
Criptografia (Aplicada)
2022/2023 - MSI/MCC/MERSI

Manuel Barbosa
mbb@fc.up.pt

mailto:mbb@fc.up.pt

Aula 12

TLS and Signal

Transport Layer Security (TLS)

Security Model
• Network attacker:

• controls all infrastructure: routers, DNS, etc.

• Eavesdrops, injects, drops, changes packages/messages.

• Examples:

• wireless public network, e.g., coffee shop/store

• network access in a hotel, at work

• our own ISP …

Handshake TLS1.3 = Authenticated Diffie-Hellman

• Historically the TLS handshake used mostly:

• session key transport from client to server (RSA)

• implicit server authentication => correct use of secret key

• Today the advantages of DH are clear:

• much more efficient using elliptic curves

• perfect forward secrecy:

• long-term keys are used for digital signatures and not session key transport

• compromising long-term key does not compromise past key agreement executions

TLS requires PKI
• Server authenticates the DH exchange using a digital signature (client signature is optional)

• How does the client know which key to verify server signature?

• Server sends public-key certificate

• Client validates public-key certificate (pre-installed root CAs) =>

• domain name must match certificate subject

• it is possible to use wildcards in the certificate for the leftmost component, e.g., *.a.com

• Client uses the public key to verify the server's signature

• Recall: client usually not authenticated => server could be talking to anyone

http://a.com

Handshake TLS 1.3

Client
Server

ClientHello: nonceC, KeyShare

ServerHello: nonceS, KeyShare, Enc[certS, certCA, …]

CertVerify: Enc[SigS(dados)] Finished

DH

DH encrypted

auth server

Finished

Session key derivation: KDF(DHKey, nonceC, nonceS)

 Secure channel (AEAD = symmetric crypto)

Application data

skS
certS

Handshake TLS 1.3: Otimization (caution)

Cliente
Servidor

ClientHello: nonceC, KeyShare, Enc[data 0-RTT]

ServerHello: nonceS, KeyShare, Enc[certS, certCA, …]

CertVerify: Enc[SigS(dados)] Finished

Finished

Derivação de chaves de sessão: KDF(DHKey, nonceC, nonceS)

 Canal seguro (AEAD = criptografia simétrica)

Dados da aplicação

skS
certS

Data encrypted with pre-shared key:

vulnerable to repetition attacks 

 
Could be OK for requests that do not  

cause side-effects, but caution required!

Integration TLS/HTTP
• HTTP messages are payloads transmitted inside the secure channel (hidden)

• Problems/solutions:

• web proxy: proxy needs to know HTTP header to establish connection

• client can send the domain name before the encrypted client hello message

• virtual hosts: same IP, multiple DNS => how does server know which certificate to use?

• old solution: client-hello includes server domain name

• TLS1.3 tries to hide domain name for privacy (encrypted certificates)

• future solution: domain name encrypted under public key provided by DNS server

Integration TLS/HTTP

• Why not use HTTPS for all traffic?

• some years ago => performance

• today => AES-NI => HW acceleration => no excuse

• Since 2018 browsers tend to tag HTTP sites as insecure

• e.g., visual indication, alarm when password is sent, etc.

TLS/HTTPS in browsers
• Debatable whether visual indicators are effective:

• do we confirm the domain name?

• do we confirm we have a secure connection?

• What if we click on a link http://www.paypal.com?

• correct server policy => redirect from http to https

• but => MiM could connect on our behalf to https://www.paypal.com

• This is called SSL Strip Attack (modern browsers signal this => does user notice?)

• solution => possible to push to browser a flag that indicates all future connections to this
domain name should use HTTPS (Strict Transport Security) => cleared with cache

http://www.paypal.com?
https://www.paypal.com

TLS/HTTPS in browsers
• Never forget Man in the Middle attacks:

• Only protection is an authenticated server public key

• Corrupt or hacked CA has catastrophic impact:

• several examples TurkTrust (2013), Indian NIC (2014), WoSign (2016)

• signed false certificates for Google, Yahoo, etc.

• Can only be fixed by eliminating certificates from operating system
distributions

Privacy
• TLS reveals a lot of meta information (endpoints, size and number of

messages, etc.)

• Traffic analysis ofter permits inferring:

• application with which one is interacting

• what operations one is doing

• TOR provides some protection, but can be removed by sufficiently
powerful attacker

Secure Messaging

(extra: não sai para teste)

Secure Messaging
• Ano 2004:

• Existiam já mecanismos de comunicação por instant messaging,
geralmente centralizados

• AIM, MSN, ICQ, …

• Começaram a aparecer os primeiros overlays que pretendiam garantir
“segurança” contra adversários externos e o próprio servidor.

• Esses overlays eram baseados nas tecnologias de chave pública dos
anos 90: S/MIME, PGP/GPG.

I Seek You (ICQ)

Off the Record Messaging

• Ano 2004: Off the Record Messaging (OTR)

• Requisitos de segurança e privacidade inovadores:

“We argue that not only must encryption be used to hide the contents of the conversation, but also,
the encryption must provide perfect forward secrecy to protect from future compromises.  
Additionally, authentication must be used to ensure that the person on the other end is who they claim
to be.  
However, the authentication mechanism must offer repudiation, so that the communications remain
personal and unverifiable to third parties.  
Only with these properties can privacy similar to real-world social communications be achieved.”

Off the Record Messaging
• Mecanismos clássicos não satisfaziam todos os requisitos:

• Usam assinaturas digitais para autenticação, o que torna as
mensagens não repudiáveis

• Se não usam assinaturas digitais para autenticação são completamente
inseguros contra Man-in-the-Middle

• Muitas vezes, comprometendo uma chave de longa duração, o
adversário consegue recuperar todas as mensagens trocadas
(transporte de chaves)

Off the Record Messaging
• Ideias chave para perfect-forward-secrecy (ratcheting):

• DH + Assinaturas para handshake inicial => chaves simétricas iniciais

• DH re-keying sob autenticação simétrica kij = H(gxiyj)

stronger property than repudiability: forgeability. Not
only do we want Bob and Eve to be unable to prove that
Alice sent any given message, we want it to be very obvious
that anyone at all could have modified, or even sent it. To do
so, we use a malleable encryption scheme, which makes
it easy to alter the ciphertext in such a way as to make
meaningful changes in the plaintext, even when you don’t
know the key.

In some encryption schemes, such as certain modes of a
block cipher, it is difficult to produce ciphertexts that de-
crypt to meaningful plaintexts without knowing the key.
Even if Eve intercepts Alice’s ciphertext, any changes she
might make will likely result in the plaintext becoming ran-
dom bits, rather than, say, English text. In general, it is
poor practice to rely on this difficulty to authenticate a mes-
sage, as there are truncation and other attacks which Eve
might be able to use. However, such attacks may be difficult
to apply in some cases, and we want to make it absolutely
clear that anyone could have changed a message.

We therefore use a stream cipher. A stream cipher en-
crypts the plaintext by masking it with a keystream using
the exclusive-OR operation; to decrypt, the same exclusive-
OR is used to remove the keystream and reveal the plaintext.
This encryption is malleable, as a change to any bit in the
ciphertext will correspond to a change in the correspond-
ing bit in the plaintext. In particular, if Eve can guess the
plaintext of a message, she can then change the ciphertext
to decrypt to any other message of the same length, with-
out knowing the key. Therefore, a message encrypted with a
stream cipher does not prove integrity or authenticity in any
way. Of course, Alice can still use a MAC to prove to Bob
that her messages are indeed hers; in the next section we will
describe some extra safeguards our protocol takes to ensure
that no one else can use the MAC to verify authenticity.

4. THE OFF-THE-RECORD MESSAGING
PROTOCOL

In this section we shall proceed to build up a messaging
protocol that achieves the desirable properties that we de-
scribed in the previous sections through the use of the cryp-
tographic primitives outlined above. We designed the proto-
col for low-latency communication protocols, such as instant
messaging. Section 6 discusses how it might be changed to
accommodate higher-latency communication, such as email.

4.1 Encryption
First, we want to ensure that a message is kept private;

therefore, we must encrypt it. As discussed in the previ-
ous section, we want to use malleable encryption to provide
plausible deniability. A stream cipher is best suited for this
purpose. In keeping with current standards, we use AES [23]
in counter mode [11]. The encryption key is chosen using a
Diffie-Hellman key agreement to establish a shared secret.

To ensure that the keys are short-lived, Alice and Bob
can choose to perform a new Diffie-Hellman key agreement,
discarding the old key and xA, xB values. At this point, it
will be impossible for Alice or Bob to decrypt old messages,
even with help from an attacker who might remember the
transmitted values of gxA and gxB , without violating the
Diffie-Hellman security assumption. Thus perfect forward
secrecy is achieved, as all messages encrypted with the pre-
vious key are now unreadable.

To reduce the window of vulnerability, when it is possible
to decrypt old messages, Alice and Bob should re-key as fre-
quently as possible. Fortunately, a Diffie-Hellman computa-
tion is fairly cheap — it involves only two modular exponen-
tiations. Therefore, most computers will be able to re-key
with each message; even devices with limited computational
power, such as PDAs, should be able to re-key at least once
a minute. To avoid extra messages during such re-keying,
we combine Diffie-Hellman exchanges with normal message
transmission. Each message includes a Diffie-Hellman pub-
lic key (gx) that will be used to derive the key for subsequent
messages. So, a message exchange might look as follows:

A → B : gx1

B → A : gy1

A → B : gx2 , E(M1, k11)

B → A : gy2 , E(M2, k21)

A → B : gx3 , E(M3, k22)

where kij = H(gxiyj), the result of a 128-bit hash function
H , such as truncated SHA-1 [22], on an element of Z∗

p , and
E(M, k) denotes encryption in AES counter mode using the
key k.4 Each message is encrypted using the shared secret
derived from the last key received from the other party and
the last key that has been previously sent to the other party.
We do not use the key disclosed in one message until the
following message, for reasons of authentication, discussed
below. For example, in the last message above, Alice has re-
ceived gy2 from Bob, and the last key she has sent previously
is gx2 , so the key used to encrypt a message is H(gx2y2). In
practice, a key ID should also be used in the message to en-
sure that both the sender and the receiver know which kij

is being used, since the protocol does not require that Alice
and Bob take turns sending messages to each other.

4.2 Forgetting Keys
To achieve perfect forward secrecy, Alice and Bob must

forget old keys once a new key exchange is complete.5 Ide-
ally, after Alice sends Bob the key gxn , she would like to
be able to forget xn−1. However, since messaging protocols
are typically asynchronous, it is possible that there is still a
message in transit from Bob that was encrypted using the
previous gxn−1 key; if Alice had thrown away the key, she
would no longer be able to read the message. Therefore,
Alice must remember the old gxn−1 key until she receives
a message from Bob that uses the new gxn key. Assuming
that messages are delivered in order, all subsequent messages
from Bob will be encrypted using the new key.6

If Alice sends several messages to Bob in a row without
receiving a response, announcing keys gxn . . . gxm , she will
need to remember the entire sequence of keys xn−1 . . . xm

until she receives a message from Bob, since she cannot be
sure which key the next message from Bob will be encrypted
under. Since using different keys does not help reduce the
4The bit representation of E(M,k) will of course also include
the initial counter value, which will be chosen to be unique
for each message sent.
5For a secure method of forgetting keys, see [8].
6If out-of-order delivery is a concern, Alice can remember
the gxn−1 for a short time window after receiving Bob’s mes-
sage to allow other possibly delayed packets to arrive.

Descarta-se logo que possível kij

Descarta-se logo que possível x, y, gx e gy

Off the Record Messaging
• Ideia chave para repúdio:

• DH + Assinaturas para handshake inicial

• Alguém que registe todo o trace tem uma prova? => Apenas do handshake

• A chave de MAC é calculada como H(Kenc)

• Quando a chave Kenc muda, a chave de MAC é divulgada!

• Porquê => qualquer mensagem autenticada poderia ser feita por qualquer um!

Signal
• Vários protocolos de messaging seguro com “end-to-end-encryption”

surgiram nos últimos anos, que protegem contra a “curiosidade” do
próprio servidor.

• Os grandes fabricantes de software e fornecedores de serviços
adoptaram esse standard de segurança, sob pena de perderem
utilizadores.

• O mais proeminente é talvez o Signal, que tem as suas próprias
aplicações, e é também adotado pelo Whatshapp e pelo Facebook
Messenger.

2E9 utilizadores!!!

Estrutura do Signal

•A comunicação tem de ser possível mesmo com uma das
parties off-line

• Implica utilizar o servidor como buffer e, inicialmente, como
canal que autentica utilizadores

•O bootstrap é feito quando um utilizador regista uma identity
key (chave de assinatura de longa duração) no servidor

• autenticação com base no telemóvel

Estrutura do Signal
• O acordo de chaves tem 3 partes

• Handshake inicial: extended tripple Diffie-Hellman (X3DH)

• Asymmetric ratchet (quando recebemos DH fresco): recalcula-se chave de sessão com
mistura de DH antigo e DH novo

• Symmetric ratchet (quando não recebemos DH fresco): recalcula-se chave de sessão com
base em hashing

• Cada mensagem é protegida com uma chave diferente (perfect forward secrecy)

• Introduz-se um novo objetivo de segurança: post-compromise security, que permite recuperar
segurança mesmo se o estado interno do protocolo for revelado.

(Figuras de https://eprint.iacr.org/2016/1013.pdf)

https://eprint.iacr.org/2016/1013.pdf

Comunicação Offline

• Para garantir comunicação quando um contacto está offline:

• todos os contactos submetem regularmente um número significativo
de chaves DH efémeras para o servidor.

• Quando queremos enviar uma mensagem a um contacto:

• podemos pedir uma dessas chaves ao servidor, para termos um
elemento fresco para o ratcheting assimétrico ou handshake inicial.

Registo
• Cada recetor regista o seguinte conjunto de chaves públicas:

• Uma identity key Kid (DH longo prazo + assinatura)

• Uma signed DH prekey de médio prazo assinada com Kid (partilhadas por todos os
emissores)

• Chaves DH de curto prazo, descartadas pelo servidor uma vez entregues a um emissor

• Em resumo:

• existem chaves DH de curta e média duração para acautelar ataques MitM localizados no
tempo => necessário interceptar ambas

• existem chaves de assinatura de longa duração => necessário intervir no início para ser
possível lançar ataques MiM sobre chaves DH de média duração

Tripple Handshake

Identity Key Prekey Ephemeral Key Ratchet Key0

Message Key

Alice

Bob

ikA / ipkA

ikB / ipkB prekB / prepkB

ekA / epkA

eprekB / eprepkB

rchkA0 / rchpkA0

ms = (prepkB)ikA k (ipkB)ekA k (prepkB)ekA k (eprepkB)ekA

(prepkB)rchkA0

K
D
F

r

ckir0,0 K
D
F

m

mkir0,0

Figure 4: A key schedule diagram for the initial X3DH key exchange of the Signal protocol. In this caption, the terminology
“sending” and “receiving” refers to Alice’s point-of-view. Note that denotes DH values that are used in multiple X3DH
exchanges, denotes DH values that are are used only in a single X3DH exchange, and denotes DH values that
are also used in the Double Ratchet protocol. This example key schedule captures an initial X3DH key exchange, in which
Alice uses the standard cryptographic data from Bob’s prekey bundle (plus a one-time ephemeral pre-key eprepkB) to
compute the first root key rk1, the first sending chain key ckir0,1, and the first message key mkir0,0.

ephemeral values from Bob (usually via a key distribution server); second, Alice treats the received values as
the first message of a Signal key exchange, and completes the exchange in order to derive a master secret.

2.7.1. Receiving ephemerals. The most common way for Alice to receive Bob’s session-specific data is for
her to query a semi-trusted server for pre-computed values (known as a PreKeyBundle).

When Alice requests Bob’s identity information, she receives his identity public key ipkB , his current signed
prekey prepkB , and a one-time prekey eprepkB if there are any available. Signed pre-keys are stored for the
medium term, and therefore shared between everyone sending messages to Bob; one-time keys are deleted by
the server upon transmission. Alice’s initial message contains identifiers for the prekeys so that Bob can learn
which were used.

2.7.2. Computing the shared secrets. Figure 4 shows the key schedule for the initial handshake in greater
detail. (This is a subset of Figure 5.)

Once Alice has received the above values, she generates her own ephemeral key ekA, and computes a
session key by performing three or four group exponentiations as depicted in Figure 3. She then concatenates
the resulting shared secrets and passes them through a key derivation function (KDFr, see Figure 7a) to derive
an initial root key rk1 and sending chain key ckir0,0. (No DH value is passed to KDFr for this initial invocation.)
For modelling purposes, we also have Alice generate her initial sending message key mkir0,0 (which is this
stage’s session key output) and the next sending chain key ckri1,0. Finally, she generates a new ephemeral DH
key rchkA0 known as her ratchet key.

For Bob to complete5 the key exchange, he must receive Alice’s public ephemeral key epkA and public
ratchet key rchpkA0 . In the Signal protocol, Alice attaches these values to all messages that she sends (until
she receives a message from Bob, since from such a message she can conclude that Bob received epkA and
rchpkA0). To disentangle the stages of the model, we have Alice send epkA, rchpkA0 in a separate message; thus,
once the session-construction stage is complete, both Alice and Bob have derived their root and chain keys.

When Bob receives epkA and rchpkA0 , he first checks that he currently knows the private keys corresponding
to the identity, signed pre-, and one-time pre-key which Alice used. If so, he performs the receiver algorithm
for the key exchange, deriving the same root key rk1 and chain key (which he records as ckir0,0). For modelling
purposes, we also have Bob generate his initial receiving message key mkir0,0 (which is this stage’s session key
output) and the next receiving chain key ckir0,1.

The specific key derivation functions used are shown in Figure 7.

2.8. Symmetric-Ratchet Stage—Figure 6(c)

Two sequences of symmetric keys will be derived using a PRF chain, one for sending and one for receiving.
The symmetric chains—to the top and the bottom in Figure 1— may be advanced for one of two reasons:
either Alice wishes to send a new message, or she wishes to decrypt a message she has just received.

5. If the initial message from Alice is invalid, Bob will in fact not complete a session. This does not affect our analysis, which considers
only secrecy of session keys, but may become important if e.g. analysing deniability.

9

• Perspectiva Alice:

• Mensagem enviada identifica chave
efémera utilizada

• Observar como se combinam vários
Diffie-Hellman:

• concatenam-se várias chaves da
forma gxy

• calcula-se o hash (KDFr) =>
chave de cadeia ck

• outro hash (KDFm) => chave
para uma mensagem mk

Ratcheting
• Depende das mensagens

transmitidas e recebidas:

• Quando transmitimos várias
mensagens seguidas, usamos
ratchet simétrico.

• Quando recebemos um novo
valor DH do destinatário,
então fazemos ratchet
assimétrico.

• Destroem-se as chaves de
transmissão (mk) e guarda-se
a última chave de cadeia (ck)

Identity Key Prekey Ephemeral Key Ratchet Key0 Ratchet Key1

Root Key

Chaining Key

Message Key

Alice

Bob

ikA / ipkA

ikB / ipkB prekB / prepkB

ekA / epkA

eprekB / eprepkB

rchkA0 / rchpkA0

rchkB0 / rchpkB0

rchkA1 / rchpkA1

rchkB1 / rchpkB1

ms = (prepkB)ikA k (ipkB)ekA k (prepkB)ekA k (eprepkB)ekA

(prepkB)rchkA0

(rchpkB0)rchkA0 (rchpkB0)rchkA1 (rchpkB1)rchkA1

K
D
F

r

rk1

ckir0,0 K
D
F

m

ckir0,1

mkir0,0

K
D
F

m

ckir0,2

mkir0,1

K
D
F

r

ckri1,0 K
D
F

m

ckri1,1

mkri1,0

K
D
F

r

rk2

ckir1,0

Figure 5: A key schedule diagram for an example session of the Signal Protocol. In this caption, the terminology “sending”
and “receiving” refers to Alice’s point-of-view. Note that denotes DH values that are used in multiple X3DH exchanges,

denotes DH values that are are used only in a single X3DH exchange, and denotes public keys that are used in
two asymmetric ratchets in a single Double Ratchet protocol. This example key schedule captures an initial X3DH key
exchange, in which Alice uses the standard cryptographic data from Bob’s prekey bundle (plus a one-time ephemeral pre-key
eprepkB) to compute the first root key rk1, the first sending chain key ckir0,1, and the first message key mkir0,0. Additionally,
Alice has sent another message before receiving a message from Bob, which requires a symmetric ratchet of the first sending
chain to derive the next message key mkir0,1,. Afterwards, Bob has sent a new ratchet public key rchpkB0 , that he combines
with Alice’s ratchet key rchpkA0 to compute the first receiving chain key ckri1,0, used to derive the next chain key ckri1,1
and the first receiving message key mkri1,0. Finally, Alice has sent a new ratchet key rchpkA1 that is combined with Bob’s
previous ratchet public key rchpkB0 to compute the next root key rk2.

In the former case, Alice takes her current sending chain key ckirx,y and applies the message key derivation
function KDFm to derive two new keys: an updated sending chain key ckirx,(y+1) and a sending message key
mkirx,y . Alice uses the sending message key to encrypt her outgoing message, then deletes it and the old sending
chain key. This process can be repeated arbitrarily.

An example of the symmetric ratchet is shown in the bottom of Figure 5. Specifically, on the lines labelled
“chaining key” and “message key”, there is one symmetric ratchet stage shown: stage [sym-ir:0,1] which
computes mkir0,1.

When Alice receives an encrypted message, she checks the accompanying ratchet public key to confirm
that she has not yet processed it, and if not she then performs an asymmetric ratchet update, described below.
Regardless, she then reads the metadata in the message header to determine the index of the message in the
receiving chain, and advances the receiving chain as many steps as is necessary to derive the required receiving
message key; by construction, Alice’s receiving message keys equal Bob’s sending keys. Unlike for the sending
case, Alice cannot delete receiving message keys immediately; she must wait to receive a message encrypted
under each one. (Otherwise, out-of-order messages would be undecryptable since their keys would have been
deleted.)

This means that Alice can retain any particular receiving chain for as long as she wants. Moreover, along
any given chain, chain keys can be ratcheted forward to produce message keys in such a way that message
keys are independent of each other so retaining them while waiting for late messages to arrive should not
compromise other messages. This means that along a receiving chain, Alice can produce the message key for
delayed message 2, while still symmetrically ratcheting forward to decrypt received messages 3, 4, 5, etc., safe
in the knowledge that retaining message key 2 while waiting for the message to arrive should not endanger
other message keys along the chain. The two core concepts of the root key producing chain keys, and the
chain keys producing message keys, means that messages can arrive in arbitrary order while Alice and Bob can
continue to asymmetrically and symmetrically ratchet forward.

The open source implementation of Signal has a hard-coded limit of 2000 messages or five asymmetric
updates, after which old keys are deleted even if they have not yet been used.

2.9. Asymmetric-Ratchet Stage—Figure 6(d)

The final top-level stage of Signal is the asymmetric-ratchet update. In this stage, Alice and Bob take turns
generating and sending new DH ratchet public keys and using them to derive new shared secrets. This behaviour

10

• Como gerimos o “esquecimento” do lado do receptor?

• As mensagens podem chegar desordenadas, portanto temos de nos lembrar das

mk passadas até recebermos uma mensagem cifrada com essa chave.

• Se avançarmos a chain, todas as mensagens intermédias estão protegidas!

Pressupostos e garantias
• Recebemos o idk inicial por canal autêntico (servidor honest but curious)

• Recebemos DH do primeiro triple handshake por canal autêntico.

• Isto garante confidencialidade e autenticidade do master secret.

• O esquecimento das chaves garante perfect forward secrecy.

• Se houver corrupção total do estado, podemos recuperar segurança (post compromise
security) se houver um ratchet assimétrico que o adversário não controla poderemos
recuperar segurança (talvez temporariamente)

• Note-se que corrupção total do estado implica que idk já não é autentica, e portanto novas
sessões serão vulneráveis a MitM.

• Não tem como objectivo a deniability, mas seria possível usar qualquer coisa como no OTR.

