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What is a Hash Function?

Hash functions are everywhere
e Key derivation

Digest for authentication

Randomness extraction

Password protection

Proofs of work
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What is a Hash Function?

Hash functions are everywhere
e Key derivation

Digest for authentication

Randomness extraction

Password protection

Proofs of work

Not only in crypto:
® Indexing in version management
® Deduplication in cloud storage systems
® File integrity in intrusion detection

h
A -

Short, fixed length:
usually 256 or 512 bits

Any length

Constructing MACs
0000000000
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Describing Hash Functions
The hash output is short, aka hash, fingerprint or digest

Cryptographic hash functions give strong security guarantees

Use hash as an identifier
® Cryptographic hash functions cannot be injective
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Describing Hash Functions
The hash output is short, aka hash, fingerprint or digest

Cryptographic hash functions give strong security guarantees

Use hash as an identifier
® Cryptographic hash functions cannot be injective

* Why?
® Yet they should be well distributed and unpredictable

® Hash values can identify arbitrarily large inputs
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Describing Hash Functions
The hash output is short, aka hash, fingerprint or digest
Cryptographic hash functions give strong security guarantees

Use hash as an identifier
® Cryptographic hash functions cannot be injective
* Why?
® Yet they should be well distributed and unpredictable

® Hash values can identify arbitrarily large inputs
Signing H(m) is as secure as signing m

Hash functions need to be deterministic and public
® Everyone should be able to recompute hash /identifier

® ... So what do we mean by security here?
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Secure Cryptographic Hash Functions

Efficient algorithms with nice properties

® Unpredictable outputs
® Hard to find pre-images

® Hard to find collisions
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Secure Cryptographic Hash Functions

Efficient algorithms with nice properties
® Unpredictable outputs
® Hard to find pre-images

® Hard to find collisions

Hash functions are validated heuristically
® Similar to process for AES
® |nternational competition for select designs

® Competitors are scrutinized wrt security and performance

Several rounds, so more eyes on small number of proposals
® Most recent one: SHA-3
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#1: Pre-image resistance

It is hard to find the input that produced a given hash value

How can we establish this in concrete terms?
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#1: Pre-image resistance

It is hard to find the input that produced a given hash value

How can we establish this in concrete terms?

Pre-image experiment

® Let S be the set of pre-images (domain)

® Let R be the set of images (range)

® Attacker is given a value y € R

® Attacker guesses x € S and wins if h(x) =y
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#2: Collision Resistance (CR)

® By definition, collisions must exist.
® Recall that |S]| >> |R|
® This can be argued from the pidgeonhole principle

® |f you have m holes and n pidgeons to put in these holes, if
n > m, at least one hole will have more than one pidgeon!

® But can we find mg and my s.t. h(mg) = h(my)?
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#2: Collision Resistance (CR)

® By definition, collisions must exist.
® Recall that |S| >> |R]

® This can be argued from the pidgeonhole principle

® |f you have m holes and n pidgeons to put in these holes, if
n > m, at least one hole will have more than one pidgeon!

® But can we find mg and my s.t. h(mg) = h(my)?

Suppose we have the best possible hash function?
Q1: What could that be?

® | ets think of the probability of collision
® Qutputs are random, so 1/2" where n is the output length

® Collision will be found if we check roughly 2" pairs

Q2: Is CR harder or easier then pre-image resistance?
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Breaking Hash Functions

Attack that finds a pre-image

® Search through all possible pre-images (brute-force)
® Consider a perfect hash function with output of n bits

e Cost: potentially more than 2" operations!
® Absolutely unfeasible for modern hash functions
® n =256 for SHA-256 and BLAKE
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Breaking Hash Functions

Attack that finds a pre-image

Search through all possible pre-images (brute-force)

Consider a perfect hash function with output of n bits

Cost: potentially more than 2" operations!

Absolutely unfeasible for modern hash functions
® n =256 for SHA-256 and BLAKE

And if we want to find another pre-image?

® Nothing better than before

e Keep trying different values until you guess correctly
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Breaking Hash Functions

Attack that finds a pre-image

Search through all possible pre-images (brute-force)

Consider a perfect hash function with output of n bits

Cost: potentially more than 2" operations!

Absolutely unfeasible for modern hash functions
® n =256 for SHA-256 and BLAKE

And if we want to find another pre-image?

® Nothing better than before

e Keep trying different values until you guess correctly

But what if we only want to find a collision?

Constructing MACs
00 00
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Hash Functions Hash Functions Hashing

Finding Collisions
Collisions can be found with work v/27, much better than 2"
Methodology
® Compute values like the brute-force attack
® Store them in a data structure indexed by image value
® Each new image value is searched in data structure

® Repeat until a collision is found

8/39



Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructin
0O00000e00 000000 00000 000

Finding Collisions
Collisions can be found with work v/27, much better than 2"
Methodology
® Compute values like the brute-force attack
® Store them in a data structure indexed by image value
® Each new image value is searched in data structure

® Repeat until a collision is found

How many operations?

¢ After n values, we checked n* (n—1)/2 pairs Q: why?
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Finding Collisions
Collisions can be found with work /27, much better than 2!
Methodology

® Compute values like the brute-force attack
® Store them in a data structure indexed by image value
® Each new image value is searched in data structure

® Repeat until a collision is found

How many operations?
¢ After n values, we checked n* (n—1)/2 pairs Q: why?
e Checking 2" pairs takes roughly v/2" values

® Qverall complexity is that of finding the pre-image of a hash
with n/2 bits of output (only half of the range)

The birthday paradox (not very paradoxical, just counterintuitive)
8/39



Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000080 0000000 000000 00000 0000000000

Implication of Birthday Attacks

For CR, hash outputs must be 2x security parameter
® 128-bit security — 256-bit hashes
® 256-bit security — 512-bit hashes
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Implication of Birthday Attacks

For CR, hash outputs must be 2x security parameter
® 128-bit security — 256-bit hashes
® 256-bit security — 512-bit hashes

We can use security-parameter-sized hash outputs when:
® Security against arbitrary collisions is not required
® E.g. we might only need pre-image resistance

® Deriving a key from a secret input
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& Key Takeaways &

® Hash functions are one-way functions

® From any sized inputs to fixed-size output
® Never injective
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& Key Takeaways &

® Hash functions are one-way functions

® From any sized inputs to fixed-size output
® Never injective

e Easy to go from x to f(x)
® Hard to go from f(x) to x

Constructing MACs
0000000000
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& Key Takeaways &

Hash functions are one-way functions

® From any sized inputs to fixed-size output
® Never injective

e Easy to go from x to f(x)

Hard to go from f(x) to x

Pre-image resistance
® Give me some x for which f(x)

Collision resistance
® Give me any xj, xp for which f(x1) = f(x)
® Much easier!!
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& Key Takeaways &

® Hash functions are one-way functions
® From any sized inputs to fixed-size output
® Never injective

¢ Easy to go from x to f(x)

® Hard to go from f(x) to x

® Pre-image resistance
® Give me some x for which f(x)

e Collision resistance
® Give me any xj, xp for which f(x1) = f(x)
® Much easier!!

® For output of 27, collision can be found in ~ ovn
e So for 2128 resistance, output must be at least 2256

e Birthday attack
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Building Hash Functions

Two main approaches that use iterative processes

® Merkle-Damgard construction: Used for MD4, MD5,
SHA-1, SHA-256, SHA-512. Relies on a m + n-to-n bits
compression function to construct a hash function of output
length n for arbitrary input lengths
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Building Hash Functions

Two main approaches that use iterative processes

® Merkle-Damgard construction: Used for MD4, MD5,
SHA-1, SHA-256, SHA-512. Relies on a m + n-to-n bits
compression function to construct a hash function of output
length n for arbitrary input lengths

® Sponge construction: Used for SHA-3, uses a /-bit
permutation to construct a hash function for arbitrary input
and output lengths
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Merkle-Damgard Construction

Building Hash Functions

Concrete Hash Functions
000000

All prominent hash functions from 80s-2000s.

® fy is the initial value: constant and public
® M is broken into blocks of size m, My, M, ...

Mo

L.

—>

Ho

Compress

Mo

L.

Hy

>

Compress

Keyed Hashing
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H2

Constructing MACs
0000000000
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Merkle-Damgard Construction
All prominent hash functions from 80s-2000s.

® fy is the initial value: constant and public

® M is broken into blocks of size m, My, M, ...

L. L.

Compress Compress

— > >
Ho H; Ha

Mo Mo

® SHA-256: block size 512, output size 256 bits
® SHA-512: block size 1024, output size 512 bits

® What if messages are not of the same size as the block?

Hash Functions Building Hash Functions Concrete Hash Functions Keyed Hashing Constructing MACs
000000000 0Oe00000 000000 00000 0000000000
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Merkle-Damgard Construction — Padding

Padding is always added to the message

® Append the message with a 1 bit
¢ Fill with zeros up to 64/128 bits away from the block end
® Last 64/128 bits encode the message length in bits
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Merkle-Damgéard Construction — Padding

Padding is always added to the message

® Append the message with a 1 bit
¢ Fill with zeros up to 64/128 bits away from the block end
® Last 64/128 bits encode the message length in bits

E.g. we want to hash the 8-bit string 10101010 using SHA-256
Message is: 10101010100000(. . .)000001000
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Merkle-Damgéard Construction — Padding

Padding is always added to the message

® Append the message with a 1 bit
¢ Fill with zeros up to 64/128 bits away from the block end
® Last 64/128 bits encode the message length in bits

E.g. we want to hash the 8-bit string 10101010 using SHA-256
Message is: 10101010100000(. . .)000001000

Q: Can’t we just pad by adding 0s?

13/39
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Merkle-Damgard Construction — Security

Useful result
e Compression result is CR (for small inputs)
® Then the whole construction is CR (for arbitrary inputs)

To break the hash function you must break the compression
function

So, does having a 2n-to-n CR compression function solve all our
problems?
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Compression Functions: Davis-Meyer
All popular MD constructions use the Davis-Meyer construction:

Block ciphers used as compression functions!

® Message is the encryption key!
e Construction creates a fixed point when H;_; = D(M;,0)
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Compression Functions: Davis-Meyer
All popular MD constructions use the Davis-Meyer construction:

Block ciphers used as compression functions!

® Message is the encryption key!
e Construction creates a fixed point when H;_; = D(M;,0)

Hi = E(M;, Hi—1) & Hi—1
H,- = E(M,‘, D(M,,O)) D D(MHO)
H; = Hi_1

15/39
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Sponge Construction
A more recent alternative to the MD is the sponge construction
It relies on a fixed (non-keyed) permutation
Very Versatile
® Varying input/output lengths
® PRGs and stream ciphers
® PRFs and keyed hashes

-

L L

Absorbing Phase Squeezing Phase
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Sponge Construction — Description

Sponge operates in two phases: absorb and squeeze. The state is
the same size w as the permutation input
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Sponge Construction — Description

Sponge operates in two phases: absorb and squeeze. The state is
the same size w as the permutation input

Absorb
® Fixed initial value hg, gradually accumulate message into state
® Message broken in blocks of size r (rate)
® Block is smaller than state size
® Block XOR’ed into state

® Permutation recomputed
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Sponge Construction — Description

Sponge operates in two phases: absorb and squeeze. The state is
the same size w as the permutation input

Absorb
® Fixed initial value hg, gradually accumulate message into state
® Message broken in blocks of size r (rate)
® Block is smaller than state size
® Block XOR’ed into state

® Permutation recomputed

Squeeze

® Dual process iteratively constructs output
® Qutput constructed block by block

® Permutation computed over the entire state

Block-sized part of the state is accumulated in the output 3
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MD5

Broken! 128-bit output
Most popular hash function until broken in 2005
These days, it takes seconds to find collisions

The SHA function family (next) uses a similar design
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Secure Hash Function (SHA)
Standardized by NIST in the US. International de facto standard

SHA-0 published in 93’, replaced with SHA-1 in 95’

Both with 160-bit outputs
Vulnerability not public at the time

Later discovered collision attack in 260 << 280 operations

e More recent attacks reduced it to 233
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Secure Hash Function (SHA)

Standardized by NIST in the US. International de facto standard
SHA-0 published in 93’, replaced with SHA-1 in 95’

® Both with 160-bit outputs

® Vulnerability not public at the time

e Later discovered collision attack in 2%0 << 280 operations

e More recent attacks reduced it to 233

SHA-1 remained unbroken until quite recently — (2017)

Most applications currently use SHA-2 (256 or 512 bits)

® Same design principles; larger parameters

Future applications adopting SHA-3 evolve to the Sponge

® Flexible output size is very useful!
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SHA-1 Internals

® Merkle-Damgard, with Davis-Meyer compression function
® Block cipher used in compression function called SHACAL
® Block cipher with 160-bit block sizes!
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SHA-1 Internals

Merkle-Damgard, with Davis-Meyer compression function
Block cipher used in compression function called SHACAL
® Block cipher with 160-bit block sizes!

Message blocks are 512-bits, hashes are 160-bits long
Davis-Meyer addition (not XOR): five 32-bit additions
Insecure! Expected collisions in 23 ops in 2015, found in 2017
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SHA-1 Internals

® Merkle-Damgard, with Davis-Meyer compression function

Block cipher used in compression function called SHACAL
® Block cipher with 160-bit block sizes!

Message blocks are 512-bits, hashes are 160-bits long
Davis-Meyer addition (not XOR): five 32-bit additions

Insecure! Expected collisions in 23 ops in 2015, found in 2017

SHA1-blockcipher(a, b, c, d, e, M) {
W = expand(M);
for i = 0 to 79 { // K are constants
new = (a <<< 5) + f(i, b, ¢, d) + e + K[i] + W[il
(a, b, c, d, e) (new, a, b >>> 2, c, d)

}

return (a, b, c, d, e)
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SHA-2 Family

® Family of 4 hash functions
® SHA-224;256;384;512

Constructing MACs
0000000000
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SHA-2 Family

Family of 4 hash functions
® SHA-224;256;384;512
Three digit identifier defines the output length
Increased parameters and improved internal block ciphers

SHA-224 and 256 still use 512 bit blocks (64 rounds)

® SHA-224 is exactly the same as SHA-256, but has different IV
and truncated output
® SHA-384 and SHA-512 are similarly related

SHA-512 compression function very similar, but has 80 rounds
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SHA-2 Family

Family of 4 hash functions
® SHA-224;256;384;512

Three digit identifier defines the output length

® |ncreased parameters and improved internal block ciphers
SHA-224 and 256 still use 512 bit blocks (64 rounds)

® SHA-224 is exactly the same as SHA-256, but has different IV
and truncated output
® SHA-384 and SHA-512 are similarly related

® SHA-512 compression function very similar, but has 80 rounds

No non-generic attacks exist on these hash functions

e Still SHA-3 was (prudently) developed with different design
® Also has the benefit of varying sized outputs

® Good to generate keys!
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SHA-3

® Keccack selected in 2009
e 3-year NIST SHA-3 competition
e Competition called for new design, if SHA-2 gets attacked
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SHA-3

® Keccack selected in 2009
e 3-year NIST SHA-3 competition
e Competition called for new design, if SHA-2 gets attacked

Keccack is very different and very flexible

® Sponge based with 1600-bits permutation (in SHA-3)
® Blocks can be 1152, 1088, 832 or 576 bits
e Corresponding to 224, 256, 384 or 512 bit outputs

® As a bonus we get the SHAKE functions

® SHAKE128 and SHAKE256
® eXtendable Output Functions (XOFs)
® You can specify output length
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& Key Takeaways &

® Two main constructions: MD and Sponge
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& Key Takeaways &

® Two main constructions: MD and Sponge

® Merkle-Damgard

® Used in MD5; SHA1; SHA2
® Sequential compression of message — DM
® Davis-Meyer compresses using a block cipher

Constructing MACs
0000000000
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& Key Takeaways &

® Two main constructions: MD and Sponge

® Merkle-Damgard

® Used in MD5; SHA1; SHA2
® Sequential compression of message — DM
® Davis-Meyer compresses using a block cipher

® Sponge
® Used in SHA3 and SHAKE
® Absorb phase permutes message
® Squeeze phase retrieves the output
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& Key Takeaways &

Two main constructions: MD and Sponge

Merkle-Damgard

® Used in MD5; SHA1; SHA2
® Sequential compression of message — DM
® Davis-Meyer compresses using a block cipher

Sponge
® Used in SHA3 and SHAKE
® Absorb phase permutes message
® Squeeze phase retrieves the output

SHA-2 and SHA-3 currently the de facto standards

23/39
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MACs as Keyed Hashes

Short Summaries of Potentially Large Messages
® Called a hash if everything is public

® Keyed hashes allows for conditional hash computation
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MACs as Keyed Hashes

Short Summaries of Potentially Large Messages

® Called a hash if everything is public

® Keyed hashes allows for conditional hash computation

Message Authentication Codes — MACs
¢ Symmetric Authentication t < MAC(k, m)

Constructing MACs
0000000000

® t guarantees that m was produced by someone that knows k

® |mplies message m was not changed since its creation

® Digital signatures in the symmetric paradigm!
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Message Authentication Codes

Typical use of MACs — SSH, IPSec, TLS
® Two parties was message authentication and integrity
® Some form of set-up/agreement to establish common key k
¢ Sender computes t <~ MAC(k, m) and sends (m, t)

Receiver gets (m, t), recomputes t' < MAC(k, m)

If t # t/, message is rejected!

25/39
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Message Authentication Codes

Typical use of MACs — SSH, IPSec, TLS

® Two parties was message authentication and integrity
® Some form of set-up/agreement to establish common key k

¢ Sender computes t <~ MAC(k, m) and sends (m, t)

Receiver gets (m, t), recomputes t' < MAC(k, m)

e If t # t/, message is rejected!
Acceptance means m was produced while knowing k
In this process, message is public!
MACs do not give confidentiality. They provide integrity

Its orthogonal to encryption. In real-world applications, we will
need to combine these

25/39
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Authentication and Message Integrity

S

(m, t) (m', fake)
>

(m, 1)

\

t <- MAC(k, m) t' <-MAC(k, m’)
t' = fake ??
t' <-MAC(k, m)
t=tl
® No possibility of computing t without k implies
® Adversary cannot change the message

® Adversary cannot conjure new messages
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MAC Security

Standard notion is UF-CMA
® Goal: Unforgeability

® Adversary power: Chosen Message Attacks
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MAC Security

Standard notion is UF-CMA
® Goal: Unforgeability
® Adversary power: Chosen Message Attacks

Security Experiment

® Experiment generates a key k
® Adversary (adaptively) sends m to get t «+ MAC(k, m)

e Eventually, attacker outputs (m*, t*)

Attacker wins if t* = MAC(k, m*), and if t* was not produced by
the experiment. Contrary to IND-CPA, a victory here implies a
broken MAC scheme.
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MAC Security Nuances

e MAC on its own does not protect against replay attacks
® Suppose a network scenario

® Attacker sees authenticated message (m, t)
® Delivers (m, t) multiple times
® MAC will verify every time!
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MAC Security Nuances

MAC on its own does not protect against replay attacks
Suppose a network scenario

® Attacker sees authenticated message (m, t)
® Delivers (m, t) multiple times
® MAC will verify every time!

Simple technique: impose message never repeats in network

Sequence numbers
® Prepend counter and keep counter as state in both sides
® Prepend timestamp (local clock reading)
® How should the receiver operate in both cases?

28/39
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Some Context
MACs constructed from hash functions and block ciphers

Simplest construction: prefix key

MAC(k, m) = H(K||M) or PRF(k, m) = H(K||M)
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Some Context
MACs constructed from hash functions and block ciphers
Simplest construction: prefix key
MAC(k, m) = H(K||M) or PRF(k, m) = H(K||M)
MD yields insecure MAC and PRF!
e Given (m,t), attacker outputs H(K||M||pad||M")

e This can be computed just from t' and m’

® Length extension attack
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Some Context
MACs constructed from hash functions and block ciphers

Simplest construction: prefix key
MAC(k, m) = H(K||M) or PRF(k, m) = H(K||M)

MD yields insecure MAC and PRF!
e Given (m,t), attacker outputs H(K||M||pad||M")
e This can be computed just from t' and m’

® Length extension attack

A consideration in SHA-3 construction
e Abandon MD construction

® |nclude explicit keyed hash
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Constructing MACs

HMAC Construction
When instantiated with MD construction
® Compression function is PRF — Secure MAC
® HMAC is simply H((K & opad)||H((k & ipad)||m))
® jpad and opad are constraints: align to block size
Lo | Lo | Le.
C C (63
Leom|
(63 C
Ho Hy HMAC(k,m)
. -
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On Collision-based Forgeries

Hash function collisions — hash-based MAC forgeries

However, attacker cannot easily search for them w/o key
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On Collision-based Forgeries

Hash function collisions — hash-based MAC forgeries

However, attacker cannot easily search for them w/o key

Collisions in MAC also yield forgeries

® True for any MAC
e Collision occur when v/2" MACs are issued
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Building MACs from Block Ciphers

We have seen block ciphers — hash functions — MACs

But there are also direct constructions: block ciphers — MACs

CMAC
® Used in IPSec
e CMAC improves on CBC-MAC (which was broken!)
® Use CBC mode of operation
® Fix IV to all zero blocks
[ ]

Take the last ciphertext block as a tag
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Building Hash Functions
000000

CMAC Internals

Hash Functions
000000000

CMAC fixes CBC-MAC by processing last block differently
o All blocks except last are processed like CBC-MAC

e Keys ki and ko derived from k
|« E(k,0)
* k = (I << 1)@ (0x00..0087 * LSB(I)))
° ky = (ki << 1) @ (0x00..0087 % LSB(ky)))

my m; m, my my m, || 100...
Va v k ‘9 | ke
| y v | y v
‘ ) ’ ‘ ) ’ ‘ ) ’ ‘ ) ’ ‘ ) ’ ‘ ) ’

Constructing MACs
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Custom MAC Constructions

More efficient MAC constructions are designed from scratch
Poly1305 is one such construction by D. J. Bernstein

Based on
® Universal Hash Functions

® Wegman-Carter construction
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Universal Hash Functions

UHF are a Weak form of Hashing

® Don't need to be collision resistant
® Parametrised by a key UH(k, m)

® Guarantee that, for two fixed messages mg # mj:

Pr[UH(k, mg) = UH(k, m1)] < e

Considering random k and very small €

Constructing MACs
000000e000
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Universal Hash Functions

UHF are a Weak form of Hashing

® Don't need to be collision resistant
® Parametrised by a key UH(k, m)

® Guarantee that, for two fixed messages mg # mj:
Pr[UH(k, mg) = UH(k, m1)] < e
® Considering random k and very small €
No other security requirements — easy to construct
We can use a universal hash function as a MAC

Provided that we only authenticate one message!

Constructing MACs
0000000000
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Wegman-Carter Construction

How to circumvent this limitation?
® Use a PRF to strengthen the UH
® Converts a UH into a fully secure MAC
® AES can fill the PRF role!

Constructing MACs
0000000800
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Wegman-Carter Construction

How to circumvent this limitation?
® Use a PRF to strengthen the UH
® Converts a UH into a fully secure MAC
® AES can fill the PRF role!

Intuition: Encrypt Universal Hash Value

UH(k1, m) ® PRF(ky, n)

® The full MAC key is (ki, k2)
® nis a public value that must never repeat
® Ak.a. a nonce

® This can be kept as a counter, or generated at random

Constructing MACs
0000000800
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Poly1305-AES: Wegman-Carter in Practice

® |nitial proposal used AES as the Wegman-Carter PRF

® The universal hash function uses prime p'3° — 5
Poly1305((k1, k2), m) = (mik + ...+ myk" (mod p)) + AES(kz, n)

® Blocks are 128 bits and last block is padded with 100
e All blocks set bit 129, so MSB is 1

® The final addition is performed modulo
® TLS recommends Poly1305 with ChaCha20, rather than AES

2128
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& Key Takeaways &

e Keyed hashing allows for message authentication
e For hash function h, one cannot produce h(k,x) w/o k

® Provides integrity; ciphers give confidentiality
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& Key Takeaways &

e Keyed hashing allows for message authentication

For hash function h, one cannot produce h(k,x) w/o k

Provides integrity; ciphers give confidentiality

Just add a key as prefix!
® Problem! Length extension attacks
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& Key Takeaways &

Keyed hashing allows for message authentication
For hash function h, one cannot produce h(k,x) w/o k
Provides integrity; ciphers give confidentiality
Just add a key as prefix!
® Problem! Length extension attacks

HMAC
® |nput padding and output padding, both using the key

Constructing MACs
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Keyed hashing allows for message authentication
For hash function h, one cannot produce h(k,x) w/o k

Provides integrity; ciphers give confidentiality

Just add a key as prefix!

® Problem! Length extension attacks
HMAC

® |nput padding and output padding, both using the key
CMAC

® Do AES-CBC without IV; return the last block
® With a twist to prevent prefix extension

Constructing MACs
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& Key Takeaways &

Keyed hashing allows for message authentication
For hash function h, one cannot produce h(k,x) w/o k

Provides integrity; ciphers give confidentiality

Just add a key as prefix!

® Problem! Length extension attacks
HMAC

® |nput padding and output padding, both using the key
CMAC

® Do AES-CBC without IV; return the last block

® With a twist to prevent prefix extension
Wegman-Carter

® Use a UHF for a unique message
® XOR it with an encryption of a nonce
® Used in AES-GCM (next class)

Constructing MACs
0000000008
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