Applied Cryptography
Week 2: Randomness and Cryptographic Security

Bernardo Portela

M:ERSI, M:SI, M:CC - 25

Cryptographic Keys Randomness Security in Practice PRGs in Practice
®0 00000000 0000000 0000
Context

® | ast week we used and generated keys
® How is this done?

Cryptographic Security

00000000

2/31

Cryptographic Keys
®0

Security PRGs in Practice

Context
® | ast week we used and generated keys
® How is this done?
For Symmetric Crypto

® Generated uniformly at random
® Derived using a Key Derivation Function

® From a password or low entropy secret
® From a high-entropy master key from key exchange protocol

2/31

Cryptographic Keys
®0

Context

® | ast week we used and generated keys
® How is this done?

For Symmetric Crypto

® Generated uniformly at random
® Derived using a Key Derivation Function

® From a password or low entropy secret
® From a high-entropy master key from key exchange protocol

For Asymmetric Crypto

e Key generation algorithm — key pair

® Private key holder generates both keys; publishes public key
® Asymmetric keys are typically much larger

® RSA keys take roughly 4096-bits for 128-bit security
® Elliptic-curve keys take roughly 400-bits for 128-bit security

2/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
oe 00000000 0000000 0000 00000000

Storage and Generation

Keys are often the most sensitive material a secure system holds

3/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
oe 00000000 0000000 0000 00000000

Storage and Generation

Keys are often the most sensitive material a secure system holds

Ideally, in an external secure hardware
® Hardware Security Module (HSM)

® Smartcard or similar cryptographic token

3/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
oe 00000000 0000 00000000

Storage and Generation

Keys are often the most sensitive material a secure system holds

Ideally, in an external secure hardware
® Hardware Security Module (HSM)

® Smartcard or similar cryptographic token

Key wrapping
® |Long-term keys are often wrapped before storage

® To encrypt with another key

Password-based encryption (low security)
Wrap with HW-protected master key (standard security)
Master key stored in trusted hardware (high security)

3/31

Randomness Security in Practice PRGs in Practice Cryptographic Security

Cryptographic Keys
(e]e] ®0000000 0000000 0000 00000000

To Be Random

Q1: Which of these numbers are random?
00000000
10101010
00100100
10011101

A

4/31

Q1:

A

Randomness
©0000000

To Be Random

Which of these numbers are random?
00000000 - Not random!

10101010 - Not random (pattern)
00100100 - Maybe not random?
10011101 - Seems random...

4/31

Randomness
©0000000

To Be Random

Q1: Which of these numbers are random?
1. 00000000 - Not random!
2. 10101010 - Not random (pattern)
3. 00100100 - Maybe not random?
4. 10011101 - Seems random...

Randomness is not a property of a bit string, but rather:

® The bit generation process
® The bit string sampling procedure

4/31

Randomness
©0000000

To Be Random

Q1: Which of these numbers are random?
1. 00000000 - Not random!
2. 10101010 - Not random (pattern)
3. 00100100 - Maybe not random?
4. 10011101 - Seems random...

Randomness is not a property of a bit string, but rather:

® The bit generation process

® The bit string sampling procedure

Q2: Which of these numbers will more likely appear in a fair
randomness generator?

4/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security

0000000

Randomness Distributions

Randomized processes described using randomness distributions.
We start with the uniform distribution over a finite field S.

A process U samples from the uniform distribution if

Vs* € §,Pr[s =s" : s¢=s U]:|é|

5/31

Randomness
0®000000

Randomness Distributions

Randomized processes described using randomness distributions.
We start with the uniform distribution over a finite field S.

A process U samples from the uniform distribution if

Vs* € §,Pr[s =s" : s¢=s U]:|é|

Q1: If we roll a fair dice, what is the probability of getting 17

5/31

Randomness
0®000000

Randomness Distributions

Randomized processes described using randomness distributions.
We start with the uniform distribution over a finite field S.

A process U samples from the uniform distribution if

Vs* € §,Pr[s =s" : s¢=s U]:|é|

Q1: If we roll a fair dice, what is the probability of getting 17

1~
1 ~0.1667

5/31

Randomness
0®000000

Randomness Distributions

Randomized processes described using randomness distributions.
We start with the uniform distribution over a finite field S.

A process U samples from the uniform distribution if

Vs* € §,Pr[s =s" : s¢=s U]:|é|

Q1: If we roll a fair dice, what is the probability of getting 17
1o
5 ~ 0.1667

Q2: If we do a fair sampling of a byte, what is the
probability of getting 00000000 or 100111017

5/31

Randomness
0®000000

Randomness Distributions

Randomized processes described using randomness distributions.
We start with the uniform distribution over a finite field S.

A process U samples from the uniform distribution if

Vs* € §,Pr[s =s" : s¢=s U]:|é|

Q1: If we roll a fair dice, what is the probability of getting 17
1o
5 ~ 0.1667

Q2: If we do a fair sampling of a byte, what is the
probability of getting 00000000 or 100111017

2 ~0.0078

5/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 00@00000 0000000 0000 00000000

Quantifying Randomness

As you might have inferred, for the uniform sampling of A bits, the
probability of each element in the set is 2%

6/31

Randomness
00@00000

Quantifying Randomness

As you might have inferred, for the uniform sampling of A bits, the
probability of each element in the set is 2%

We do not always want to generate “nicely structured” bit strings
® Eg. avalue from0...254

® How to use uniformly generated bytes for this?

6/31

Randomness
00@00000

Quantifying Randomness

As you might have inferred, for the uniform sampling of A bits, the
probability of each element in the set is 2%

We do not always want to generate “nicely structured” bit strings
® Eg. avalue from0...254

® How to use uniformly generated bytes for this?

Q1: Get a byte, compute the result mod 255. Is it uniform?

6/31

Randomness
00@00000

Quantifying Randomness

As you might have inferred, for the uniform sampling of A bits, the
probability of each element in the set is 2%

We do not always want to generate “nicely structured” bit strings
® Eg. avalue from0...254

® How to use uniformly generated bytes for this?

Q1: Get a byte, compute the result mod 255. Is it uniform?

Bad corner case: bytes 0 and 255 both give us 0!

6/31

Randomness
00@00000

Quantifying Randomness

As you might have inferred, for the uniform sampling of A bits, the

probability of each element in the set is 2%

We do not always want to generate “nicely structured” bit strings
® Eg. avalue from0...254

® How to use uniformly generated bytes for this?

Q1: Get a byte, compute the result mod 255. Is it uniform?
Bad corner case: bytes 0 and 255 both give us 0!

Q2: Get a byte, exclude value 255 and retry. Is it uniform?

6/31

Randomness
00@00000

Quantifying Randomness

As you might have inferred, for the uniform sampling of A bits, the

probability of each element in the set is 2%

We do not always want to generate “nicely structured” bit strings
® Eg. avalue from0...254

® How to use uniformly generated bytes for this?

Q1: Get a byte, compute the result mod 255. Is it uniform?
Bad corner case: bytes 0 and 255 both give us 0!
Q2: Get a byte, exclude value 255 and retry. Is it uniform?

It is, and is called rejection sampling. Q3: what is the downside?

6/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 00000000 0000000 0000 00000000

Entropy

We will mostly use entropy as an intuitive concept

® |t measures uncertainty w.r.t. a sampling output

7/31

Randomness
00000000

Entropy

We will mostly use entropy as an intuitive concept
® |t measures uncertainty w.r.t. a sampling output

Mathematically, it can be defined for a distribution X as

H(X) = Z —Pr[s*] - log,(Pr[s*])
s*eS

7/31

Randomness
00000000

Entropy

We will mostly use entropy as an intuitive concept
® |t measures uncertainty w.r.t. a sampling output

Mathematically, it can be defined for a distribution X as

H(X) = Z —Pr[s*] - log,(Pr[s*])
s*eS

® |t is maximized by the uniform distribution, with entropy A

1 1
2°. (—ﬁ : Iog2(?)) =8

® Entropy here quantifies the number of uncertainty bits
® In this example, we are uncertain of exactly 8 bits

® |f a sampling is biased, it has less uncertainty, i.e. entropy

7/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
00 0000@000 0000000 0000 00000000

Random Number Generators

How do we get uniform coins?

8/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 0000@000 0000000 0000 00000000

Random Number Generators

How do we get uniform coins?

® |t starts with a physical process

® A source of entropy, e.g., some natural process that is believed
to sample /-bits from a high-entropy distribution

® Typically / >> X\ where A is the assumed entropy

® Randomness extractors (often a hash function) compress such
bit strings down to A bits

® The result bit strings are assumed to be uniform

8/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice

00000000

Random Number Generators

How do we get uniform coins?

® |t starts with a physical process

Cryptographic Security

® A source of entropy, e.g., some natural process that is believed

to sample /-bits from a high-entropy distribution

® Typically / >> X\ where A is the assumed entropy

® Randomness extractors (often a hash function) compress such

bit strings down to A bits
® The result bit strings are assumed to be uniform

® The combined process is called a Random Number Generator

® High-security RNGs currently exploit quantum effects

8/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security

00000000

Pseudorandom Generators - Part 1

Good randomness is hard to generate, so RNGs are usually slow

Pseudorandom Generators are crypto’s response to this problem:

® PRG takes a small, uniform seed of length A
® Generates long, random-looking bit strings / >> A

® PRGs are deterministic algorithms!

9/31

Randomness
00000000

Pseudorandom Generators - Part 1

Good randomness is hard to generate, so RNGs are usually slow

Pseudorandom Generators are crypto’s response to this problem:
® PRG takes a small, uniform seed of length A
® Generates long, random-looking bit strings / >> A

® PRGs are deterministic algorithms!

A Pseudorandom generator is a function G : {0,1}* — {0,1}/

Security: (without delving deep in probability) an attacker must
be unable of distinguishing PRG outputs from a truly random string

9/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e]

O00000e0 0000000 0000 00000000

Pseudorandom Generators - Part 2
PRG : {0,1}* — {0,1}/

.77 PRGKR) T

[r]

Reasoning

® Use a strong RNG to generate seed r of (small) size A

® Use the PRG on seed r to generate (much larger) r’ of size /

10/31

Cryptographic Keys Randomness ecurity in Practice PRGs in Practice Cryptographic Security
00 0000000 00 00

00000000 C 0000

Pseudorandom Generators - Part 2
PRG : {0,1}* — {0,1}/

.77 PRGKR) T

(‘ J

Reasoning
® Use a strong RNG to generate seed r of (small) size A

® Use the PRG on seed r to generate (much larger) r’ of size /

Q: Can we have secure PRGs (indistinguishable from uniform
distribution), considering adversaries with unbound power?

10/31

Randomness
0000000@

& Key Takeaways &

® Randomness is a property of the generator, not the number
® Entropy allows us to measure uncertainty in randomness

® More entropy means more uncertainty
® |.e. harder for an adversary to predict

11/31

Randomness
0000000@

& Key Takeaways &

Randomness is a property of the generator, not the number
Entropy allows us to measure uncertainty in randomness

® More entropy means more uncertainty
® |.e. harder for an adversary to predict

Pseudorandom generators expand randomness

But they do not make the output more random!

11/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 00000000 0000000 0000 00000000

Security of Pseudorandom Generators

U:{o,1}/ = {o,1}

PRG : {0,1}* — {0,1}/

C

e An adversary can simply test all 2* cases
® Security refers to a computationally limited adversary
® One that cannot (realistically) test all possible PRG inputs

12/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 00000000 0e00000 0000 00000000

Security in Practice

Redefine “impossible to break”

e With reasonable resources (time, memory, HW power)
® With probability higher than negligible

13/31

Security in Practice
0®00000

Security in Practice

Redefine “impossible to break”
e With reasonable resources (time, memory, HW power)
® With probability higher than negligible

Practical schemes are computationally impossible to break

Take an encryption scheme and an attacker that does not know k
® Attacker chooses non-repeating inputs X; and gets
® Y; chosen uniformly at random if b =1
e Y, =E(k,X)ifb=0
e Attacker guesses b and wins if b = b’

13/31

Security in Practice
0®00000

Security in Practice

Redefine “impossible to break”
e With reasonable resources (time, memory, HW power)
® With probability higher than negligible

Practical schemes are computationally impossible to break

Take an encryption scheme and an attacker that does not know k
® Attacker chooses non-repeating inputs X; and gets
® Y; chosen uniformly at random if b =1

e Y, =E(k,X)ifb=0
e Attacker guesses b and wins if b = b’
We define the adversary's advantage € as

e=|Prp =1|b=1] — Pr[t/ = 1|b =0]|

Best attack for € = 2740 takes 280 steps
13/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice
[e]e] 00000000 00e0000 0000

Concrete Numbers - Part 1

Some numbers for scale
® Not easy to perceive very very large numbers

Cryptographic Security
00000000

® The estimated age of the universe in nanosecs is around 288

® The number of atoms in the universe is roughly

2256

14/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 00000000 00e0000 0000 00000000

Concrete Numbers - Part 1

Some numbers for scale
® Not easy to perceive very very large numbers
® The estimated age of the universe in nanosecs is around 288

® The number of atoms in the universe is roughly 226

A common security parameter

® A common size for keys is 128 bits
® Consider the following events

® Winning a lottery with 9 million participants (all of Portugal)
® Guessing a 2! size key at the first try

14 /31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
00 00000000 00@0000 0000 oc 000

Concrete Numbers - Part 1

Some numbers for scale
® Not easy to perceive very very large numbers
® The estimated age of the universe in nanosecs is around 288

® The number of atoms in the universe is roughly 226

A common security parameter

® A common size for keys is 128 bits
® Consider the following events

® Winning a lottery with 9 million participants (all of Portugal)
® Guessing a 2! size key at the first try

Q1: Which event is more likely?

14 /31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
00 00000000 00@0000 0000 00000000

Concrete Numbers - Part 1

Some numbers for scale
® Not easy to perceive very very large numbers
® The estimated age of the universe in nanosecs is around 288

® The number of atoms in the universe is roughly 226

A common security parameter

® A common size for keys is 128 bits
® Consider the following events

® Winning a lottery with 9 million participants (all of Portugal)
® Guessing a 2! size key at the first try

Q1: Which event is more likely?

Q2: By how much?

14 /31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 00000000 000000 0000 00000000

Concrete Numbers - Part 2

Security is defined as (t, €)-security

® For some well-defined attack model
® Any attacker must run in at most t steps
® Has at most € success advantage/probability

® t is a lower-bound on the work needed to break the scheme

15/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice
00 000®000 0000

Concrete Numbers - Part 2

Security is defined as (t, €)-security

® For some well-defined attack model
® Any attacker must run in at most t steps

® Has at most € success advantage/probability

® t is a lower-bound on the work needed to break the scheme

Define security of the best possible encryption with key space 2128

Q1: For t = 2128, what is ¢?

15/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security

O000000C 0O00@000

Concrete Numbers - Part 2

Security is defined as (t, €)-security

® For some well-defined attack model
® Any attacker must run in at most t steps
® Has at most € success advantage/probability

® t is a lower-bound on the work needed to break the scheme

Define security of the best possible encryption with key space 2128

Q1l: For t = 2128, what is ¢? e =1

Q2: For t =1, what is €?

15/31

Security in Practice
0000000

Concrete Numbers - Part 2

Security is defined as (t, €)-security

® For some well-defined attack model
® Any attacker must run in at most t steps
® Has at most € success advantage/probability

® t is a lower-bound on the work needed to break the scheme

Define security of the best possible encryption with key space 2128

Q1l: For t = 2128, what is ¢? e =1
Q2: For t = 1, what is ¢? ¢ = 2128

Q3: For t = 2%, what is €?

15/31

Security in Practice
0000000

Concrete Numbers - Part 2

Security is defined as (t, €)-security

® For some well-defined attack model
® Any attacker must run in at most t steps
® Has at most € success advantage/probability

® t is a lower-bound on the work needed to break the scheme

Define security of the best possible encryption with key space 2128

Q1l: For t = 2128, what is ¢? e =1
Q2: For t = 1, what is ¢? ¢ = 2128
Q3: For t = 2%, what is ¢? ¢ =264

The more tries you get, the greater ¢ becomes: (t,t/21%8) security

15/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 00000000 0000e00 0000 00000000

Quantifying Security
Lower bound on the work required for a successful attack

Number of steps of the best attack

® n-bits security
® Best attack to break the scheme requires 2" steps
® n-bit keys cannot ever give more than n-bit security

16/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 00000000 0000e00 0000 00000000

Quantifying Security
Lower bound on the work required for a successful attack

Number of steps of the best attack

® n-bits security
® Best attack to break the scheme requires 2" steps

® n-bit keys cannot ever give more than n-bit security
°* Q1: Why?

16/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
00 00000000 0000800 0000 00000000

Quantifying Security
Lower bound on the work required for a successful attack

Number of steps of the best attack

® n-bits security

Best attack to break the scheme requires 2" steps

n-bit keys cannot ever give more than n-bit security
°* Q1: Why?

Brute-force attack allows finding the correct key

t-bit keys could lead to n-bit security s.t. n << t

16/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
00 00000000 0000800 0000 00000000

Quantifying Security
Lower bound on the work required for a successful attack

Number of steps of the best attack

® n-bits security

Best attack to break the scheme requires 2" steps

n-bit keys cannot ever give more than n-bit security
°* Q1: Why?
Brute-force attack allows finding the correct key
t-bit keys could lead to n-bit security s.t. n << t
°* Q2: When?

16/31

Security in Practice
0000800

Quantifying Security

Lower bound on the work required for a successful attack
Number of steps of the best attack

® n-bits security

® Best attack to break the scheme requires 2" steps
® n-bit keys cannot ever give more than n-bit security
°* Q1: Why?
® Brute-force attack allows finding the correct key
® t-bit keys could lead to n-bit security s.t. n <<t
®* Q2: When?
® Best attack is more efficient than brute-force
® Common in asymmetric cryptography
® Keys must follow specific structures, not random bit strings
[]

Quantifying using n-bit security permits comparing schemes

16/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 00000000 0000080 0000 00000000

Good Security Values for Real-world Crypto

The 2128 rule of thumb
® Designs for which best attacks are at (t,¢) = (288,2799)

17/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice
00 00000000 0000080 0000

graphic Security

Good Security Values for Real-world Crypto

The 228 rule of thumb
® Designs for which best attacks are at (t,¢) = (288,2740)

For how long do we need security to hold?
® Moore's law: computational power doubles every 2 years
® n+ 1 bit security every 2 years
® This no longer seems to be true, but...

® Maybe we will have quantum computers soon
Long-term security: ~ 256-bit keys

Short-term security: ~ 80-bit keys may be OK

17/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 00000000 000000 0000 00000000

& Key Takeaways &

e Similarly to encryption, randomness can also be described as
experiments

® Advantage is never zero!

18/31

Security in Practice
000000@

& Key Takeaways &

Similarly to encryption, randomness can also be described as
experiments

Advantage is never zero!

(t, €)-security allows for quantifying appropriate probabilities
Often the magical number is 128 bits

® 2128 steps to break security
® Long-term: 256 bits

® Short-term: 80 bits (sometimes)

18/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 00000000 0000000 @000 00000000

Stateful PRGs in Operating Systems

Randomness generation is statful

® .. in modern OSs
® PRG keeps a state

® OS mixes output of entropy source into PRG state

19/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 00000000 0000000 @000 00000000

Stateful PRGs in Operating Systems

Randomness generation is statful

® .. in modern OSs
® PRG keeps a state

® OS mixes output of entropy source into PRG state

Extract and expand randomness

® st <+ init(): SO initializes state
o st < refresh(R, st): SO adds entropy (reseeds)
® (C,st) < next(N,st): SO returns N random bits

19/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 00000000 0000000 0000 00000000

Dealing With a Compromised State

Backtracking < resistance

® Suppose an adversary corrupts the PRG state
® Past randomness should not be compromised
® We might have used it to generate cryptographic material

e A.k.a. forward secrecy (for past secret keys)

20/31

0000000C 000000C 0000 0000000C

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security

Dealing With a Compromised State

Backtracking < resistance

® Suppose an adversary corrupts the PRG state
® Past randomness should not be compromised
® We might have used it to generate cryptographic material

e A.k.a. forward secrecy (for past secret keys)

Prediction = resistance
® Suppose the adversary corrupts the PRG state
SO adds extra (hidden) entropy to PRG state

® Future output should look random once more

® Hence refresh must be called regularly

20/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 00000000 0000000 [e]e] e} 00000000

Linux systems

® PRG is accessible at /dev/urandom

® |n xnix-style, PRG is mapped to a file
® Careful to make sure system calls are successful!

21/31

https://github.com/libressl/openbsd/blob/master/src/lib/libcrypto/arc4random/getentropy_linux.c
https://unix.stackexchange.com/questions/324209/when-to-use-dev-random-vs-dev-urandom

PRGs in Practice
00®0

Linux systems

® PRG is accessible at /dev/urandom

® |n xnix-style, PRG is mapped to a file
® Careful to make sure system calls are successful!

Link to code from LibreSSL

In some variants, there is a blocking /dev/random based on an
entropy simulator

® Check if there is "sufficient entropy”
® Blocks otherwise

e Current consensus indicates that, for most applications, this is
not useful (see this link for more information)

21/31

https://github.com/libressl/openbsd/blob/master/src/lib/libcrypto/arc4random/getentropy_linux.c
https://unix.stackexchange.com/questions/324209/when-to-use-dev-random-vs-dev-urandom

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 00000000 0000000 [e]e]e]] 00000000

Caution: statistical tests are not sufficient

® Q: What type of tests can we do over “random” inputs?

22/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 00000000 0000000 [e]e]e]] 00000000

Caution: statistical tests are not sufficient

® Q: What type of tests can we do over “random” inputs?

Count number of 1s and Os
Check distribution of 8-bit words
Look for patterns

Irrelevant for Security

® Possible to pass statistical tests

® Totally insecure for cryptographic purposes

22/31

Cryptographic Keys Randomness ecurity in Practice PRGs in Practice Cryptographic Security
00 : o o 0000000 fefelel') 00000000

Caution: statistical tests are not sufficient

® Q: What type of tests can we do over “random” inputs?

Count number of 1s and Os
Check distribution of 8-bit words
Look for patterns

Irrelevant for Security

® Possible to pass statistical tests

® Totally insecure for cryptographic purposes

Cryptographic PRGs come with a proof of security

® Goal: Given n bits of input, can an adversary guess bit n+ 17
® Secure PRGs used directly, or as building blocks to other PRGs

22/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice
[e]e] 00000000 0000000 0000

Security Assurance

There are two main ways in which security is ensured:

® Heuristically

® Provably (not probably!)

Cryptographic Security
©0000000

23/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
00 000000 0000 ©0000000

Security Assurance

There are two main ways in which security is ensured:
® Heuristically

® Provably (not probably!)

Heuristic Security

® | arge community constantly trying to break schemes
e Cryptanalysts trying to disprove n-bit security
® The AES block cipher is an example

23/31

Cryptographic Security
©0000000

Security Assurance

There are two main ways in which security is ensured:
® Heuristically

® Provably (not probably!)

Heuristic Security

® | arge community constantly trying to break schemes
e Cryptanalysts trying to disprove n-bit security
® The AES block cipher is an example

Provable Security

® Mathematical proof
® Breaking a scheme implies solving a hard problem

® A mathematical problem, or breaking another scheme!

23/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
[e]e] 00000000 0000000 0000 0e000000

Provable Security

Assumption: mathematical problem P cannot be efficiently solved

Goal: Breaking scheme C cannot be efficiently done

24/31

Cryptographic Security
0®000000

Provable Security

Assumption: mathematical problem P cannot be efficiently solved

Goal: Breaking scheme C cannot be efficiently done

Methodology: building a reduction
® Take any (hypothetical) attacker A that breaks C
e Construct (concrete) reduction B4

® |.e. B uses A as a subroutine

Show that B solves P when A succeeds

We never state that C is secure by itself

We state that C is as secure as the hardness of P

24/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
00 00000000 0000000 0000 00®00000

An Example of Provable Security - Part 1

Assume that AES is a semantic secure scheme, i.e.

A
(Mo, my)
C ¢ = AES(k, mp)
—en 1y 6
< o’
b=b
e

An adversary with non-negligible victory probability (over %) i.e a
successful A must not exist!

25/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
00 00000000 0000000 0000 00080000

An Example of Provable Security - Part 2

Consider an encryption scheme that just repeats AES 2 times.

E(k, m) = AES(k, m)| AES(k, m)

B
> (Mo, my)
C c = E(k, mp)
N P
<) -4
b=b
—_—

Q: given that AES is secure, is this secure?

26/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
00 000000 0000 00080000

An Example of Provable Security - Part 2

Consider an encryption scheme that just repeats AES 2 times.

E(k, m) = AES(k, m)| AES(k, m)

B
(Mo, my)
C c = E(k, mp)
N P
<) -4
b=b
e

Q: given that AES is secure, is this secure?
® |t should be...
® We are just repeating the encryption

e Can we demonstrate this?
26/31

Cryptographic Keys PRGs in Practice Cryptographic Security

000 0000 0O000@000

An Example of Provable Security - Part 3

A B

(Mo, m1)

(Mo, my)

c ¢ = AES(K, mp)

b

® Suppose a successful B exists
® Then, we can construct a concrete A to break AES like this
e Contradiction! We assumed that no such A can exist!

27/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
00 000000 0000 00008000

An Example of Provable Security - Part 3

® Suppose a successful B exists
® Then, we can construct a concrete A to break AES like this
e Contradiction! We assumed that no such A can exist!

Corollary
® No A can exist (AES is secure)
® As such, no B4 can exist

® So, scheme E must be secure!

27/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security
00 00000000 0000000 0000 00000000

Caveats of Provable Security

Problem P is called a hardness assumption
® |t can be a mathematical problem, such as factoring

® |t can be some other cryptogaphic construction

28/31

Cryptographic Security
00000000

Caveats of Provable Security

Problem P is called a hardness assumption
® |t can be a mathematical problem, such as factoring

® |t can be some other cryptogaphic construction

Proof assurance < assumption assurance
® Proofs of security are relative to assumptions

® Security only holds if assumptions are true

Most of the assumptions are validated via heuristic security

28/31

Cryptographic Security
00000080

Heuristic Security

Validating hardness assumptions is crucial for modern cryptography

Methodology for heuristic security has been progressing

® Standards take years to define
® Competitions where proposals are scrutinized

® |t is how AES was established as the de facto encryption
standard for the overwhelming majority of applications
® And is how PQ encryption schemes are being selected

® “My construction wins if | break your construction”
® Yet again we see the value of the Kerckhoffs's principle!

29/31

Cryptographic Keys Randomness Security in Practice PRGs in Practice
[e]e] 00000000 0000000 0000

& Key Takeaways &

® Security can be shown heuristically ...
® Heuristic: cryptanalysis
® Disproving n-bit security
® Eg AES

Cryptographic Security
0000000@

30/31

Cryptographic Keys

Security in Practice PRGs in Practice Cryptographic Security
0000000 0000 0000000@

& Key Takeaways &

® Security can be shown heuristically ...

® Heuristic: cryptanalysis
® Disproving n-bit security
® Eg. AES

® .. or provably

® Provable security: mathematical proofs
® Reduce security to another problem/scheme

30/31

Cryptographic Security
0000000@

& Key Takeaways &

® Security can be shown heuristically ...

® Heuristic: cryptanalysis
® Disproving n-bit security
® Eg. AES

® .. or provably

® Provable security: mathematical proofs
® Reduce security to another problem/scheme

These are complementary. Heuristic arguments are done over
building block ciphers, which are the basis for more complex
security systems (soon!)

30/31

Applied Cryptography
Week 2: Randomness and Cryptographic Security

Bernardo Portela

M:ERSI, M:SI, M:CC - 25

	Cryptographic Keys
	Randomness
	Security in Practice
	PRGs in Practice
	Cryptographic Security
	Appendix

