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Complexity & Cryptography

Given that the model of secrecy used by modern cryptography is not
compatible with “secrecy by obfuscation” its security must rely on the
Computational Complexity results.

Rogério Reis Cryptography Week #7 2022.10.28 2 / 35



Turing Machine

A Turing machine can both write on the tape and read from it.

The read–write head can move both to the left and to the right.

The tape is infinite.

The special states for rejecting and accepting take effect immediately.
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Turing-recognisable language

Call a language L Turing-recognisable if some Turing machine A
recognises it. That is, if given a word w ∈ L as input the TM always come
to a stop giving a positive answer.
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Turing-recognisable language

Call a language L Turing-recognisable if some Turing machine A
recognises it. That is, if given a word w ∈ L as input the TM always come
to a stop giving a positive answer.

Turing-decidable language

Call a language Turing-decidable or simply decidable if some Turing
machine decides it.

Some (actually the vast majority) languages are not decidable neither
not recognisable.
The obvious example is the language of Turing Machines that halt with an
empty input. (The “halting problem”).
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Turing machine that decides A = {02n|n ≥ 0}.
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Church–Turing thesis

All models of enough expressiveness are equivalent.
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Computational Complexity

The computational complexity of a task is the mesure of the time
necessary to accomplish the task as a function of the size of the input.

This is normally done using a Turing Machine using a single tape as
reference, but (as long as they are deterministic) other models do not give
results that correspond to different classes of complexity.

We will work on the assumption that the choice of the model of
computation used is irrelevant in what complexity classification is concern1.

1Kind of a Church-Turing thesis v2.0.
Rogério Reis Cryptography Week #7 2022.10.28 7 / 35



Landau notation

The “big O” notation

f (n) = O(g(n))

∃k > 0 ∃n0 ∀n > n0 : |f (n)| ≤ k g(n)

When f (n) = O(g(n)), we say that g(n) is an upper bound for f (n), or
more precisely, that g(n) is an asymptotic upper bound for f (n), to
emphasise that we are suppressing constant factors.

Rogério Reis Cryptography Week #7 2022.10.28 8 / 35



Landau notation

f1(n) = 5n3 + 2n2 + 55 = O(n3)
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Landau notation

f1(n) = 5n3 + 2n2 + 55 = O(n3)

f1(n) = O(n4)
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Landau notation

f1(n) = 5n3 + 2n2 + 55 = O(n3)

f1(n) = O(n4)

f1(n) ∕= O(n2), because, ∀k ∀n0 ∃n > n0 : |f1(n)| > k n2
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Landau notation

f1(n) = 5n3 + 2n2 + 55 = O(n3)

f1(n) = O(n4)

f1(n) ∕= O(n2), because, ∀k ∀n0 ∃n > n0 : |f1(n)| > k n2

f2(n) = 3n log2 n + 5n log2 log2 n + 2 = O(n log n)
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Landau Notation

The “small o” notation

f (n) = o(g(n))

lim
n→∞

f (n)

g(n)
= 0
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Complexity Theory

Traditionally Complexity Theory considers only a special kind of programs
that takes an input and and returns an answer of acceptance or rejection
of that input. The set of accepted words by one of these programs is
called the language defined by the program and we say that the program
decides the language in the sense that it decides, for each word fed as
input, if it belongs to the language or not.
Although this model does not covers all the problems that are necessary to
study, most of the problems may be divided in components that follow in
this definition of “decision program”. Thus, we may see the study of the
complexity of these “decision programs” as the study of lower bounds for
complexity of a more general set of programs.
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Complexity Classes

TIME

Let f : N → R+ be a function. Define the time complexity class,
TIME(t(n)), to be the collection of all languages that are decidable by an
O(t(n)) time Turing machine.
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Complexity Classes

TIME

Let f : N → R+ be a function. Define the time complexity class,
TIME(t(n)), to be the collection of all languages that are decidable by an
O(t(n)) time Turing machine.

SPACE

Let t : N → R+ be a function. Define the space complexity class,
SPACE(t(n)), to be the collection of all languages that are decidable by an
Turing machine using a O(t(n)) space in their tape.
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How important is the complexity in practice?

Rogério Reis Cryptography Week #7 2022.10.28 13 / 35



Complexity Classes

It is easy to see that if a function f is in TIME(g(n)) then it cannot but
be in SPACE(g(n)).

TIME(n2) ⊆ SPACE(n2)

The most “important” of the complexity classes is P:

The class P

P =
󰁞

k∈N
TIME(nk)

Thus P is the class of complexity of all the functions that can be decided
in a polynomial time by a Turing Machine.
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Examples of languages in P

2This is the “soft-O” notation: Õ(f (n)) = O(f (n) log f (n)).
Rogério Reis Cryptography Week #7 2022.10.28 15 / 35



Examples of languages in P

RelPrime Given two integers, decide if their greatest common divider is
1, i.e. if they are coprime. The Euclides’ algorithm solves the
problem in time O(n).

2This is the “soft-O” notation: Õ(f (n)) = O(f (n) log f (n)).
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Examples of languages in P

RelPrime Given two integers, decide if their greatest common divider is
1, i.e. if they are coprime. The Euclides’ algorithm solves the
problem in time O(n).

PrimeP Given an integer decide if it is a prime number. Proven in
2002 (PRIMES is in P, Agrawal, Kayal and Saxena, 2002).
The AKS algorithm runs in time O(n12 log(n12)) = Õ(n12)2.
Although this a polynomial asymptotic complexity, in
practice, and for the size of numbers one wants to use it, the
AKS is outperformed by many algorithms of non polynomial
complexity.

2This is the “soft-O” notation: Õ(f (n)) = O(f (n) log f (n)).
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Examples of languages in P

RelPrime Given two integers, decide if their greatest common divider is
1, i.e. if they are coprime. The Euclides’ algorithm solves the
problem in time O(n).

PrimeP Given an integer decide if it is a prime number. Proven in
2002 (PRIMES is in P, Agrawal, Kayal and Saxena, 2002).
The AKS algorithm runs in time O(n12 log(n12)) = Õ(n12)2.
Although this a polynomial asymptotic complexity, in
practice, and for the size of numbers one wants to use it, the
AKS is outperformed by many algorithms of non polynomial
complexity.

Any CFL Any context-free language have a CFG that recognises it and
CYK parser can thus operate in time O(n3).

2This is the “soft-O” notation: Õ(f (n)) = O(f (n) log f (n)).
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Complexity Classes

In the same manner:

The class PSPACE

PSPACE =
󰁞

k∈N
SPACE(nk)

PSPACE is the class of complexity of the functions that can be decided by
a Turing Machine using polynomial space on its tape.
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Complexity Classes

The second most “important” of the complexity classes is NP. NP does
not stand for “non-polynomial” but for “nondeterministic polynomial”,
that is languages that (these conditions are equivalent):
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time;
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can be decided by a nondeterministic Turing Machine in polynomial
time;

can be verified in polynomial time by a (deterministic) Turing
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Complexity Classes

The second most “important” of the complexity classes is NP. NP does
not stand for “non-polynomial” but for “nondeterministic polynomial”,
that is languages that (these conditions are equivalent):

can be decided by a nondeterministic Turing Machine in polynomial
time;

can be verified in polynomial time by a (deterministic) Turing
Machine.

By “verified” one means that a Turing Machine with input 〈w , c〉 can
decide if w is part of the language using c as additional information
(normally called a witness). The time dependence of the machine only
takes in account the size of w and not c .

Rogério Reis Cryptography Week #7 2022.10.28 17 / 35



Examples of languages in NP

Of course, P ∈ NP, and thus all the previous examples are in NP.
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Examples of languages in NP

Of course, P ∈ NP, and thus all the previous examples are in NP.

Composites Given an integer decide if it belongs to
{n | ∃p, q, (p, q < n) ∧ (n = pq)}. Trivially is in NP because
a verifier is straightforward to write using the list of factors
as witness. Although many believe that the problem is in P,
we still do not know any algorithm that ensure that.
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Examples of languages in NP

Of course, P ∈ NP, and thus all the previous examples are in NP.

Composites Given an integer decide if it belongs to
{n | ∃p, q, (p, q < n) ∧ (n = pq)}. Trivially is in NP because
a verifier is straightforward to write using the list of factors
as witness. Although many believe that the problem is in P,
we still do not know any algorithm that ensure that.

Clique Given a graph G and an integer k , decide if G has a k-clique
as a subgraph. As a witness its enough to give the list of the
vertices of the k-clique.
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Examples of languages in NP

Of course, P ∈ NP, and thus all the previous examples are in NP.

Composites Given an integer decide if it belongs to
{n | ∃p, q, (p, q < n) ∧ (n = pq)}. Trivially is in NP because
a verifier is straightforward to write using the list of factors
as witness. Although many believe that the problem is in P,
we still do not know any algorithm that ensure that.

Clique Given a graph G and an integer k , decide if G has a k-clique
as a subgraph. As a witness its enough to give the list of the
vertices of the k-clique.

SubSet-Sum

󰀫
〈S , t〉 | S = {x1, . . . , xk} ∧ S ′ ⊆ S ∧

󰁛

x∈S ′

x = t

󰀬
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Examples of languages in NP

Of course, P ∈ NP, and thus all the previous examples are in NP.

Composites Given an integer decide if it belongs to
{n | ∃p, q, (p, q < n) ∧ (n = pq)}. Trivially is in NP because
a verifier is straightforward to write using the list of factors
as witness. Although many believe that the problem is in P,
we still do not know any algorithm that ensure that.

Clique Given a graph G and an integer k , decide if G has a k-clique
as a subgraph. As a witness its enough to give the list of the
vertices of the k-clique.

SubSet-Sum

󰀫
〈S , t〉 | S = {x1, . . . , xk} ∧ S ′ ⊆ S ∧

󰁛

x∈S ′

x = t

󰀬

DiscreteLog Given p, a and n decide if there is k s.t.

ak ≡ n (mod p).
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Complexity Classes
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Complexity Classes

NTIME

Let f : N → R+ be a function. Define the time complexity class,
NTIME(t(n)), to be the collection of all languages that are decidable by
an O(t(n)) time nondeterministic Turing machine.
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Complexity Classes

NTIME

Let f : N → R+ be a function. Define the time complexity class,
NTIME(t(n)), to be the collection of all languages that are decidable by
an O(t(n)) time nondeterministic Turing machine.

NP

NP =
󰁞

k∈N
NTIME(nk)
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P vs NP

P = the class of languages with quick membership decision.

NP = the class of languages with quick membership verification.

One of these is correct! Which one?
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The best deterministic method currently known for deciding languages in
NP uses exponential time.

EXPTIME

NP ⊆ EXPTIME =
󰁞

k∈N
TIME

󰀓
2n

k
󰀔
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SuperPolyTime is not ExpTime
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NP-Completness

Polynomial time computable function

A function f : Σ󰂏 → Σ󰂏 is a polynomial time computable function if
some polynomial time Turing machine M exists that halts with just f (w)
on its tape, when started on any input w .
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NP-Completness

Polynomial time reduction

Language A is polynomial time reducible to language B , written
A ≤P B , if a polynomial time computable function f : Σ󰂏 → Σ󰂏, where

∀w w ∈ A ⇐⇒ f (w) ∈ B .

The function f is called the polynomial time reduction of A to B .
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NP-Completness
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NP-Completness

Theorem

If A ≤P B and B ∈ P, then A ∈ P.
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NP-Completness

Theorem

If A ≤P B and B ∈ P, then A ∈ P.

NP-complete

A language B is NP-complete if it satisfies:

B is in NP, and

∀A ∈ NP(A ≤P B). (we say that B is NP-hard)
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NP-Completness

Theorem

If A ≤P B and B ∈ P, then A ∈ P.

NP-complete

A language B is NP-complete if it satisfies:

B is in NP, and

∀A ∈ NP(A ≤P B). (we say that B is NP-hard)

Theorem

If B is NP-complete and B ∈ P, then P = NP.
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NP-Completness

Theorem

If A ≤P B and B ∈ P, then A ∈ P.

NP-complete

A language B is NP-complete if it satisfies:

B is in NP, and

∀A ∈ NP(A ≤P B). (we say that B is NP-hard)

Theorem

If B is NP-complete and B ∈ P, then P = NP.

Theorem

If B is NP-complete and B ≤P C for C ∈ NP, then C is NP-complete.
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NP-Completness

The set of NP-complete languages (problems) is the set of hardest
languages (problems) in NP.
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Examples of NP-complete languages
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Examples of NP-complete languages

Traveling salesman problem Given a graph with weights labelling
each edge decide if there is a path through all the vertices
with a total sum not exceeding a given x .
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Examples of NP-complete languages

Traveling salesman problem Given a graph with weights labelling
each edge decide if there is a path through all the vertices
with a total sum not exceeding a given x .

Clique

Knapsack Given set of integers S and two additional integers x and y
decide if there is a Q ⊆ S such that x ≤

󰁓
q∈Q q ≤ y .
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Examples of NP-complete languages

Traveling salesman problem Given a graph with weights labelling
each edge decide if there is a path through all the vertices
with a total sum not exceeding a given x .

Clique

Knapsack Given set of integers S and two additional integers x and y
decide if there is a Q ⊆ S such that x ≤

󰁓
q∈Q q ≤ y .

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME
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The Factoring Problem
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The Factoring Problem

prime number

A number p is prime if its only positive factors are 1 and p.
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The Factoring Problem

prime number

A number p is prime if its only positive factors are 1 and p.

Fundamental Theorem of Arithmetic

For any positive integer n there is a unique factorisation of n as a product
of increasing primes.
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The Factoring Problem

prime number

A number p is prime if its only positive factors are 1 and p.

Fundamental Theorem of Arithmetic

For any positive integer n there is a unique factorisation of n as a product
of increasing primes.

The factoring problem consists of finding the prime numbers p and q given
a large number, N = pq. The widely used RSA algorithms are based on
the fact that factoring a number is difficult. In fact, the hardness of the
factoring problem is what makes RSA encryption and signature schemes
secure. This problem is indeed hard, yet probably not NP-complete.
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How to factor an integer?

To factor the number n we can try to divide n by every i ∈ {2, . . . , n − 1}.
This will take a time O(n).
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But we can do better...
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How to factor an integer?

To factor the number n we can try to divide n by every i ∈ {2, . . . , n − 1}.
This will take a time O(n).
But we can do better...
We can try to divide n by every i ∈ {2, . . . , ⌊

√
n⌋}. We have reduced the

time to O
󰀓
n

1
2

󰀔
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Still, we can improve.
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How to factor an integer?

To factor the number n we can try to divide n by every i ∈ {2, . . . , n − 1}.
This will take a time O(n).
But we can do better...
We can try to divide n by every i ∈ {2, . . . , ⌊

√
n⌋}. We have reduced the

time to O
󰀓
n

1
2

󰀔

Still, we can improve.
We can only try to divide n by the primes that are smaller than

√
n. By

the prime number theorem we know that the number of primes below
√
n

is approximately
√
n

log
√
n
. This makes the task faster. But still we need 2120

operations for a 256-bit integer. Not good enough!
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The fastest factoring algorithm is the general number field sieve
(GNFS), with an average time to operate for a number n of

e1.91n
1
3 (log n)

1
3 .
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The fastest factoring algorithm is the general number field sieve
(GNFS), with an average time to operate for a number n of

e1.91n
1
3 (log n)

1
3 .

Factoring a 1024-bits integer 270 operations
Factoring a 2048-bits integer 290 operations
Factoring a 4096-bits integer 2128 operations
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In 2005, after about 18 months of computation — and thanks to the
power of a cluster of 80 processors, with a total effort equivalent to
75 years of computation on a single processor—a group of researchers
factored a 663-bit (200-decimal digit) number.
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75 years of computation on a single processor—a group of researchers
factored a 663-bit (200-decimal digit) number.

In 2009, after about two years and using several hundred processors,
with a total effort equivalent to about 2000 years of computation on
a single processor, another group of researchers factored a 768-bit
(232-decimal digit) number.
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In 2005, after about 18 months of computation — and thanks to the
power of a cluster of 80 processors, with a total effort equivalent to
75 years of computation on a single processor—a group of researchers
factored a 663-bit (200-decimal digit) number.

In 2009, after about two years and using several hundred processors,
with a total effort equivalent to about 2000 years of computation on
a single processor, another group of researchers factored a 768-bit
(232-decimal digit) number.

Thus the estimates are very optimistic regarding the possible
performance of computers and algorithms.
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So we have a problem that is in NP and that looks hard, but is it as hard
as the hardest NP problems? In other words, is factoring NP- complete?
Probably not.

Rogério Reis Cryptography Week #7 2022.10.28 32 / 35



So we have a problem that is in NP and that looks hard, but is it as hard
as the hardest NP problems? In other words, is factoring NP- complete?
Probably not.

Factoring may then be slightly easier than NP-complete in theory, but as
far as cryptography is concerned, it’s hard enough, and even more reliable
than NP-complete problems. Indeed, it’s easier to build cryptosystems on
top of the factoring problem than NP-complete problems, because it’s
hard to know exactly how hard it is to break a cryptosystem based on
some NP-complete problems—in other words, how many bits of security
you’d get.
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So we have a problem that is in NP and that looks hard, but is it as hard
as the hardest NP problems? In other words, is factoring NP- complete?
Probably not.

Factoring may then be slightly easier than NP-complete in theory, but as
far as cryptography is concerned, it’s hard enough, and even more reliable
than NP-complete problems. Indeed, it’s easier to build cryptosystems on
top of the factoring problem than NP-complete problems, because it’s
hard to know exactly how hard it is to break a cryptosystem based on
some NP-complete problems—in other words, how many bits of security
you’d get.

On the other hand... we may have to deal with quantum computers...
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... and if we are not careful, factoring can became easy!

To factor 17976931348623159077293051907890247336179769789423065
7273430081157739343819933842986982557174198257278917258638193
7092658191860266261806597306650627109955565786394477156084151
8689565284169198292110720231716536912489048151238855803905342
7125099290315449262324709315263256083132540461407052872832790
915388014592 takes just a few seconds because
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... and if we are not careful, factoring can became easy!

To factor 17976931348623159077293051907890247336179769789423065
7273430081157739343819933842986982557174198257278917258638193
7092658191860266261806597306650627109955565786394477156084151
8689565284169198292110720231716536912489048151238855803905342
7125099290315449262324709315263256083132540461407052872832790
915388014592 takes just a few seconds because
its factors are: 2800, 641, 6700417, 167773885276849215533569 and
37414057161322375957408148834323969.
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The Discrete Logarithm Problem

Consider the multiplicative group Z∗
p (with p prime). The DLP consists,

given g and x , in finding y such that g y = x in Z∗
p, i.e.

g y ≡ x (mod p).
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The Discrete Logarithm Problem

Consider the multiplicative group Z∗
p (with p prime). The DLP consists,

given g and x , in finding y such that g y = x in Z∗
p, i.e.

g y ≡ x (mod p).

In this conditions DLP seems as hard as the integer factoring problem.
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