and a integer matrix U s.t.
detU = ±1. Computes a public “bad” basis w1, . . . ,wn resulting from the rows of W = Uv .

Encryption: Bob having a small plaintext m as a vector with coordinates (xi )i , chooses a
random small vector r . Using the public key computes

c = x1w1 + x2w2 + · · ·+ xnwn + r .

Sends e to Alice.

Decryption: Alice, uses gets m′ = U−1w and applying Babai’s algorithm, recovers m.

Rogério Reis Cryptography Week #12 2025.12.12 62 / 67



An example I

For a lattice with the “toy” dimension 3, let the “good” basis be

v1 = (−97, 19, 19), v2 = (−36, 30, 86), v3 = (−184,−64, 78).

The lattice L spanned by v1, v2, v3 has determinant det L = 859516, and the Hademard ratio
of the basis is

H(v1, v2, v3) =

󰀕
det L

||v1|| ||v2|| ||v3||

󰀖 1
3

≈ 0.74620.

Alice multiplies her private basis by

U =

󰀳

󰁃
4327 −15447 23454
3297 −11770 17871
5464 −19506 29617

󰀴

󰁄 ,
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An example II
which has determinant detU = −1, to create her public basis

w1 = (−4179163,−1882253, 583183),

w2 = (−3184353,−1434201, 444361),

w3 = (−5277320,−2376852, 736426).

The Hadamard ratio of the public basis is

H(w1,w2,w3) ≈ 0.0000208.

If Bob decides to send to Alice the message m = (86,−35,−32) using the perturbation
r = (−4,−3, 2), the corresponding cyphertext is

c = (86,−35,−32)

󰀳

󰁃
4327 −15447 23454
3297 −11770 17871
5464 −19506 29617

󰀴

󰁄+ (−4,−3, 2)

= (−79081427,−35617462, 11035473).
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An example III
Alice, first, rewrites the message/vector to expressed in her own private basis.

v−1 =

󰀳

󰁃
−97 19 19
−36 30 86
−184 −64 78

󰀴

󰁄
−1

=

󰀳

󰁃
−0.009126066298 0.003138975889 −0.001237905984
0.01514340629 0.004735223079 −0.008909665440

−0.009102797388 0.01129007488 0.002589829625

󰀴

󰁄

And then obtains the encrypted vector computing

cv−1 = (81878.9728684515,−292300.004181423, 443815.036860280).

Taking the approximation of these values we get

z = 81879v1 − 292300v2 + 443815v3 = (−79081423,−35617459, 11035471),

that expressed in the public base comes

z

󰀳

󰁃
−4179163 −1882253 583183
−3184353 −1434201 444361
−5277320 −2376852 736426

󰀴

󰁄
−1

= 86w1 − 35w2 − 32w3.
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An example IV

If Eve tries to do the same but using the public key and applying Babai’s algorithm she would
obtain a “plaintext” (76,−35,−24). This is because the approximation to the point for Alice,
using the private key is 5.3852, while for Eve, using the public key, is 472000.
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