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. In a public-key system using RSA, you intercept the ciphertext C' = 20 sent to a user whose
public key is e = 13, n = 77. What is the plaintext M?

. In a RSA system, the public key of a given user is e = 65, n = 2881. What is the private
key of this user?

. Suppose Bob uses the RSA cryptosystem with a very large modulus n for which the factori-
sation cannot be found in a reasonable amount of time. Suppose Alice sends an enciphered
message to Bob containing only her phone number: number® (mod n). Is this safe?

. Although, since 2002, there is a published algorithm with polynomial complexity to test
primality of an integer, its performance for small sizes is too slow to be considered as usable.
What is normally used is a probabilistic test, that can be iterated the necessary number of
times so that the probability of a false positive may be made negligible. The Miller-Rabin
is a primality test of this kind.

Theorem 1. If p is an odd prime, then the equation
=1 (mod p)

has only two solutions: x =1 and x = —1.

Proof. If x is solution of the equation, then

?2-1 =

(z+D(z—-1) =

0 (mod p)
0 (mod p)
thus

pl+)Vvpl|(z-1).
Suppose that p | (z+1) A p | (x—1). Then we can write (z+1) = kp and (z—1) = jp for some
integers k and j. Subtracting both equations we get 2 = (k — j)p that is only satisfied with
p = 2, but the initial assumption states that p is an odd prime. Thus p | (x+1) V p | (z —1).

Suppose that p | (x — 1). Then
(3k)(z — 1 = kp)

and hence x =1 (mod p).

In an entirely analogous manner we proceed if x = —1 (mod p). |

We can look at this theorem in a different perspective: if we can find a solution for z2 = 1
(mod n) that is different from x = 41, then we can conclude that n is not prime.



Theorem 2. Let p be an odd prime and a such that pta. We can always express p—1 as
p—1=2F
with d odd. Thus, one of the two following is true:
(a) a? =1 (mod p),

(b) 3ie{0,....k—1} ¥ = —1 (mod p).
Proof. By Fermat’s theorem, a?'d =1 (mod p). Thus, in the following sequence
ad,a2d7a22d’ B .7a2’“d

at least the last is congruent with 1. But each of the powers of a is the square of the previous.
Thus, one of the following is true

(a) a?=1 (mod p);
(b) Fie{1,...,k}, , v
=1 (modp) A a? £ (mod p).

As we are in the conditions of the previous theorem, we conclude that

i—1
2d=_q

a (mod p).

O

We can, then, write a programming function, WITNESS, that takes a number n and a “wit-
ness” a, with (a,n) = 1, and tests if a® # 1 (mod n) and a®>? # —1 (mod n), for all
0 < i < k. If the test succeeds we know for sure that the number is not a prime. If it fails
we cannot conclude, but we have a probability of % of n being a prime. We can repeat the
test (with a different values for a). If we try m times and all the tests are negative we can
ensure that the number n is a prime with a probability 1 —27™.

Programming assignment: Write a python program that implements this strategy and
test it for large primes.

. In the RSA public-key encryption scheme, each user has a public key e and a private key
d. Suppose Bob leaks his private key. Rather than generating a new modus, he decides to
generate a new public key e and a new private key d. Is this safe?
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