
(Applied) Cryptography
Week #3: Block Ciphers

Manuel Barbosa, mbb@fc.up.pt
MSI/MCC/MERSI – 2022/2023

DCC-FCUP

1

2

Part #1: Block Ciphers

What is a Block Cipher?

A block cipher is defined by two deterministic algorithms:

• Encipher E(K , P):

• takes a key K ∈ {0, 1}λ

• takes a plaintext block P ∈ {0, 1}B

• outputs a ciphertext block C ∈ {0, 1}B

• Decipher D(K , C):

• takes a key K ∈ {0, 1}λ

• takes a ciphertext block C ∈ {0, 1}B

• outputs a plaintext block P ∈ {0, 1}B

A block cipher is invertible: each K defines a permutation.

3

What is a Block Cipher?

A block cipher is defined by two deterministic algorithms:

• Encipher E(K , P):

• takes a key K ∈ {0, 1}λ

• takes a plaintext block P ∈ {0, 1}B

• outputs a ciphertext block C ∈ {0, 1}B

• Decipher D(K , C):

• takes a key K ∈ {0, 1}λ

• takes a ciphertext block C ∈ {0, 1}B

• outputs a plaintext block P ∈ {0, 1}B

A block cipher is invertible: each K defines a permutation.

3

What is a Block Cipher?

A block cipher is defined by two deterministic algorithms:

• Encipher E(K , P):

• takes a key K ∈ {0, 1}λ

• takes a plaintext block P ∈ {0, 1}B

• outputs a ciphertext block C ∈ {0, 1}B

• Decipher D(K , C):

• takes a key K ∈ {0, 1}λ

• takes a ciphertext block C ∈ {0, 1}B

• outputs a plaintext block P ∈ {0, 1}B

A block cipher is invertible: each K defines a permutation.

3

What does security mean for block ciphers?

Block cipher should be a pseudorandom permutation (PRP).

We define this using an experiment:

• Experiment samples uniformly at random:

• K ∈ {0, 1}k

• permutation π : {0, 1}B → {0, 1}B

• bit b

• Attacker can (adaptively) ask for encryptions:

• Attacker queries P
• If b = 0 experiment returns E(K , P)
• If b = 1 experiment returns π(P)

• Attacker eventually returns b′

Advantage: ϵ := |Pr [b = b′] − 1/2 |

4

What does security mean for block ciphers?

Block cipher should be a pseudorandom permutation (PRP).

We define this using an experiment:

• Experiment samples uniformly at random:

• K ∈ {0, 1}k

• permutation π : {0, 1}B → {0, 1}B

• bit b

• Attacker can (adaptively) ask for encryptions:

• Attacker queries P
• If b = 0 experiment returns E(K , P)
• If b = 1 experiment returns π(P)

• Attacker eventually returns b′

Advantage: ϵ := |Pr [b = b′] − 1/2 |

4

What does security mean for block ciphers?

Block cipher should be a pseudorandom permutation (PRP).

We define this using an experiment:

• Experiment samples uniformly at random:

• K ∈ {0, 1}k

• permutation π : {0, 1}B → {0, 1}B

• bit b

• Attacker can (adaptively) ask for encryptions:

• Attacker queries P
• If b = 0 experiment returns E(K , P)
• If b = 1 experiment returns π(P)

• Attacker eventually returns b′

Advantage: ϵ := |Pr [b = b′] − 1/2 |

4

What does security mean for block ciphers?

Block cipher should be a pseudorandom permutation (PRP).

We define this using an experiment:

• Experiment samples uniformly at random:

• K ∈ {0, 1}k

• permutation π : {0, 1}B → {0, 1}B

• bit b

• Attacker can (adaptively) ask for encryptions:

• Attacker queries P
• If b = 0 experiment returns E(K , P)
• If b = 1 experiment returns π(P)

• Attacker eventually returns b′

Advantage: ϵ := |Pr [b = b′] − 1/2 |

4

What does security mean for block ciphers?

Block cipher should be a pseudorandom permutation (PRP).

We define this using an experiment:

• Experiment samples uniformly at random:

• K ∈ {0, 1}k

• permutation π : {0, 1}B → {0, 1}B

• bit b

• Attacker can (adaptively) ask for encryptions:

• Attacker queries P
• If b = 0 experiment returns E(K , P)
• If b = 1 experiment returns π(P)

• Attacker eventually returns b′

Advantage: ϵ := |Pr [b = b′] − 1/2 | 4

Implications of PRP security

What is a random permutation π : {0, 1}B → {0, 1}B?

• Huge table with 2B entries, indexed by P
• Each entry contains C
• Each C is sampled uniformly at random without repeats

Difference to purely random function: no repeats.

Implications:

• Ciphertext blocks look totally random

• Different inputs ⇒ independent outputs

• Must be impossible to recover key:

• otherwise one could check C = E(K , P)

5

Implications of PRP security

What is a random permutation π : {0, 1}B → {0, 1}B?

• Huge table with 2B entries, indexed by P
• Each entry contains C
• Each C is sampled uniformly at random without repeats

Difference to purely random function: no repeats.

Implications:

• Ciphertext blocks look totally random

• Different inputs ⇒ independent outputs

• Must be impossible to recover key:

• otherwise one could check C = E(K , P)

5

Implications of PRP security

What is a random permutation π : {0, 1}B → {0, 1}B?

• Huge table with 2B entries, indexed by P
• Each entry contains C
• Each C is sampled uniformly at random without repeats

Difference to purely random function: no repeats.

Implications:

• Ciphertext blocks look totally random

• Different inputs ⇒ independent outputs

• Must be impossible to recover key:

• otherwise one could check C = E(K , P)

5

Variants of PRP security

Strong PRPs:

• Attacker can also ask for block cipher decryptions
• How must experiment be re-defined?

Tweakable block-ciphers:

• Block cipher takes an extra argument T (a tweak)
• Both in encryption and in decryption
• Must behave as an independent permutation for all T
• How must experiment be re-defined?

Tweakable block ciphers can be constructed from block ciphers.

6

Variants of PRP security

Strong PRPs:

• Attacker can also ask for block cipher decryptions
• How must experiment be re-defined?

Tweakable block-ciphers:

• Block cipher takes an extra argument T (a tweak)
• Both in encryption and in decryption
• Must behave as an independent permutation for all T
• How must experiment be re-defined?

Tweakable block ciphers can be constructed from block ciphers.

6

Variants of PRP security

Strong PRPs:

• Attacker can also ask for block cipher decryptions
• How must experiment be re-defined?

Tweakable block-ciphers:

• Block cipher takes an extra argument T (a tweak)
• Both in encryption and in decryption
• Must behave as an independent permutation for all T
• How must experiment be re-defined?

Tweakable block ciphers can be constructed from block ciphers.

6

Block size

The Data Encryption Standard (70s-90s): B = 64.

The Advanced Encryption Standard (2000s-): B = 128.

Block must be small: efficient HW/SW implementation.

Block cannot be too small:

• Constructions based on block ciphers
• Key space 2λ must be large
• Block size must be B ∼ λ

E.g., some encryption schemes based on block ciphers constructions
are insecure if block size is too small (64 could be problematic).

See this link for research on this.

7

https://who.rocq.inria.fr/Gaetan.Leurent/files/BlockSize_LW18.pdf

Block size

The Data Encryption Standard (70s-90s): B = 64.

The Advanced Encryption Standard (2000s-): B = 128.

Block must be small: efficient HW/SW implementation.

Block cannot be too small:

• Constructions based on block ciphers
• Key space 2λ must be large
• Block size must be B ∼ λ

E.g., some encryption schemes based on block ciphers constructions
are insecure if block size is too small (64 could be problematic).

See this link for research on this.

7

https://who.rocq.inria.fr/Gaetan.Leurent/files/BlockSize_LW18.pdf

Part #2: How are block ciphers
built?

Iterated ciphers: rounds

Shorter descriptions and code/HW footprints:

• Simple and efficient round algorithm R
• Round algorithm is not secure as a block cipher
• Block cipher iterates round algorithm n times

• Each round takes a different key:

• Round key derived from block cipher key
• Sequence of round keys called key schedule

• Deciphering has typically the same structure

E(K , P) := R(...R(R(P, K1), K2)..., Kn)
D(K , C) := R−1(...R−1(R−1(C , Kn), Kn−1)..., K1)

8

Iterated ciphers: rounds

Shorter descriptions and code/HW footprints:

• Simple and efficient round algorithm R
• Round algorithm is not secure as a block cipher
• Block cipher iterates round algorithm n times

• Each round takes a different key:

• Round key derived from block cipher key
• Sequence of round keys called key schedule

• Deciphering has typically the same structure

E(K , P) := R(...R(R(P, K1), K2)..., Kn)
D(K , C) := R−1(...R−1(R−1(C , Kn), Kn−1)..., K1)

8

Iterated ciphers: rounds

Shorter descriptions and code/HW footprints:

• Simple and efficient round algorithm R
• Round algorithm is not secure as a block cipher
• Block cipher iterates round algorithm n times

• Each round takes a different key:

• Round key derived from block cipher key
• Sequence of round keys called key schedule

• Deciphering has typically the same structure

E(K , P) := R(...R(R(P, K1), K2)..., Kn)
D(K , C) := R−1(...R−1(R−1(C , Kn), Kn−1)..., K1)

8

Substitution-Permutation Networks (SPN)

The round function is a Substitution-Permutation layer.

• Substitution - S-boxes are small lookup tables (4-8 bits)
designed to introduce non-linearity in the round function. They
create confusion.

• Permutation - Bit-level transformations (e.g. switches) or
algebraic functions that introduce dependencies across the
whole block (diffusion).

Both need to be efficient in HW/SW.

S-boxes heuristically designed to:

• Create complex relation between input/output
• Minimize statistical bias in outputs

Example block cipher: AES

9

Substitution-Permutation Networks (SPN)

The round function is a Substitution-Permutation layer.

• Substitution - S-boxes are small lookup tables (4-8 bits)
designed to introduce non-linearity in the round function. They
create confusion.

• Permutation - Bit-level transformations (e.g. switches) or
algebraic functions that introduce dependencies across the
whole block (diffusion).

Both need to be efficient in HW/SW.

S-boxes heuristically designed to:

• Create complex relation between input/output
• Minimize statistical bias in outputs

Example block cipher: AES

9

Substitution-Permutation Networks (SPN)

The round function is a Substitution-Permutation layer.

• Substitution - S-boxes are small lookup tables (4-8 bits)
designed to introduce non-linearity in the round function. They
create confusion.

• Permutation - Bit-level transformations (e.g. switches) or
algebraic functions that introduce dependencies across the
whole block (diffusion).

Both need to be efficient in HW/SW.

S-boxes heuristically designed to:

• Create complex relation between input/output
• Minimize statistical bias in outputs

Example block cipher: AES

9

Substitution-Permutation Networks (SPN)

The round function is a Substitution-Permutation layer.

• Substitution - S-boxes are small lookup tables (4-8 bits)
designed to introduce non-linearity in the round function. They
create confusion.

• Permutation - Bit-level transformations (e.g. switches) or
algebraic functions that introduce dependencies across the
whole block (diffusion).

Both need to be efficient in HW/SW.

S-boxes heuristically designed to:

• Create complex relation between input/output
• Minimize statistical bias in outputs

Example block cipher: AES
9

Substitution-Permutation Networks (2)

(from Wikipedia)

10

Feistel Networks

The round function only processes half of the block:

• Input block is seen as pair (L, R)
• Output block is (R ⊕ F (Ki , L), L)
• F is called the round function

Unprocessed half-block is masked on the next round.

Note that decryption is identical to encryption:

• Only key schedule is inverted
• Hugely important in the 70s for HW implementation

Example block cipher: DES, GOST

11

Feistel Networks

The round function only processes half of the block:

• Input block is seen as pair (L, R)
• Output block is (R ⊕ F (Ki , L), L)
• F is called the round function

Unprocessed half-block is masked on the next round.

Note that decryption is identical to encryption:

• Only key schedule is inverted
• Hugely important in the 70s for HW implementation

Example block cipher: DES, GOST

11

Feistel Networks (2)

12

Feistel Networks (3)

Round function can be a PRP or a PRF:

• A PRF is similar to a PRP but not necessarily invertible

• Input size can be different from output size

• Security experiment is similar to PRP:

• Experiment chooses random function f
• Rather than random permutation π

Strong theoretical results if round function is ideal:

• 4 rounds are enough for strong PRP!

Practical block ciphers use extra rounds:

• round functions are heuristically designed

13

Feistel Networks (3)

Round function can be a PRP or a PRF:

• A PRF is similar to a PRP but not necessarily invertible

• Input size can be different from output size

• Security experiment is similar to PRP:

• Experiment chooses random function f
• Rather than random permutation π

Strong theoretical results if round function is ideal:

• 4 rounds are enough for strong PRP!

Practical block ciphers use extra rounds:

• round functions are heuristically designed

13

Feistel Networks (3)

Round function can be a PRP or a PRF:

• A PRF is similar to a PRP but not necessarily invertible

• Input size can be different from output size

• Security experiment is similar to PRP:

• Experiment chooses random function f
• Rather than random permutation π

Strong theoretical results if round function is ideal:

• 4 rounds are enough for strong PRP!

Practical block ciphers use extra rounds:

• round functions are heuristically designed

13

Advanced Encryption Standard (AES)

AES was standardized in 2000:

• DES was still the standard (56-bit keys!)
• 3DES was a common solution for short keys (112-bit security)
• 3DES: use DES 3 times (EDE) with 3 independent keys
• Still short block

AES is now the most used block cipher, by far.

• available in mainstream CPUs as HW implementation.

AES was selected as a result of a competition:

• 1997-2000 public competition run by NIST
• This process has since become the norm
• Open to proposals, scrutinized by community
• Criteria: performance and resistance to cryptanalysis

14

Advanced Encryption Standard (AES)

AES was standardized in 2000:

• DES was still the standard (56-bit keys!)
• 3DES was a common solution for short keys (112-bit security)
• 3DES: use DES 3 times (EDE) with 3 independent keys
• Still short block

AES is now the most used block cipher, by far.

• available in mainstream CPUs as HW implementation.

AES was selected as a result of a competition:

• 1997-2000 public competition run by NIST
• This process has since become the norm
• Open to proposals, scrutinized by community
• Criteria: performance and resistance to cryptanalysis

14

Advanced Encryption Standard (AES)

AES was standardized in 2000:

• DES was still the standard (56-bit keys!)
• 3DES was a common solution for short keys (112-bit security)
• 3DES: use DES 3 times (EDE) with 3 independent keys
• Still short block

AES is now the most used block cipher, by far.

• available in mainstream CPUs as HW implementation.

AES was selected as a result of a competition:

• 1997-2000 public competition run by NIST
• This process has since become the norm
• Open to proposals, scrutinized by community
• Criteria: performance and resistance to cryptanalysis

14

AES internals

Block-size 128-bits and varying key size (128, 192, 256)-bits.

Keeps a 128-bit internal state: 4× 4 array of 16-bytes.

State is transformed using a substitution-permutation network.

Substitutions/permutations have an algebraic description.
15

AES internals (2)

16

AES internals (3)

The substitution-permutation network uses:

• AddRoundKey - Full XOR with the state
• SubBytes - Replace each byte using lookup table (S-box)
• ShiftRows - Matrix rows are shifted 0..3 positions.
• MixColumns - Columns linearly transformed

SubBytes performs the substitution part.

ShiftRows and MixColumns are the permutation.

Last round does not MixColumns. Why? (see here)

17

https://crypto.stackexchange.com/questions/1346/why-is-mixcolumns-omitted-from-the-last-round-of-aes

AES internals (3)

The substitution-permutation network uses:

• AddRoundKey - Full XOR with the state
• SubBytes - Replace each byte using lookup table (S-box)
• ShiftRows - Matrix rows are shifted 0..3 positions.
• MixColumns - Columns linearly transformed

SubBytes performs the substitution part.

ShiftRows and MixColumns are the permutation.

Last round does not MixColumns. Why? (see here)

17

https://crypto.stackexchange.com/questions/1346/why-is-mixcolumns-omitted-from-the-last-round-of-aes

AES internals: SubBytes (Wikipedia)

18

AES internals: ShiftRows (Wikipedia)

19

AES internals: MixColumns (Wikipedia)

20

AES Implementations

AES is hard to efficiently implement in software:

• Naive implementations using tables leak via side-channels
• Removing side-channels in software is hard

But . . .

AES is super-fast in mainstream processors:

• AES-NI - AES Native Instructions
• From SW one can use HW AES

21

AES Implementations

AES is hard to efficiently implement in software:

• Naive implementations using tables leak via side-channels
• Removing side-channels in software is hard

But . . .

AES is super-fast in mainstream processors:

• AES-NI - AES Native Instructions
• From SW one can use HW AES

21

Is AES Secure?

There is no mathematical proof that AES is a PRP.

All practical applications based on AES assume this.

Why?

AES has been around for almost 25 years:

• No significant cryptanalysis progress
• AES scrutiny is an important area of research
• Direct attack on AES unlikely to be the weakest link

Assuming AES is a PRP we have provably secure and very
efficient symmetric encryption.

22

Is AES Secure?

There is no mathematical proof that AES is a PRP.

All practical applications based on AES assume this.

Why?

AES has been around for almost 25 years:

• No significant cryptanalysis progress
• AES scrutiny is an important area of research
• Direct attack on AES unlikely to be the weakest link

Assuming AES is a PRP we have provably secure and very
efficient symmetric encryption.

22

Is AES Secure?

There is no mathematical proof that AES is a PRP.

All practical applications based on AES assume this.

Why?

AES has been around for almost 25 years:

• No significant cryptanalysis progress
• AES scrutiny is an important area of research
• Direct attack on AES unlikely to be the weakest link

Assuming AES is a PRP we have provably secure and very
efficient symmetric encryption.

22

Part #3: Symmetric Encryption
from Block Ciphers

So-called modes of operation

Historically, block-ciphers were used in different modes of operation
to encrypt data.

Modern cryptography clarifies things:

• Block-ciphers are a primitive
• On their own they are useless
• There are totally insecure ways to encrypt with a block cipher
• Encryption schemes have their own security definitions
• We build secure encryption schemes from block ciphers
• We prove encryption secure assuming block cipher PRP

23

Symmetric Encryption

Syntax:

• Key Generation: Typically uniform sampling in {0, 1}λ

• Encryption: Probabilistic algorithm C ←← Enc(K , M)
• Decryption: Deterministic algorithm M/ ⊥← Dec(K , C)

Security (IND-CPA):

• Experiment samples K and bit b uniformly at random
• Attacker can (adaptively) get encryptions chosen messages
• Attacker outputs (M0, M1) s.t. |M0| = |M1|
• Attacker gets C∗ ←← Enc(K , Mb)
• Attacker can (adaptively) get encryptions chosen messages

Attacker eventually returns b′

Advantage: ϵ := |Pr [b = b′] − 1/2 |

24

Symmetric Encryption

Syntax:

• Key Generation: Typically uniform sampling in {0, 1}λ

• Encryption: Probabilistic algorithm C ←← Enc(K , M)
• Decryption: Deterministic algorithm M/ ⊥← Dec(K , C)

Security (IND-CPA):

• Experiment samples K and bit b uniformly at random
• Attacker can (adaptively) get encryptions chosen messages
• Attacker outputs (M0, M1) s.t. |M0| = |M1|
• Attacker gets C∗ ←← Enc(K , Mb)
• Attacker can (adaptively) get encryptions chosen messages

Attacker eventually returns b′

Advantage: ϵ := |Pr [b = b′] − 1/2 |

24

Symmetric Encryption

Syntax:

• Key Generation: Typically uniform sampling in {0, 1}λ

• Encryption: Probabilistic algorithm C ←← Enc(K , M)
• Decryption: Deterministic algorithm M/ ⊥← Dec(K , C)

Security (IND-CPA):

• Experiment samples K and bit b uniformly at random
• Attacker can (adaptively) get encryptions chosen messages
• Attacker outputs (M0, M1) s.t. |M0| = |M1|
• Attacker gets C∗ ←← Enc(K , Mb)
• Attacker can (adaptively) get encryptions chosen messages

Attacker eventually returns b′

Advantage: ϵ := |Pr [b = b′] − 1/2 |
24

Insecure encryption with a block cipher

Electronic-Code-Book mode:

• Break message into plaintext blocks Pi

• Last block may need padding (more on padding later)
• Independently encipher each block Ci ← E(K , Pi)

25

Insecure encryption with a block cipher

Electronic-Code-Book mode:

• Break message into plaintext blocks Pi

• Last block may need padding (more on padding later)
• Independently encipher each block Ci ← E(K , Pi)

25

Insecure encryption with a block cipher (2)

What is the problem?

• Equal input blocks ⇒ Equal output blocks
• Preserves patterns that vary slower than block size

What happens in the security experiment?

Here’s an attacker that always wins the experiment:

• Output M0 ̸= M1, where |M0| = |M1|
• Ask for an encryption of M0 to get C
• Return b′ = 0 iff C∗ = C

Attack works against all deterministic encryption schemes.

Real-world example of this attack?

26

Insecure encryption with a block cipher (2)

What is the problem?

• Equal input blocks ⇒ Equal output blocks
• Preserves patterns that vary slower than block size

What happens in the security experiment?

Here’s an attacker that always wins the experiment:

• Output M0 ̸= M1, where |M0| = |M1|
• Ask for an encryption of M0 to get C
• Return b′ = 0 iff C∗ = C

Attack works against all deterministic encryption schemes.

Real-world example of this attack?

26

Insecure encryption with a block cipher (2)

What is the problem?

• Equal input blocks ⇒ Equal output blocks
• Preserves patterns that vary slower than block size

What happens in the security experiment?

Here’s an attacker that always wins the experiment:

• Output M0 ̸= M1, where |M0| = |M1|
• Ask for an encryption of M0 to get C
• Return b′ = 0 iff C∗ = C

Attack works against all deterministic encryption schemes.

Real-world example of this attack?

26

Cipher Block Chaining (CBC)

Engineers designed a secure encryption scheme before security
proofs were well understood.

What is the main difference to ECB?

Random block-size initialization vector (IV).

27

Cipher Block Chaining (CBC)

Engineers designed a secure encryption scheme before security
proofs were well understood.

What is the main difference to ECB?

Random block-size initialization vector (IV).

27

Cipher Block Chaining (CBC): Security/Performance

Intuition of CBC security:

• Random IV makes first block-cipher input random
• Block cipher security implies C1 looks random and indendent of

everything else
• CBC uses C1 as IV for remaining ciphertexts
• Use the same argument for C2, etc.
• Two encryptions of same plaintext look independent

How does decryption work?

Suppose large encrypted file:

• How can you decrypt arbitrary block? Parallelism?
• How can you modify encryption of plaintext block?

28

Cipher Block Chaining (CBC): Security/Performance

Intuition of CBC security:

• Random IV makes first block-cipher input random
• Block cipher security implies C1 looks random and indendent of

everything else
• CBC uses C1 as IV for remaining ciphertexts
• Use the same argument for C2, etc.
• Two encryptions of same plaintext look independent

How does decryption work?

Suppose large encrypted file:

• How can you decrypt arbitrary block? Parallelism?
• How can you modify encryption of plaintext block?

28

Cipher Block Chaining (CBC): Security/Performance

Intuition of CBC security:

• Random IV makes first block-cipher input random
• Block cipher security implies C1 looks random and indendent of

everything else
• CBC uses C1 as IV for remaining ciphertexts
• Use the same argument for C2, etc.
• Two encryptions of same plaintext look independent

How does decryption work?

Suppose large encrypted file:

• How can you decrypt arbitrary block? Parallelism?
• How can you modify encryption of plaintext block?

28

Cipher Block Chaining (CBC): Padding

There are several padding methods:

• Some schemes require message size to be multiple of block size
• Padding schemes re-encode message so that this is true
• To avoid ambiguity: padding is always added.

Most common padding scheme is specified in PKCS #7:

• Let k > |M| be the next multiple of B (in bytes)
• Add k − |M| bytes with the value k − |M|+ 1

How to decode?

Overhead is at least one byte and at most one block.

29

Cipher Block Chaining (CBC): Padding

There are several padding methods:

• Some schemes require message size to be multiple of block size
• Padding schemes re-encode message so that this is true
• To avoid ambiguity: padding is always added.

Most common padding scheme is specified in PKCS #7:

• Let k > |M| be the next multiple of B (in bytes)
• Add k − |M| bytes with the value k − |M|+ 1

How to decode?

Overhead is at least one byte and at most one block.

29

Cipher Block Chaining (CBC): Padding

There are several padding methods:

• Some schemes require message size to be multiple of block size
• Padding schemes re-encode message so that this is true
• To avoid ambiguity: padding is always added.

Most common padding scheme is specified in PKCS #7:

• Let k > |M| be the next multiple of B (in bytes)
• Add k − |M| bytes with the value k − |M|+ 1

How to decode?

Overhead is at least one byte and at most one block.

29

Alternative to CBC padding: Ciphertext Stealing

Not widely used.

30

Counter Mode (CTR)

Progress in provable security ⇒ simplest mode of operation:

• generate random block-size counter ctr
• generate key stream of sufficient size:

E(K , ctr)∥E(K , ctr + 1)∥ . . . ∥E(K , ctr + k)

• XOR plaintext and (truncated) key stream
• Ciphertext also includes counter (why?)

Security intuition:

• Let us assume counters never repeat (how likely?)
• PRP security guarantees key-stream looks random
• CTR mode is essentially a One-Time-Pad approximation

31

Counter Mode (CTR)

Progress in provable security ⇒ simplest mode of operation:

• generate random block-size counter ctr
• generate key stream of sufficient size:

E(K , ctr)∥E(K , ctr + 1)∥ . . . ∥E(K , ctr + k)

• XOR plaintext and (truncated) key stream
• Ciphertext also includes counter (why?)

Security intuition:

• Let us assume counters never repeat (how likely?)
• PRP security guarantees key-stream looks random
• CTR mode is essentially a One-Time-Pad approximation

31

Nonce-based encryption

Often Counter Mode is used in Nonce-Based form:

Encryptor guarantees unique N:

• Encryption becomes stateful
• Security experiment is changed (how?)

32

Counter Mode Performance

Counter mode is very efficient:

• Key stream can be pre-processed
• Any part of the data can be accessed efficiently
• This includes read/write access
• Decryption/encryption can be parallelized

For these reasons, many modern protocols rely on CTR mode.

33

What can go wrong in block-cipher design

3DES uses three DES instances:

One would hope for 3 ∗ 56 = 168-bit security.

Meet-in-the-Middle attacks mean we only get 112-bit security:

• Given (P, C) we find the key as follows
• Construct 256 table of D(K , C) for all K
• Try all (K1, K2) enciphering P and check in table
• Overall 2112 + 256 ≈ 2112 work (memory?)

34

What can go wrong in block-cipher design

3DES uses three DES instances:

One would hope for 3 ∗ 56 = 168-bit security.

Meet-in-the-Middle attacks mean we only get 112-bit security:

• Given (P, C) we find the key as follows
• Construct 256 table of D(K , C) for all K
• Try all (K1, K2) enciphering P and check in table
• Overall 2112 + 256 ≈ 2112 work (memory?)

34

What can go wrong in modes of operation

What does IND-CPA model say?

• Attacker has access to encryptions
• Can’t extract any information about messages
• What if it has access to side information on decryption?
• No guarantee modified ciphertext is rejected: what leaks?

Practical example:

• Padding oracle attacks against CBC (TLS 1.*)
• Attacker gets to observe padding check error
• This is enough to recover plaintext (e.g., cookies)

Root problem: processing non-authenticated ciphertext.

35

What can go wrong in modes of operation

What does IND-CPA model say?

• Attacker has access to encryptions
• Can’t extract any information about messages
• What if it has access to side information on decryption?
• No guarantee modified ciphertext is rejected: what leaks?

Practical example:

• Padding oracle attacks against CBC (TLS 1.*)
• Attacker gets to observe padding check error
• This is enough to recover plaintext (e.g., cookies)

Root problem: processing non-authenticated ciphertext.

35

What can go wrong in modes of operation

What does IND-CPA model say?

• Attacker has access to encryptions
• Can’t extract any information about messages
• What if it has access to side information on decryption?
• No guarantee modified ciphertext is rejected: what leaks?

Practical example:

• Padding oracle attacks against CBC (TLS 1.*)
• Attacker gets to observe padding check error
• This is enough to recover plaintext (e.g., cookies)

Root problem: processing non-authenticated ciphertext.

35

Thank you!

mbb@fc.up.pt

http://www.dcc.fc.up.pt/~mbb

35

	Part #1: Block Ciphers
	Part #2: How are block ciphers built?
	Part #3: Symmetric Encryption from Block Ciphers

