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Part #1: Hash Functions



What is a Hash Function?

Hash functions are everywhere:

• key derivation
• digest for authentication
• randomness extraction
• password protection
• proofs of work

Not only in crypto:

• indexing in version management repositories
• deduplication in cloud storage systems
• file integrity in intrusion detection

What are they? 3



What is a Hash Function? (2)

The hash output is short: hash, fingerprint, digest.

Cryptographic hash functions give strong security guarantees.

Most intuitive property is “use hash as identifier”:

• cryptographic hash functions cannot be injective (why?)
• yet they should be somehow well distributed or unpredictable
• we assume hash value identifies arbitrarily large input

For example: signing a H(M) is as secure as signing M.

Hash functions need to be deterministic and public:

• everyone should be able to recompute hash/identifier
• so what does security mean?
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What is a secure Hash?

We look for efficient algorithms that seem to have nice properties:

• unpredictable outputs
• hard to find pre-images
• hard to find collisions

Hash functions are validated heuristically:

• similarly to process for AES
• international competition to select designs
• competitors are scrutinized wrt security and performance
• several rounds so more eyes on small number of proposals
• most recent one was for SHA-3
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(First) Preimage resistance

Preimage resistance:

• Let S the set of preimages (domain)
• Let R the set of images (range)
• Attacker given a value Y ∈ R
• Adversary guesses X ∈ S and wins if H(X ) = Y

How should Y be chosen?

Some ways make the problem trivial, e.g.:

• Y = H(X ′) where X ′ ∈ S and S ⊂ S is small
• Why?

One-wayness requires X ′ chosen at random from large S. (large?)

Practical hash functions are candidate one-way functions.
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Collision Resistance (CR)

Hard to find any X ̸= X ′ such that H(X ′) = H(X ).

Suppose we have the best possible hash function:

• What is the probability that two hash values collide?

• Outputs are random so: 1/2n where n is the output length

• We will find a collision if we check roughly 2n pairs

Is CR easier or harder to achieve than preimage resistance?
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How can we break hash functions generically?

Attack that always finds a preimage?

• Search through all possible preimages (aka brute-force)

• Expected cost if hash function is perfect and outputs n bits?

• 2n operations. Why?

Attack that always finds a second-preimage?

• Nothing better than previous attack

Attack that always finds a collision?

• Exponentially easier!
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Finding collisions

Any compressing/non-injective function has collisions.

They can be found with work 2 n
2 using birthday attack:

• Compute values like brute-force attack but . . .
• Store them in a fast data structure indexed by image value
• Each new image value is searched in data structure
• Repeat until collision is found

How many operations?

• After n values we have checked n ∗ (n − 1)/2 pairs (why?)
• To check 2n pairs we need roughly

√
2n = 2 n

2 values
• Overall complexity essentially that of finding a preimage for

hash with n/2 bits!

Somewhat counterintuitive: birthday paradox.
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The implication of birthday attacks

When CR is required hash outputs are 2x security parameter:

• 128-bit security => 256-bit hashes
• 256-bit security => 512-bit hashes

We can use security-parameter-sized hash outputs when:

• We don’t require security against arbitrary collisions
• For example, when we only require pre-image resistance
• For example, when we are deriving a key from a secret input
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Part #2: Building Hash Functions



Building hash functions

There are two approaches that both use iterative processes:

• Merkle-Damgård construction: Used for MD4, MD5, SHA-1,
SHA-256, SHA-512 relies on a m+n-to-n bits compression
function to construct a hash function of output length n for
arbitrary input lengths.

• Sponge construction: Used for SHA-3, uses a l-bit permutation
to construct a hash function for arbitrary input and output
lengths.
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Merkle-Damgård construction

All prominent hash functions from the 80s to the 2000s.

H0 is the initial value or IV: constant and public.

Message M is broken into blocks of size m, M1, M2 . . .

In SHA-256 block size is 512 bits and the output size is 256 bits.

In SHA-512 block size is 1024 bits and the output size is 512 bits.

Padding is always added to the message before breaking into blocks:

• append a 1 bit
• fill with zeros up to 64/128 bits away from next block end
• last 64/128 bits encode the message length in bits
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Security of Merkle-Damgård construction

Magical result:

• Compression function is CR (for small inputs)
• Implies whole construction is CR (for arbitrary inputs)

I.e., to break the hash function you must break the compression
function.

This means 2n-to-n CR hashing solves all our problems!

Is that true?
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Problems with MD: Length Extension

Suppose you compute h = H(K∥M) where K is secret.

• For the ideal hash nothing is revealed about the key

• Preimage resistance seems to indicate this is the case

• A trivial attack shows this is not the case:

• We can find the keyed hash of related messages
• Just add padding and append extra data:

h′ = H(K∥M∥pad∥M ′)

• We can start computing h′ from h
• So h reveals something useful about K !

This is problematic for message authentication.

It is also problematic for proofs of storage and similar applications.
14



Compression Functions: Davis -Meyer

All popular MD hash functions use the Davis-Meyer construction:

Many variants convert block ciphers into compression functions.

Counter-intuitively:

• Key input takes a message!
• This construction creates a fixed point hi = D(0, M) in MD!
• This can be checked in the SHA-256 compression function
• Not a problem?
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Sponge Construction

A more recent alternative to MD is the sponge construction.

It relies on a fixed (non-keyed) permutation.

It is very versatile:

• Varying input/output lengths
• PRGs and stream ciphers
• PRFs and keyed hashes
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Sponge Construction (2)

Sponge operates in two phases: absorb and squeeze.

The state is the same size w as the permutation input.

Absorb Starting from fixed initial value h0 gradually accumulate
message into state:

• Message is broken in blocks of size r (rate)
• Block is smaller than state size
• Block XOR’ed into state
• Permutation recomputed

Squeeze The dual process iteratively constructs output:

• Output is constructed block by block
• Permutation is computed over entire state
• Block-sized part of state is accumulated in output
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Part #3: Concrete Hash Functions



MD5

Broken! 128-bit output.

Most popular hash function until broken in 2005.

These days it takes seconds to find collisions.

The SHA function family (next) uses essentially same design.
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Secure Hash Algorithm (SHA) Family

Standardized by NIST in the US but international de-facto standard.

SHA-0 was published in 1993 but replaced with SHA-1 in 1995:

• Both with 160-bit outputs
• Vulnerability not public at the time
• Later discovered collision attack in 260 ≪ 280 operations
• Later attacks brought effort to 233

SHA-1 was unbroken until very recently.

Currently most applications use SHA-2 (256 or 512 bits):

• Still same design principles, but larger parameters

Future applications adopting SHA-3 will evolve to the Sponge.
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SHA-1 internals

Merkle-Damgård with Davis-Mayer compression function.

The block cipher used in the compression function called SHACAL.

Message blocks are 512-bits and hashes are 160-bits long.

Davis-Meyer addition not XOR: five 32-bit additions.

SHA1-blockcipher(a, b, c, d, e, M) {
W = expand(M)
for i = 0 to 79 { // K are constants

new = (a <<< 5) + f(i, b, c, d) + e + K[i] + W[i]
(a, b, c, d, e) = (new, a, b >>> 2, c, d) }

return (a, b, c, d, e)
}

Insecure! Estimated collisions 263 in 2005; actual collisions in 2017.
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SHA-2 Family

Family of 4 hash functions SHA-[224, 256, 384, 512].

Three digit identifier gives the output length.

Increasing parameters and improved internal block ciphers.

SHA-224 and 256 still use 512 bit blocks (64 rounds).

SHA-224 is identical to SHA256 with different IV/truncated output.

SHA-384 and 512 are related in the same way.

SHA-512 compression function very similar but 80 rounds.

No non-generic attacks on any of these hash functions:

• Still SHA-3 was (prudently) developed with different design
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SHA-3

Keccak selected in 2009 after 3 year NIST SHA-3 competition.

Competition called for new designs in case of attacks on SHA-2.

Keccack is very different and very flexible:

• sponge based with 1600-bits permutation (in SHA-3)

• blocks can be 1152, 1088, 832, 76 bits

• corresponding to 224, 256, 384 or 512 bits outputs

• as a bonus we get the SHAKE functions:

• SHAKE128 and SHAKE256
• eXtendable Output Functions (XOFs)
• you can specify the output length!
• Why would these be useful?
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Part #4: Keyed Hashing



MACs as Keyed Hashes

Short summaries of potentially large messages:

• Called a hash if everything is public
• Keyed hashing is the intuitive view of a MACs

A Message Authentication Code (MAC):

• symmetric authentication: T ← MAC(M, K )
• T guarantees message M creator knew a secret key
• implies message M not changed since creation
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Message Authentication Codes (MACs)

Typical use of MAC, e.g., SSH, IPSec, TLS:

• two parties want message authentication and integrity
• some form of set-up/agreement to establish common key K
• sender computes T ← MAC(M, K ) and sends (M, T )
• receiver gets (M, T ) recomputes T ′ ← MAC(M, K )
• receiver accepts if T = T ′

Acceptance means: M was produced by someone knowing K .

Note that in this process the message is public!

MACs do not give confidentiality: sending only T makes no sense.

Encryption does not give authenticity: ciphertexts can be mauled.

Real world: need to combine encryption schemes and MACs.
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MAC security

Standard notion is UF-CMA:

• Unforgeability
• Chosen message attacks

Security experiment as follows:

• Experiment chooses K
• Attacker (adaptively) outputs M to get T ← MAC(M, K )
• Eventually attacker outputs (M∗, T ∗)

Attacker wins if tag is valid and M∗ not authenticated by
experiment.

Obviously implies attacker cannot recover K . (Why?)
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MAC security (2)

Crucial insight:

• MAC on its own does not protect against replay attacks

• Suppose network scenario:

• Attacker sees authenticated message (M, T )
• Delivers (M, T ) multiple times
• MAC will verify every time!

• Simple technique, impose message never repeats in network:

• Prepend counter and keep counter as state on both sides
• Prepend timestamp (local clock reading)
• How should receiver operate in both cases?
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Part #5: Constructing MACs



Some history

MACs constructed from hash functions and block ciphers.

Simplest construction: prefix key.

MAC(K , M) = H(K∥M) or PRF(K , M) = H(K∥M)

Merkle-Damgård hashing yields insecure MAC and PRF!

• Given (M, T ) attacker outputs H(K∥M∥pad∥M ′)
• This can be computed just from T and M ′

• It’s called a length extension attack

Resistance to such attacks was requirement in SHA-3 competition:

• Abandon MD construction
• Include explicit keyed hash
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HMAC Construction

When instantiated with MD construction:

• Compression function is PRF ⇒ secure MAC
• HMAC is simply H((K ⊕ opad)∥H((K ⊕ ipad)∥M))
• ipad and opad are constants: align to block size
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On collision-based forgeries

Hash function collisions ⇒ hash-based MAC forgeries.

However, attacker cannot easily search for them: key is unknown.

Obviously collisions at MAC output also yield forgeries:

• This is true for any MAC.
• Collisions occur whp after 2 n

2 MACs issued.
• Could happen earlier if size of chained value is smaller than n

bits
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Building MACs directly from block ciphers

We have seen: block ciphers ⇒ hash functions ⇒ MACs.

There are also direct constructions: CMAC is used in IPSec.

CMAC is an improvement over CBC-MAC:

• Take CBC mode of operation
• Fix IV to all zero block
• Take last ciphertext block as tag

CBC-MAC turns out to be insecure:

• Can forge MACs after just two chosen authenticated messages.
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CMAC internals

CMAC fixes CBC-MAC by processing last block differently:

• All blocks but last are processed like in CBC-MAC

• Two keys K1 and K2 are derived from K :

• L← E(K , 0)
• K1 = (L≪ 1)⊕ (0x00..0087 ∗ LSB(L))
• K2 = (K1 ≪ 1)⊕ (0x00..0087 ∗ LSB(K1))
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Custom MAC constructions

More efficient MAC constructions are designed from scratch.

Poly1305 is one such construction by D.J.Bernstein.

It is based on

• Universal hash functions
• Wegman-Carter construction
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Universal hash functions

Universal hash functions are a weak form of hashing

• Don’t need to be collision resistant
• They are parametrised by a key: UH(K , M)
• They guarantee that for any two fixed messages M0 ̸= M1:

Pr[UH(K , M0) = UH(K , M1)] ≤ ϵ

When K is random and for ϵ very small.

There is no other security requirement ⇒ easy to construct.

We can use a universal hash function as a MAC:

• But only one message can be authenticated
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Wegman-Carter Construction

The Wegman-Carter construction:

• Converts universal hash function
• Into a fully secure MAC
• Using a PRF or block cipher

Intuition: encrypt universal hash value

UH(K1, M)⊕ PRF(K2, N)

• The full MAC key is (K1, K2)
• N is a public value that must never repeat
• This can be kept as a counter or generated at random
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Poly1305-AES: Wegman-Carter in Practice

Initial proposal used AES as the Wegman-Carter PRF.

The universal hash function uses prime p = 2130 − 5.

Poly1305((K1, K2), M) = (M1K+. . .+MnKn (mod p))+AES(K2, N)

Blocks are 128 bits and last block is padded with 100 . . .

All blocks set bit 129 so MSB is 1.

The final addition is performed modulo 2128 (why?).

TLS recommends Poly1305 with ChaCha20 rather than AES.
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Thank you!

mbb@fc.up.pt

http://www.dcc.fc.up.pt/~mbb
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