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Complexity & Cryptography

Given that the model of secrecy used by modern cryptography is not compatible with “secrecy

by obfuscation”
1
its security must rely on the Computational Complexity results.

1
Kerckho!s’ “law”
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Turing Machine

1 A Turing machine can both write on the tape and read from it.

2 The read–write head can move both to the left and to the right.

3 The tape is infinite.

4 The special states for rejecting and accepting take e!ect immediately.
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Turing-recognisable language

Call a language L Turing-recognisable if some Turing machine A recognises it. That is, if

given a word w → L as input the TM always come to a stop giving a positive answer.

Turing-decidable language

Call a language Turing-decidable or simply decidable if some Turing machine decides it.

Some (actually the vast majority) languages are not decidable neither not recognisable.
The obvious example is the language of Turing Machines that halt with an empty input. (The

“halting problem”).
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Turing machine that decides A = {0
2n
|n ↑ 0}.
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Church–Turing thesis

All models of enough expressiveness are equivalent.
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Turing Machine variants

ManyTapesInOneSimulator Input: w = w1w2 · · ·wn

1 The tape is initialised to simulate the k tapes of A as

#w
→
1w2 · · ·wn#

→
#

→
# · · ·#

→
#

2 To simulate each step of A, sweeps the tape from the first # up to the

(k + 1)th # to get the symbols in the head positions of each tape. Then

updates “the tapes” as established by A’s program.

3 At any point if it moves a “virtual head” to a #, this means that A would

have that head on a non written cell. Thus writes
→
and shifts the content

of the whole rest of the tape, one cell, to the right, and continues the

simulation.
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Universal Turing machine

Theorem

There is a TM U that, for any input (x ,ω) one has U(↓x ,ω↔) ↗ Mω(x), where Mω is the TM

such that ↓Mω↔ = ω. Furthermore, if Mω with input x stops after t steps, then U(↓ω, x ↘)

stops after ct log t steps, where c is a constant depending solely of Mω (number of tapes,

number of states and size of the alphabets).

The proof is quit straightforward using 3 tapes.
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Non-deterministic Turing machines

The same way that a Finite automaton may have a nondeterministic behaviour definition (or a

PDA), also a TM may have a non-deterministic behaviour. In that case

ε : Q ≃ ” ↘ 2
Q↑!↑{R,L}.

Of course, now, a TM can reach an accepting and a rejecting state with the same input. So

we need a new semantic for the language recognised by a nondeterministic TM. The way is

done is by valuing di!erently the positive and the negative answers. Thus, we say that TM M

accepts input x if there is a branch (or if you prefer, an instance of the TM M) that ends in

an accepting configuration. Of course it it does not make sense to have a decisor semantics

for a nondeterministic TM, because a negative answer may never occur because some branches

may simply enter in never-ending loops.
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Surprisingly (or not!) the following theorem states that, in our most advanced model of

computation, non-determinism is (again) just a syntactic artifice.

Theorem
For any nondeterministic TM N there is a deterministic TM D that simulates it.

Proof:
To prove this we will use a 3-tape TM (because we can!) to make its behaviour clearer.

Let the tapes of D be called T1, T2 and T3.

T1 will contain the input w and will be used as a read-only tape.

T3 will be the “working tape”, and it will be continuously erased and re-written, every

time computation changes “branch”.

T2 will contain the “branch address”.

Let m be the maximum number of nondeterministic branches in any state (that is trivially

bounded by |#|.|”|.|Q|.2).

What do we mean by “branch address”?

1 2

11 12 13 21 22

111 112 121 122

131 132

1311

1312

221 222 223
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D Input: w

1 Initially T1 contains w and T2 and T3 are empty.

2 Copies T1 to T3.
3 Uses T3 to simulate N with input w in one of branches of its

nondeterministic execution, in the following manner. Executes N using the

symbols in T2 to choose which nondeterministic option to assume. If the

end of tape T2 is reached, the address is invalid or reaches a rejecting

configuration, jumps to 4. If it reaches an accepting configuration (of N),

stops and accepts the input.

4 Re-writes T2 inscribing the sucessor of the previous integer (in base m).

Returns to 2.
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Corollary

A language L is recognisable if and only if there is a nondeterministic TM that recognise it.
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Enumerators

Another kind of device is one that has two tapes (T1 and T2) instead of just one tape. The

T1 is used as “working tape” and T2 is used as an “output tape” (and thus, “write only”).

This device inscribes in T2 all the words of the corresponding language, using a new symbol

“#” to delimit words. On T2 the words do not need to appear in any pre-defined order.

Theorem
A language L is recognisable if, and only if, it exists an enumerator for L.

Proof: Suppose that L has an enumerator E , then one can construct a TM M that acts as a

recogniser for L.

Rogério Reis Cryptography Week #7 2025.11.07 13 / 52



M Input: w

1 Executes E , step by step, and every time that “#” is written in T2

compares w with the last word written on T2.

2 If the comparison is successful, accepts w and stops.

Now, suppose that there is a recogniser R for L. We can construct an enumerator E for L

using an enumerator E” of all the words in #
ε
.
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E

For i = 1, 2, 3, . . . proceed in the following way:

1 Obtain, from E”, the list of words w1,w2, . . . ,wi and for each of these

words executes i steps of R with each of these words as input.

2 If in the ith step R accepts any of the words, put those words in T2, and

continues.
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Examples of decidable languages

All problems that are expressed in terms of regular languages are decidable!

Theorem

ACFG = {↓G ,w↔ | G is a CFG ,w → L(G )} is decidable.

Proof:
A decisor can be defined as

S Input: ↓,G ,w↔

1 Writes G in CNF.
2 Lists all derivations with 2n ⇐ 1 steps (|w | = n).
3 Verifies if w is produced by G .
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Theorem

ECFG = {↓G ↔ | L(G ) = ⇒} is decidable.

Proof:
R decides ECFG :

R Input: ↓G ↔

1 Marks all terminal symbols (including ϑ).
2 Repeats until saturated

1 Marks all symbol A with rule A ↘ U1U2 · · ·Un where Ui are marked, ⇑i .

3 If the starting symbol is marked rejects, otherwise accepts.
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Examples of recognisable languages

Theorem

ATM = {↓M,w↔ | M is a TM,w → L(M)} is recognisable.

Proof:
It is enough to use the Universal TM U :

U Input: ↓M,w↔

1 Simulates M with input w .

2 If M accepts, U accepts.
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Theorem

ETM = {↓M↔ | L(M) ⇓= ⇒} is recognisable.

Proof: Again, using U :

R Input: ↓M↔

1 Let s1, s2, . . . be the sequence of the words with the alphabet of M.

2 For i → N
1 Simulates i steps of M with input sk for k ⇔ i .

2 If any simulation reaches an acceptance configuration, stops, and accepts.
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Theorem
ATM is undecidable.

Proof:
By contradiction suppose that we have H deciding ATM

H Input: ↓M,w↔

1 If M accepts w , accept.
2 Else, rejects.
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Then we can construct D

D Input: ↓M↔

1 If H with input ↓M, ↓M↔↔ accepts, then D rejects.
2 If H with input ↓M, ↓M↔↔ rejects, then D acepts.

Thus

D(↓M↔)

{
accepts, if M does not accept ↓M↔

rejects, if M accepts ↓M↔
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What happens if we execute D with input ↓D↔?

D(↓D↔)

{
accepts, if D(↓D↔) rejects,

rejects, if D(↓D↔) accepts.

Clearly an absurd resulting of the supposition of existence of H.

Thus H cannot exist!
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We could have used Cantor’s “diagonal argument” to construct D.

↓M1↔ ↓M2↔ ↓M3↔ · · · ↓Mk↔ · · ·

M1 A A R · · · R · · ·

M2 A R A · · · A · · ·

M3 A A R · · · A · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

D = Mk R A A · · · ? · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Rogério Reis Cryptography Week #7 2025.11.07 23 / 52



Computational Complexity

The computational complexity of a task is the mesure of the time necessary to accomplish the

task as a function of the size of the input.

This is normally done using a Turing Machine using a single tape as reference, but (as long as

they are deterministic) other models do not give results that correspond to di!erent classes of

complexity.

We will work on the assumption that the choice of the model of computation used is irrelevant

in what complexity classification is concern
2
.

2
Kind of a Church-Turing thesis v2.0.
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Landau notation

The “big O” notation

f (n) = O(g(n))

↖k > 0↖n0 ⇑n > n0 : |f (n)| ⇔ k g(n)

When f (n) = O(g(n)), we say that g(n) is an upper bound for f (n), or more precisely, that

g(n) is an asymptotic upper bound for f (n), to emphasise that we are suppressing constant

factors.
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Landau notation

f1(n) = 5n
3
+ 2n

2
+ 55 = O(n

3
)

f1(n) = O(n
4
)

f1(n) ⇓= O(n
2
), because, ⇑k ⇑n0 ↖n > n0 : |f1(n)| > k n

2

f2(n) = 3n log2 n + 5n log2 log2 n + 2 = O(n log n)
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Landau Notation

The “small o” notation

f (n) = o(g(n))

lim
n↓↔

f (n)

g(n)
= 0
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Complexity Theory

Traditionally Complexity Theory considers only a special kind of programs that takes an input

and and returns an answer of acceptance or rejection of that input. The set of accepted words

by one of these programs is called the language defined by the program and we say that the

program decides the language in the sense that it decides, for each word fed as input, if it

belongs to the language or not.

Although this model does not covers all the problems that are necessary to study, most of the

problems may be divided in components that follow in this definition of “decision program”.

Thus, we may see the study of the complexity of these “decision programs” as the study of

lower bounds for complexity of a more general set of programs.
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Complexity Classes

TIME

Let t : N ↘ R+
be a function. Define the time complexity class, TIME(t(n)), to be the

collection of all languages that are decidable by an O(t(n)) time Turing machine.

SPACE

Let t : N ↘ R+
be a function. Define the space complexity class, SPACE(t(n)), to be the

collection of all languages that are decidable by an Turing machine using a O(t(n)) space in

their tape.
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How important is the complexity in practice?
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Complexity Classes

It is easy to see that if a function f is in TIME(g(n)) then it cannot but be in SPACE(g(n)).

TIME(n
2
) ↙ SPACE(n

2
)

The most “important” of the complexity classes is P:

The class P

P =

⋃

k↗N
TIME(n

k
)

Thus P is the class of complexity of all the functions that can be decided in a polynomial time

by a Turing Machine.
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Examples of languages in P

RelPrime Given two integers, decide if their greatest common divider is 1, i.e. if they are

coprime. The Euclides’ algorithm solves the problem in time O(n).

PrimeP Given an integer decide if it is a prime number. Proven in 2002 (PRIMES is in P,

Agrawal, Kayal and Saxena, 2002). The AKS algorithm runs in time

O(n
12
log(n

12
)) = Õ(n

12
)
3
. Although this a polynomial asymptotic complexity,

in practice, and for the size of numbers one wants to use it, the AKS is

outperformed by many algorithms of non polynomial complexity.

Any CFL Any context-free language have a CFG that recognises it and CYK parser can

thus operate in time O(n
3
).

3
This is the “soft-O” notation: Õ(f (n)) = O(f (n) log f (n)).
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Complexity Classes

In the same manner:

The class PSPACE

PSPACE =

⋃

k↗N
SPACE(n

k
)

PSPACE is the class of complexity of the functions that can be decided by a Turing Machine

using polynomial space on its tape.
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Complexity Classes

The second most “important” of the complexity classes is NP. NP does not stand for

“non-polynomial” but for “nondeterministic polynomial”, that is languages that (these
conditions are equivalent):

can be decided by a nondeterministic Turing Machine in polynomial time;

can be verified in polynomial time by a (deterministic) Turing Machine.

By “verified” one means that a Turing Machine with input ↓w , c↔ can decide if w is part of the

language using c as additional information (normally called a witness). The time dependence

of the machine only takes in account the size of w and not c .
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Examples of languages in NP

Of course, P → NP, and thus all the previous examples are in NP.

Composites Given an integer decide if it belongs to {n | ↖p, q, (p, q < n) ∝ (n = pq)}.

Trivially is in NP because a verifier is straightforward to write using the list of

factors as witness. Although many believe that the problem is in P, we still do

not know any algorithm that ensure that.

Clique Given a graph G and an integer k , decide if G has a k-clique as a subgraph. As

a witness its enough to give the list of the vertices of the k-clique.

SubSet-Sum

{
↓S , t↔ | S = {x1, . . . , xk} ∝ S

→
↙ S ∝

∑

x↗S →

x = t

}

DiscreteLog Given p, a and n decide if there is k s.t.

a
k
↗ n (mod p).
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Complexity Classes

NTIME

Let f : N ↘ R+
be a function. Define the time complexity class, NTIME(t(n)), to be the

collection of all languages that are decidable by an O(t(n)) time nondeterministic Turing

machine.

NP

NP =

⋃

k↗N
NTIME(n

k
)
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P vs NP

P = the class of languages with quick membership decision.

NP = the class of languages with quick membership verification.

One of these is correct! Which one?
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The best deterministic method currently known for deciding languages in NP uses exponential

time.

EXPTIME

NP ↙ EXPTIME =

⋃

k↗N
TIME

(
2
nk
)
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SuperPolyTime is not ExpTime
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NP-Completness

Polynomial time computable function

A function f : #
ε
↘ #

ε
is a polynomial time computable function if some polynomial time

Turing machine M exists that halts with just f (w) on its tape, when started on any input w .
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NP-Completness
Polynomial time reduction

Language A is polynomial time reducible to language B , written A ⇔P B , if a polynomial

time computable function f : #
ε
↘ #

ε
, where

⇑w w → A ′∞ f (w) → B .

The function f is called the polynomial time reduction of A to B.
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NP-Completness

Theorem
If A ⇔P B and B → P, then A → P.

NP-complete

A language B is NP-complete if it satisfies:

1 B is in NP, and

2 ⇑A → NP(A ⇔P B). (we say that B is NP-hard)

Theorem
If B is NP-complete and B → P, then P = NP.

Theorem
If B is NP-complete and B ⇔P C for C → NP, then C is NP-complete.
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NP-Completness

The set of NP-complete languages (problems) is the set of hardest languages (problems) in

NP.
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Examples of NP-complete languages

Traveling salesman problem Given a graph with weights labelling each edge decide if

there is a path through all the vertices with a total sum not exceeding a given x .

Clique Given a graph G and an integer k to decide if G has as a sub-graph a clique of

size k .

Knapsack Given set of integers S and two additional integers x and y decide if there is a

Q ↙ S such that x ⇔
∑

q↗Q q ⇔ y .

· · · ↙ P ↙ NP ↙ PSPACE = NPSPACE ↙ EXPTIME ↙ NEXPTIME ↙ EXPSPACE ↙ · · ·
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The Factoring Problem

prime number

A number p is prime if its only positive factors are 1 and p.

Fundamental Theorem of Arithmetic
For any positive integer n there is a unique factorisation of n as a product of increasing primes.

The factoring problem consists of finding the prime numbers p and q given a large number,

N = pq. The widely used RSA algorithms are based on the fact that factoring a number is

di$cult. In fact, the hardness of the factoring problem is what makes RSA encryption and

signature schemes secure. This problem is indeed hard, yet probably not NP-complete.
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How to factor an integer?

To factor the number n we can try to divide n by every i → {2, . . . , n ⇐ 1}. This will take a

time O(n).

But we can do better...

We can try to divide n by every i → {2, . . . , ∈
∋
n△}. We have reduced the time to O

(
n

1
2

)

Still, we can improve.

We can only try to divide n by the primes that are smaller than
∋
n. By the prime number

theorem we know that the number of primes below
∋
n is approximately

↘
n

log
↘
n
. This makes

the task faster. But still we need 2
120

operations for a 256-bit integer. Not good enough!
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The fastest factoring algorithm is the general number field sieve (GNFS), with an average

time to operate for a number n of

e
1.91n

1
3 (log n)

1
3 .

Factoring a 1024-bits integer 2
70

operations

Factoring a 2048-bits integer 2
90

operations

Factoring a 4096-bits integer 2
128

operations
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1 In 2005, after about 18 months of computation — and thanks to the power of a cluster

of 80 processors, with a total e!ort equivalent to 75 years of computation on a single

processor—a group of researchers factored a 663-bit (200-decimal digit) number.

2 In 2009, after about two years and using several hundred processors, with a total e!ort

equivalent to about 2000 years of computation on a single processor, another group of

researchers factored a 768-bit (232-decimal digit) number.

Thus the estimates are very optimistic regarding the possible performance of computers and

algorithms.
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So we have a problem that is in NP and that looks hard, but is it as hard as the hardest NP

problems? In other words, is factoring NP- complete? Probably not.

Factoring may then be slightly easier than NP-complete in theory, but as far as cryptography is

concerned, it’s hard enough, and even more reliable than NP-complete problems. Indeed, it’s

easier to build cryptosystems on top of the factoring problem than NP-complete problems,

because it’s hard to know exactly how hard it is to break a cryptosystem based on some

NP-complete problems—in other words, how many bits of security you’d get.

On the other hand... we may have to deal with quantum computers...
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... and if we are not careful, factoring can became easy!

To factor 17976931348623159077293051907890247336179769789423065

7273430081157739343819933842986982557174198257278917258638193

7092658191860266261806597306650627109955565786394477156084151

8689565284169198292110720231716536912489048151238855803905342

7125099290315449262324709315263256083132540461407052872832790 915388014592 takes

just a few seconds because

its factors are: 2
800

, 641, 6700417, 167773885276849215533569 and

37414057161322375957408148834323969.
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The Discrete Logarithm Problem

Consider the multiplicative group Z≃
p (with p prime). The DLP consists, given g and x , in

finding y such that g
y
= x in Z≃

p, i.e.

g
y
↗ x (mod p).

In this conditions DLP seems as hard as the integer factoring problem.
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