(Applied) Cryptography

Tutorial \#2

Manuel Barbosa (mbb@fc.up.pt) Rogério Reis (rvreis@fc.up.pt)

MSI/MCC/MERSI - 2022/2023

Recall that a probability distribution D over a set \mathcal{S} can be seen as a deterministic function mapping random coins C sampled uniformly at random from a set \mathcal{C} to \mathcal{S}. In this case, the probability mass function is defined, for all $S^{\prime} \in \mathcal{S}$, as:

$$
\operatorname{Pr}\left[S=S^{\prime}: S \leftarrow \$ \mathrm{D}\right]=\operatorname{Pr}\left[S=S^{\prime}: C \leftarrow \$ \mathcal{C} ; S \leftarrow \mathrm{D}(C)\right]=\frac{\#\left\{C: \mathrm{D}(C)=S^{\prime}\right\}}{|\mathcal{C}|}
$$

We abbreviate this, when clear from the context, to $\operatorname{Pr}\left[S^{\prime}\right]$.
Recall also that the entropy of such a distribution is given by:

$$
\sum_{S^{\prime} \in \mathcal{S}}-\operatorname{Pr}\left[S^{\prime}\right] \cdot \log _{2}\left(\operatorname{Pr}\left[S^{\prime}\right]\right)
$$

For example, the entropy associated with a perfect coin flip is $-\frac{1}{2} \cdot \log _{2}\left(\frac{1}{2}\right)+\left(-\frac{1}{2} \cdot \log _{2}\left(\frac{1}{2}\right)\right)=1$.

Answer the following questions

1 - Consider \mathcal{S} the set of integers in the range $0 . .250$ and note $p=251$ is a prime number. Take \mathcal{C} to be the set of all bit strings of length 8 . Let the distribution D to be defined by the function $\mathrm{D}(C):=C(\bmod p)$, i.e. takes the remainder of coins C divided by p.

- Compute the probability that each value in \mathcal{S} is produced by D .
- Repeat the above computation considering now the set \mathcal{C} to be the set of all bit strings of length 64 .
- Are these distributions uniform? If not, can you think of a way to quantify how distant they are from uniform?

2 - Repeat question $\# 1$ but take $p=2^{8}$, i.e., a power of 2 .
3 - Use Sage to compute the entropy of the two distributions referred in questions $\# 1$ and $\# 2$. Compute also the entropy of the uniform distribution over \mathcal{S}.

4 - Generalize the computations from question $\# 3$ in Sage to compute the entropy of distribution D when \mathcal{C} is the set of bit strings of length k. Check (approximately) what is the smallest k for which the entropy computed in Sage for D matches the entropy of the uniform distribution over \mathcal{S}

5 - hexdump can be used to extract randomness from / dev/urandom. Explain what the following command is doing.

```
$ hexdump -n 32 -e '1/4 "%0X" 1 "\n"' /dev/urandom!!
```

Implement an alternative command that uses / dev/urandom to create a file with random bytes.

- HINT: use the shell dd command.

Use openSSL to do exactly the same.

- HINT: look at command rand.

6 - Use openSSL to generate a key pair where private key is protected with a password.
openssl genrsa 4096

See what happens when you increase/decrease the key size.
Investigate how openSSL converts the passphrase into a cryptography key for encryption/wrapping. 7 - Use openSSL to generate random Diffie-Hellman parameters.
openssl gendh 2048
See what happens when you increase/decrease the key size. Compare to the previous case.

