

(Applied) Cryptography

Tutorial #10

Bernardo Portela (bernardo.portela@fc.up.pt) Rogério Reis (rogerio.reis@fc.up.pt)

November 28, 2025

1. Is $(4, 7)$ a point in the elliptic curve $y^2 = x^3 - 5x + 5$ over \mathbb{Z}_{23} ? And over \mathbb{R} ?
2. On the elliptic curve real numbers $y^2 = x^3 - 6x$, let $P = (-2, 2)$ and $Q = (3, 3)$. Find $P + Q$ and $2P$.
3. Consider the elliptic curve defined by $y^2 = x^3 + x + 6$ over \mathbb{Z}_{11} . Determine all of the points of the curve.
4. For the curve defined in the previous question, consider the point $G = (2, 7)$. Compute the multiples of G from $2G$ through $13G$.
5. Write python/SageMath programs that for P-192¹ and ECDSA
 - (a) Generates a pair of private/public keys.
 - (b) Sign a text using a private key.
 - (c) Verifies a signature using a public key.

¹<https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>