
(Applied) Cryptography
Tutorial #4

Manuel Barbosa (mbb@fc.up.pt) Rogério Reis (rvreis@fc.up.pt)

MSI/MCC/MERSI – 2022/2023

1 - Implement the universal hash function of poly1305 in Sage

• recall H((K1, K2), (M1, M2, . . .)) = K1 + P (K2) where P (X) = K1 + M1X + M2X2 + . . .

• use F = FiniteField(2**130-5) to define the type of coefficients

• use PR.<X> = PolynomialRing(F) to define the type of polynomials

• define the key to the hash as a pair of elements in F

• define the message as a list in F, which you can cast to a polynomial (careful with 0-th coefficient, which comes
from the key)

• computing the hash is evaluating the polynomial at the other key component

• What is the probability that the hash of two fixed messages collide for a randomly sampled key?

2 - Use Python to encrypt a file with AES-GCM

• Make sure you can decrypt it with openSSL (if the command line does not support AEAD in your machine,
use this tool https://github.com/jforissier/aesgcm).

• Modify the encrypted file

• See if you can still decrypt it with openSSL

• How would this be different if you were using AES-CTR?

3 - A length extension attack works as follows.

• Application generates secret key K, which is kept hidden
• At some point application computes h = H(K||M) for some message M and publishes (M, h).
• Intuitively it should be impossible for some attacker to compute H(K||M ′) for M ̸= M ′.
• However, for some hash functions, it is possible to compute such a value using only (M, h).

This technique has been explained in theoretical classes for the SHA-2 family.

Demonstrate the attack by constructing:

• A Python program that generates K, computes h = SHA2(K||M) for some M and saves K, M and h into
different files.

• Another Python program that reads M and h (but not K!) and generates some M ′ and h′ into different files.

Is must be the case that SHA2(K||M ′) = h′ and that M ̸= M ′.

1

