Applied Cryptography
Week 5: Hash Functions and Keyed Hashing

Bernardo Portela

M:ERSI, M:SI, M:CC - 25

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
9000000000 0000000 000000 00000 0000000000

What is a Hash Function?

Hash functions are everywhere
e Key derivation

Digest for authentication

Randomness extraction

Password protection

Proofs of work

2/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing
9000000000 0000000 000000 00000

What is a Hash Function?

Hash functions are everywhere
e Key derivation

Digest for authentication

Randomness extraction

Password protection

Proofs of work

Not only in crypto:
® Indexing in version management
® Deduplication in cloud storage systems
® File integrity in intrusion detection

h
A -

Short, fixed length:
usually 256 or 512 bits

Any length

Constructing MACs
0000000000

2/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000000 000000 00000 0000000000

Describing Hash Functions
The hash output is short, aka hash, fingerprint or digest

Cryptographic hash functions give strong security guarantees

Use hash as an identifier
® Cryptographic hash functions cannot be injective

3/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000000 000000 00000 0000000000

Describing Hash Functions
The hash output is short, aka hash, fingerprint or digest
Cryptographic hash functions give strong security guarantees
Use hash as an identifier

® Cryptographic hash functions cannot be injective
* Why?

3/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing

O@0000000 OD00000C

Describing Hash Functions
The hash output is short, aka hash, fingerprint or digest

Cryptographic hash functions give strong security guarantees

Use hash as an identifier
® Cryptographic hash functions cannot be injective

* Why?
® Yet they should be well distributed and unpredictable

® Hash values can identify arbitrarily large inputs

3/39

Hash Functions
0@0000000

Describing Hash Functions
The hash output is short, aka hash, fingerprint or digest
Cryptographic hash functions give strong security guarantees

Use hash as an identifier
® Cryptographic hash functions cannot be injective
* Why?
® Yet they should be well distributed and unpredictable

® Hash values can identify arbitrarily large inputs
Signing H(m) is as secure as signing m

Hash functions need to be deterministic and public
® Everyone should be able to recompute hash /identifier

® ... So what do we mean by security here?

3/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
00@000000 0000000 000000 00000 0000000000

Secure Cryptographic Hash Functions

Efficient algorithms with nice properties

® Unpredictable outputs
® Hard to find pre-images

® Hard to find collisions

4/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
00@000000 0000000 000000 00000 0000000000

Secure Cryptographic Hash Functions

Efficient algorithms with nice properties
® Unpredictable outputs
® Hard to find pre-images

® Hard to find collisions

Hash functions are validated heuristically
® Similar to process for AES
® |nternational competition for select designs

® Competitors are scrutinized wrt security and performance

Several rounds, so more eyes on small number of proposals
® Most recent one: SHA-3

4/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000e00000 0000000 000000 00000 0000000000

#1: Pre-image resistance

It is hard to find the input that produced a given hash value

How can we establish this in concrete terms?

5/39

Hash Functions Buildi

Hash Functions Concrete Hash Functions Keyed Hashing
000800000 00 oc o o) E

G

#1: Pre-image resistance

It is hard to find the input that produced a given hash value

How can we establish this in concrete terms?

Pre-image experiment

® Let S be the set of pre-images (domain)

® Let R be the set of images (range)

® Attacker is given a value y € R

® Attacker guesses x € S and wins if h(x) =y

5/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing

0O000@0000 OD00000C 00000C 00000

#2: Collision Resistance (CR)

® By definition, collisions must exist.
® Recall that |S]| >> |R|
® This can be argued from the pidgeonhole principle

® |f you have m holes and n pidgeons to put in these holes, if
n > m, at least one hole will have more than one pidgeon!

® But can we find mg and my s.t. h(mg) = h(my)?

6/39

Hash Functions
0000@0000

#2: Collision Resistance (CR)

® By definition, collisions must exist.
® Recall that |S]| >> |R|
® This can be argued from the pidgeonhole principle

® |f you have m holes and n pidgeons to put in these holes, if
n > m, at least one hole will have more than one pidgeon!

® But can we find mg and my s.t. h(mg) = h(my)?

Suppose we have the best possible hash function?

6/39

Hash Functions
0000@0000

#2: Collision Resistance (CR)

® By definition, collisions must exist.
® Recall that |S| >> |R]
® This can be argued from the pidgeonhole principle
® |f you have m holes and n pidgeons to put in these holes, if
n > m, at least one hole will have more than one pidgeon!

® But can we find mg and my s.t. h(mg) = h(my)?

Suppose we have the best possible hash function?
Q1: What could that be?

6/39

Hash Functions
0000@0000

#2: Collision Resistance (CR)

® By definition, collisions must exist.
® Recall that |S| >> |R]

® This can be argued from the pidgeonhole principle

® |f you have m holes and n pidgeons to put in these holes, if
n > m, at least one hole will have more than one pidgeon!

® But can we find mg and my s.t. h(mg) = h(my)?

Suppose we have the best possible hash function?
Q1: What could that be?

® | ets think of the probability of collision
® Qutputs are random, so 1/2" where n is the output length

® Collision will be found if we check roughly 2" pairs

Q2: Is CR harder or easier then pre-image resistance?

6/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000008000 0000000 000000 00000 0000000000

Breaking Hash Functions

Attack that finds a pre-image

® Search through all possible pre-images (brute-force)
® Consider a perfect hash function with output of n bits

e Cost: potentially more than 2" operations!
® Absolutely unfeasible for modern hash functions
® n =256 for SHA-256 and BLAKE

7/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000008000 0000000 000000 00000 0000000000

Breaking Hash Functions

Attack that finds a pre-image

Search through all possible pre-images (brute-force)

Consider a perfect hash function with output of n bits

Cost: potentially more than 2" operations!

Absolutely unfeasible for modern hash functions
® n =256 for SHA-256 and BLAKE

And if we want to find another pre-image?

® Nothing better than before

e Keep trying different values until you guess correctly

7/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing
00000@000 o Yolo) 000000 ©] :

Breaking Hash Functions

Attack that finds a pre-image

Search through all possible pre-images (brute-force)

Consider a perfect hash function with output of n bits

Cost: potentially more than 2" operations!

Absolutely unfeasible for modern hash functions
® n =256 for SHA-256 and BLAKE

And if we want to find another pre-image?

® Nothing better than before

e Keep trying different values until you guess correctly

But what if we only want to find a collision?

Constructing MACs
00 00

7/39

Hash Functions
000000800

Hash Functions Hash Functions Hashing

Finding Collisions
Collisions can be found with work v/27, much better than 2"
Methodology
® Compute values like the brute-force attack
® Store them in a data structure indexed by image value
® Each new image value is searched in data structure

® Repeat until a collision is found

8/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructin
0O00000e00 000000 00000 000

Finding Collisions
Collisions can be found with work v/27, much better than 2"
Methodology
® Compute values like the brute-force attack
® Store them in a data structure indexed by image value
® Each new image value is searched in data structure

® Repeat until a collision is found

How many operations?

¢ After n values, we checked n* (n—1)/2 pairs Q: why?

8/39

Hash Functions
000000800

Finding Collisions
Collisions can be found with work /27, much better than 2!
Methodology

® Compute values like the brute-force attack
® Store them in a data structure indexed by image value
® Each new image value is searched in data structure

® Repeat until a collision is found

How many operations?
¢ After n values, we checked n* (n—1)/2 pairs Q: why?
e Checking 2" pairs takes roughly v/2" values

® Qverall complexity is that of finding the pre-image of a hash
with n/2 bits of output (only half of the range)

The birthday paradox (not very paradoxical, just counterintuitive)
8/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000080 0000000 000000 00000 0000000000

Implication of Birthday Attacks

For CR, hash outputs must be 2x security parameter
® 128-bit security — 256-bit hashes
® 256-bit security — 512-bit hashes

9/39

Hash Functions
000000080

Implication of Birthday Attacks

For CR, hash outputs must be 2x security parameter
® 128-bit security — 256-bit hashes
® 256-bit security — 512-bit hashes

We can use security-parameter-sized hash outputs when:
® Security against arbitrary collisions is not required
® E.g. we might only need pre-image resistance

® Deriving a key from a secret input

9/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
00000000e 0000000 000000 00000 0000000000

& Key Takeaways &

® Hash functions are one-way functions

® From any sized inputs to fixed-size output
® Never injective

10/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing
00000000e 0000000 000000 00000

& Key Takeaways &

® Hash functions are one-way functions

® From any sized inputs to fixed-size output
® Never injective

e Easy to go from x to f(x)
® Hard to go from f(x) to x

Constructing MACs
0000000000

10/39

Hash Functions
00000000e

& Key Takeaways &

Hash functions are one-way functions

® From any sized inputs to fixed-size output
® Never injective

e Easy to go from x to f(x)

Hard to go from f(x) to x

Pre-image resistance
® Give me some x for which f(x)

Collision resistance
® Give me any xj, xp for which f(x1) = f(x)
® Much easier!!

10/39

Hash Functions
00000000e

& Key Takeaways &

® Hash functions are one-way functions
® From any sized inputs to fixed-size output
® Never injective

¢ Easy to go from x to f(x)

® Hard to go from f(x) to x

® Pre-image resistance
® Give me some x for which f(x)

e Collision resistance
® Give me any xj, xp for which f(x1) = f(x)
® Much easier!!

® For output of 27, collision can be found in ~ ovn
e So for 2128 resistance, output must be at least 2256

e Birthday attack

10/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 9000000 000000 00000 0000000000

Building Hash Functions

Two main approaches that use iterative processes

® Merkle-Damgard construction: Used for MD4, MD5,
SHA-1, SHA-256, SHA-512. Relies on a m + n-to-n bits
compression function to construct a hash function of output
length n for arbitrary input lengths

11/39

Building Hash Functions
©000000

Building Hash Functions

Two main approaches that use iterative processes

® Merkle-Damgard construction: Used for MD4, MD5,
SHA-1, SHA-256, SHA-512. Relies on a m + n-to-n bits
compression function to construct a hash function of output
length n for arbitrary input lengths

® Sponge construction: Used for SHA-3, uses a /-bit
permutation to construct a hash function for arbitrary input
and output lengths

11/39

Hash Functions

000000000 O@00000

Merkle-Damgard Construction

Building Hash Functions

Concrete Hash Functions
000000

All prominent hash functions from 80s-2000s.

® fy is the initial value: constant and public
® M is broken into blocks of size m, My, M, ...

Mo

L.

—>

Ho

Compress

Mo

L.

Hy

>

Compress

Keyed Hashing
00000

H2

Constructing MACs
0000000000

12/39

Merkle-Damgard Construction
All prominent hash functions from 80s-2000s.

® fy is the initial value: constant and public

® M is broken into blocks of size m, My, M, ...

L. L.

Compress Compress

— > >
Ho H; Ha

Mo Mo

® SHA-256: block size 512, output size 256 bits
® SHA-512: block size 1024, output size 512 bits

® What if messages are not of the same size as the block?

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0Oe00000 000000 00000 0000000000

12/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 00e0000 000000 00000 0000000000

Merkle-Damgard Construction — Padding

Padding is always added to the message

® Append the message with a 1 bit
¢ Fill with zeros up to 64/128 bits away from the block end
® Last 64/128 bits encode the message length in bits

13/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 00e0000 000000 00000 0000000000

Merkle-Damgéard Construction — Padding

Padding is always added to the message

® Append the message with a 1 bit
¢ Fill with zeros up to 64/128 bits away from the block end
® Last 64/128 bits encode the message length in bits

E.g. we want to hash the 8-bit string 10101010 using SHA-256
Message is: 10101010100000(. . .)000001000

13/39

ash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 000000 000000 00000 -

q

0000

Merkle-Damgéard Construction — Padding

Padding is always added to the message

® Append the message with a 1 bit
¢ Fill with zeros up to 64/128 bits away from the block end
® Last 64/128 bits encode the message length in bits

E.g. we want to hash the 8-bit string 10101010 using SHA-256
Message is: 10101010100000(. . .)000001000

Q: Can’t we just pad by adding 0s?

13/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 000e000 000000 00000 0000000000

Merkle-Damgard Construction — Security

Useful result
e Compression result is CR (for small inputs)
® Then the whole construction is CR (for arbitrary inputs)

To break the hash function you must break the compression
function

So, does having a 2n-to-n CR compression function solve all our
problems?

1439

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000e00 000000 00000 0000000000

Compression Functions: Davis-Meyer
All popular MD constructions use the Davis-Meyer construction:

Block ciphers used as compression functions!

® Message is the encryption key!
e Construction creates a fixed point when H;_; = D(M;,0)

15/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000e00 000000 00000 0000000000

Compression Functions: Davis-Meyer
All popular MD constructions use the Davis-Meyer construction:

Block ciphers used as compression functions!

® Message is the encryption key!
e Construction creates a fixed point when H;_; = D(M;,0)

Hi = E(M;, Hi—1) & Hi—1
H,- = E(M,‘, D(M,,O)) D D(MHO)
H; = Hi_1

15/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 00000e0 000000 00000 0000000000

Sponge Construction
A more recent alternative to the MD is the sponge construction
It relies on a fixed (non-keyed) permutation
Very Versatile
® Varying input/output lengths
® PRGs and stream ciphers
® PRFs and keyed hashes

-

L L

Absorbing Phase Squeezing Phase

16/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0O00000e 000000 00000 0000000000

Sponge Construction — Description

Sponge operates in two phases: absorb and squeeze. The state is
the same size w as the permutation input

17/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing

000000000 000000 OO000C

Sponge Construction — Description

Sponge operates in two phases: absorb and squeeze. The state is
the same size w as the permutation input

Absorb
® Fixed initial value hg, gradually accumulate message into state
® Message broken in blocks of size r (rate)
® Block is smaller than state size
® Block XOR’ed into state

® Permutation recomputed

17/39

Building Hash Functions
000000e

Sponge Construction — Description

Sponge operates in two phases: absorb and squeeze. The state is
the same size w as the permutation input

Absorb
® Fixed initial value hg, gradually accumulate message into state
® Message broken in blocks of size r (rate)
® Block is smaller than state size
® Block XOR’ed into state

® Permutation recomputed

Squeeze

® Dual process iteratively constructs output
® Qutput constructed block by block

® Permutation computed over the entire state

Block-sized part of the state is accumulated in the output 3

Concrete Hash Functions
©00000

MD5

Broken! 128-bit output
Most popular hash function until broken in 2005
These days, it takes seconds to find collisions

The SHA function family (next) uses a similar design

18/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000000 0e0000 00000 0000000000

Secure Hash Function (SHA)
Standardized by NIST in the US. International de facto standard

SHA-0 published in 93’, replaced with SHA-1 in 95’

Both with 160-bit outputs
Vulnerability not public at the time

Later discovered collision attack in 260 << 280 operations

e More recent attacks reduced it to 233

19/39

https://eprint.iacr.org/2017/190.pdf

Concrete Hash Functions
0®0000

Secure Hash Function (SHA)

Standardized by NIST in the US. International de facto standard
SHA-0 published in 93’, replaced with SHA-1 in 95’

® Both with 160-bit outputs

® Vulnerability not public at the time

e Later discovered collision attack in 2%0 << 280 operations

e More recent attacks reduced it to 233

SHA-1 remained unbroken until quite recently — (2017)

Most applications currently use SHA-2 (256 or 512 bits)

® Same design principles; larger parameters

Future applications adopting SHA-3 evolve to the Sponge

® Flexible output size is very useful!

19/39

https://eprint.iacr.org/2017/190.pdf

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000000 00e000 00000 0000000000

SHA-1 Internals

® Merkle-Damgard, with Davis-Meyer compression function
® Block cipher used in compression function called SHACAL
® Block cipher with 160-bit block sizes!

20/39

Concrete Hash Functions
00000

SHA-1 Internals

Merkle-Damgard, with Davis-Meyer compression function
Block cipher used in compression function called SHACAL
® Block cipher with 160-bit block sizes!

Message blocks are 512-bits, hashes are 160-bits long
Davis-Meyer addition (not XOR): five 32-bit additions
Insecure! Expected collisions in 23 ops in 2015, found in 2017

20/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing

000000000 C YOO000C O0e000 00000

SHA-1 Internals

® Merkle-Damgard, with Davis-Meyer compression function

Block cipher used in compression function called SHACAL
® Block cipher with 160-bit block sizes!

Message blocks are 512-bits, hashes are 160-bits long
Davis-Meyer addition (not XOR): five 32-bit additions

Insecure! Expected collisions in 23 ops in 2015, found in 2017

SHA1-blockcipher(a, b, c, d, e, M) {
W = expand(M);
for i = 0 to 79 { // K are constants
new = (a <<< 5) + f(i, b, ¢, d) + e + K[i] + W[il
(a, b, c, d, e) (new, a, b >>> 2, c, d)

}

return (a, b, c, d, e)

20/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing
000000000 0000000 000800 00000

SHA-2 Family

® Family of 4 hash functions
® SHA-224;256;384;512

Constructing MACs
0000000000

21/39

Concrete Hash Functions
000800

SHA-2 Family

Family of 4 hash functions
® SHA-224;256;384;512
Three digit identifier defines the output length
Increased parameters and improved internal block ciphers

SHA-224 and 256 still use 512 bit blocks (64 rounds)

® SHA-224 is exactly the same as SHA-256, but has different IV
and truncated output
® SHA-384 and SHA-512 are similarly related

SHA-512 compression function very similar, but has 80 rounds

21/39

Concrete Hash Functions
000800

SHA-2 Family

Family of 4 hash functions
® SHA-224;256;384;512

Three digit identifier defines the output length

® |ncreased parameters and improved internal block ciphers
SHA-224 and 256 still use 512 bit blocks (64 rounds)

® SHA-224 is exactly the same as SHA-256, but has different IV
and truncated output
® SHA-384 and SHA-512 are similarly related

® SHA-512 compression function very similar, but has 80 rounds

No non-generic attacks exist on these hash functions

e Still SHA-3 was (prudently) developed with different design
® Also has the benefit of varying sized outputs

® Good to generate keys!

21/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000000 0000e0 00000 0000000000

SHA-3

® Keccack selected in 2009
e 3-year NIST SHA-3 competition
e Competition called for new design, if SHA-2 gets attacked

22/39

Concrete Hash Functions
000000

SHA-3

® Keccack selected in 2009
e 3-year NIST SHA-3 competition
e Competition called for new design, if SHA-2 gets attacked

Keccack is very different and very flexible

® Sponge based with 1600-bits permutation (in SHA-3)
® Blocks can be 1152, 1088, 832 or 576 bits
e Corresponding to 224, 256, 384 or 512 bit outputs

® As a bonus we get the SHAKE functions

® SHAKE128 and SHAKE256
® eXtendable Output Functions (XOFs)
® You can specify output length

22/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000000 00000e 00000 0000000000

& Key Takeaways &

® Two main constructions: MD and Sponge

23/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing
000000000 0000000 00000e 00000

& Key Takeaways &

® Two main constructions: MD and Sponge

® Merkle-Damgard

® Used in MD5; SHA1; SHA2
® Sequential compression of message — DM
® Davis-Meyer compresses using a block cipher

Constructing MACs
0000000000

23/39

Concrete Hash Functions
00000e

& Key Takeaways &

® Two main constructions: MD and Sponge

® Merkle-Damgard

® Used in MD5; SHA1; SHA2
® Sequential compression of message — DM
® Davis-Meyer compresses using a block cipher

® Sponge
® Used in SHA3 and SHAKE
® Absorb phase permutes message
® Squeeze phase retrieves the output

23/39

Concrete Hash Functions
00000e

& Key Takeaways &

Two main constructions: MD and Sponge

Merkle-Damgard

® Used in MD5; SHA1; SHA2
® Sequential compression of message — DM
® Davis-Meyer compresses using a block cipher

Sponge
® Used in SHA3 and SHAKE
® Absorb phase permutes message
® Squeeze phase retrieves the output

SHA-2 and SHA-3 currently the de facto standards

23/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000000 000000 @0000 0000000000

MACs as Keyed Hashes

Short Summaries of Potentially Large Messages
® Called a hash if everything is public

® Keyed hashes allows for conditional hash computation

24/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing
000000000 0000000 000000 @0000

MACs as Keyed Hashes

Short Summaries of Potentially Large Messages

® Called a hash if everything is public

® Keyed hashes allows for conditional hash computation

Message Authentication Codes — MACs
¢ Symmetric Authentication t < MAC(k, m)

Constructing MACs
0000000000

® t guarantees that m was produced by someone that knows k

® |mplies message m was not changed since its creation

® Digital signatures in the symmetric paradigm!

24/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000000 000000 0@000 0000000000

Message Authentication Codes

Typical use of MACs — SSH, IPSec, TLS
® Two parties was message authentication and integrity
® Some form of set-up/agreement to establish common key k
¢ Sender computes t <~ MAC(k, m) and sends (m, t)

Receiver gets (m, t), recomputes t' < MAC(k, m)

If t # t/, message is rejected!

25/39

Keyed Hashing
0@000

Message Authentication Codes

Typical use of MACs — SSH, IPSec, TLS

® Two parties was message authentication and integrity
® Some form of set-up/agreement to establish common key k

¢ Sender computes t <~ MAC(k, m) and sends (m, t)

Receiver gets (m, t), recomputes t' < MAC(k, m)

e If t # t/, message is rejected!
Acceptance means m was produced while knowing k
In this process, message is public!
MACs do not give confidentiality. They provide integrity

Its orthogonal to encryption. In real-world applications, we will
need to combine these

25/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000000 000000 00800 0000000000

Authentication and Message Integrity

S

(m, t) (m', fake)
>

(m, 1)

\

t <- MAC(k, m) t' <-MAC(k, m’)
t' = fake ??
t' <-MAC(k, m)
t=tl
® No possibility of computing t without k implies
® Adversary cannot change the message

® Adversary cannot conjure new messages

26/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000000 000000 [e]e]e] e} 0000000000

MAC Security

Standard notion is UF-CMA
® Goal: Unforgeability

® Adversary power: Chosen Message Attacks

27/39

g

g Hash Functions

te Hash Functions Keyed Hashing Col
00 [e]e]e] e} (e]e]

MAC Security

Standard notion is UF-CMA
® Goal: Unforgeability
® Adversary power: Chosen Message Attacks

Security Experiment

® Experiment generates a key k
® Adversary (adaptively) sends m to get t «+ MAC(k, m)

e Eventually, attacker outputs (m*, t*)

Attacker wins if t* = MAC(k, m*), and if t* was not produced by
the experiment. Contrary to IND-CPA, a victory here implies a
broken MAC scheme.

27/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000000 000000 [e]e]ele] } 0000000000

MAC Security Nuances

e MAC on its own does not protect against replay attacks
® Suppose a network scenario

® Attacker sees authenticated message (m, t)
® Delivers (m, t) multiple times
® MAC will verify every time!

28/39

Keyed Hashing
0C00e

MAC Security Nuances

MAC on its own does not protect against replay attacks
Suppose a network scenario

® Attacker sees authenticated message (m, t)
® Delivers (m, t) multiple times
® MAC will verify every time!

Simple technique: impose message never repeats in network

Sequence numbers
® Prepend counter and keep counter as state in both sides
® Prepend timestamp (local clock reading)
® How should the receiver operate in both cases?

28/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000000 000000 00000 9000000000

Some Context
MACs constructed from hash functions and block ciphers

Simplest construction: prefix key

MAC(k, m) = H(K||M) or PRF(k, m) = H(K||M)

29/39

ste Hash Functions yed Hashing Constructing MACs

9000000000

Some Context
MACs constructed from hash functions and block ciphers
Simplest construction: prefix key
MAC(k, m) = H(K||M) or PRF(k, m) = H(K||M)
MD yields insecure MAC and PRF!
e Given (m,t), attacker outputs H(K||M||pad||M")

e This can be computed just from t' and m’

® Length extension attack

29/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
00 000 o)OO 000000 ©) E

9000000000

Some Context
MACs constructed from hash functions and block ciphers

Simplest construction: prefix key
MAC(k, m) = H(K||M) or PRF(k, m) = H(K||M)

MD yields insecure MAC and PRF!
e Given (m,t), attacker outputs H(K||M||pad||M")
e This can be computed just from t' and m’

® Length extension attack

A consideration in SHA-3 construction
e Abandon MD construction

® |nclude explicit keyed hash

29/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing

Constructing MACs

HMAC Construction
When instantiated with MD construction
® Compression function is PRF — Secure MAC
® HMAC is simply H((K & opad)||H((k & ipad)||m))
® jpad and opad are constraints: align to block size
Lo | Lo | Le.
C C (63
Leom|
(63 C
Ho Hy HMAC(k,m)
. -

30/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000000 000000 00000 0O0@0000000

On Collision-based Forgeries

Hash function collisions — hash-based MAC forgeries

However, attacker cannot easily search for them w/o key

31/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000000 000000 00000 00@0000000

On Collision-based Forgeries

Hash function collisions — hash-based MAC forgeries

However, attacker cannot easily search for them w/o key

Collisions in MAC also yield forgeries

® True for any MAC
e Collision occur when v/2" MACs are issued

31/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
00 000 o)OO 000000 ©) E

000@000000

Building MACs from Block Ciphers

We have seen block ciphers — hash functions — MACs

But there are also direct constructions: block ciphers — MACs

CMAC
® Used in IPSec
e CMAC improves on CBC-MAC (which was broken!)
® Use CBC mode of operation
® Fix IV to all zero blocks
[]

Take the last ciphertext block as a tag

32/39

Concrete Hash Functions Keyed Hashing
00000 0000800000

Building Hash Functions
000000

CMAC Internals

Hash Functions
000000000

CMAC fixes CBC-MAC by processing last block differently
o All blocks except last are processed like CBC-MAC

e Keys ki and ko derived from k
|« E(k,0)
* k = (I << 1)@ (0x00..0087 * LSB(I)))
° ky = (ki << 1) @ (0x00..0087 % LSB(ky)))

my m; m, my my m, || 100...
Va v k ‘9 | ke
| y v | y v
‘) ’ ‘) ’ ‘) ’ ‘) ’ ‘) ’ ‘) ’

Constructing MACs

33/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000000 000000 00000 0O0000e0000

Custom MAC Constructions

More efficient MAC constructions are designed from scratch
Poly1305 is one such construction by D. J. Bernstein

Based on
® Universal Hash Functions

® Wegman-Carter construction

34/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing
000000000 0000000 000000 00000

Universal Hash Functions

UHF are a Weak form of Hashing

® Don't need to be collision resistant
® Parametrised by a key UH(k, m)

® Guarantee that, for two fixed messages mg # mj:

Pr[UH(k, mg) = UH(k, m1)] < e

Considering random k and very small €

Constructing MACs
000000e000

35/39

Universal Hash Functions

UHF are a Weak form of Hashing

® Don't need to be collision resistant
® Parametrised by a key UH(k, m)

® Guarantee that, for two fixed messages mg # mj:
Pr[UH(k, mg) = UH(k, m1)] < e
® Considering random k and very small €
No other security requirements — easy to construct
We can use a universal hash function as a MAC

Provided that we only authenticate one message!

Constructing MACs
0000000000

35/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing
000000000 0000000 000000 00000

Wegman-Carter Construction

How to circumvent this limitation?
® Use a PRF to strengthen the UH
® Converts a UH into a fully secure MAC
® AES can fill the PRF role!

Constructing MACs
0000000800

36/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing
000000000 0000000 000000 00000

Wegman-Carter Construction

How to circumvent this limitation?
® Use a PRF to strengthen the UH
® Converts a UH into a fully secure MAC
® AES can fill the PRF role!

Intuition: Encrypt Universal Hash Value

UH(k1, m) ® PRF(ky, n)

® The full MAC key is (ki, k2)
® nis a public value that must never repeat
® Ak.a. a nonce

® This can be kept as a counter, or generated at random

Constructing MACs
0000000800

36/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000000 000000 0000000080

Poly1305-AES: Wegman-Carter in Practice

® |nitial proposal used AES as the Wegman-Carter PRF

® The universal hash function uses prime p'3° — 5
Poly1305((k1, k2), m) = (mik + ...+ myk" (mod p)) + AES(kz, n)

® Blocks are 128 bits and last block is padded with 100
e All blocks set bit 129, so MSB is 1

® The final addition is performed modulo
® TLS recommends Poly1305 with ChaCha20, rather than AES

2128

37/39

Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
00C [e] D000 0O00000000e

& Key Takeaways &

e Keyed hashing allows for message authentication
e For hash function h, one cannot produce h(k,x) w/o k

® Provides integrity; ciphers give confidentiality

38/39

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0000000 000000 00000 0000000000

& Key Takeaways &

e Keyed hashing allows for message authentication

For hash function h, one cannot produce h(k,x) w/o k

Provides integrity; ciphers give confidentiality

Just add a key as prefix!
® Problem! Length extension attacks

38/39

& Key Takeaways &

Keyed hashing allows for message authentication
For hash function h, one cannot produce h(k,x) w/o k
Provides integrity; ciphers give confidentiality
Just add a key as prefix!
® Problem! Length extension attacks

HMAC
® |nput padding and output padding, both using the key

Constructing MACs
0000000008

38/39

& Key Takeaways &

Keyed hashing allows for message authentication
For hash function h, one cannot produce h(k,x) w/o k

Provides integrity; ciphers give confidentiality

Just add a key as prefix!

® Problem! Length extension attacks
HMAC

® |nput padding and output padding, both using the key
CMAC

® Do AES-CBC without IV; return the last block
® With a twist to prevent prefix extension

Constructing MACs
0000000008

38/39

& Key Takeaways &

Keyed hashing allows for message authentication
For hash function h, one cannot produce h(k,x) w/o k

Provides integrity; ciphers give confidentiality

Just add a key as prefix!

® Problem! Length extension attacks
HMAC

® |nput padding and output padding, both using the key
CMAC

® Do AES-CBC without IV; return the last block

® With a twist to prevent prefix extension
Wegman-Carter

® Use a UHF for a unique message
® XOR it with an encryption of a nonce
® Used in AES-GCM (next class)

Constructing MACs
0000000008

38/39

Applied Cryptography
Week 5: Hash Functions and Keyed Hashing

Bernardo Portela

M:ERSI, M:SI, M:CC - 25

	Hash Functions
	Building Hash Functions
	Concrete Hash Functions
	Keyed Hashing
	Constructing MACs
	Appendix

