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Abstract 
This survey covers hard real-time scheduling 

algorithms and schedulability analysis techniques for 
homogeneous multiprocessor systems. It reviews the key 
results in this field from its origins in the late 1960’s to 
the latest research published in late 2009. The survey 
outlines fundamental results about multiprocessor real-
time scheduling that hold independent of the scheduling 
algorithms employed. It provides a taxonomy of the 
different scheduling methods, and considers the various 
performance metrics that can be used for comparison 
purposes. A detailed review is provided covering 
partitioned, global, and hybrid scheduling algorithms, 
approaches to resource sharing, and the latest results 
from empirical investigations. The survey identifies open 
issues, key research challenges and likely productive 
research directions. 

1. Background 
Today, real-time embedded systems are found in 

many diverse application areas including; automotive 
electronics, avionics, telecommunications, space 
systems, medical imaging, and consumer electronics. In 
all of these areas, there is rapid technological progress. 
Companies building embedded real-time systems are 
driven by a profit motive. To succeed, they aim to meet 
the needs and desires of their customers by providing 
systems that are more capable, more flexible, and more 
effective than their competition, and by bringing these 
systems to market earlier. This desire for technological 
progress has resulted in a rapid increase in both software 
complexity and the processing demands placed on the 
underlying hardware. 

To address demands for increasing processor 
performance, silicon vendors no longer concentrate 
wholly on the miniaturisation needed to increase 
processor clock speeds, as this approach has led to 
problems with both high power consumption and 
excessive heat dissipation. Instead, there is now an 
increasing trend towards using multiprocessor platforms 
for high-end real-time applications. 

A key date in the move towards multiprocessor 
systems was the 7th May 2004, when Intel cancelled the 
successor to the Pentium P4 processor called Tejas, due 

to extremely high power consumption [109]. 
Dynamic power consumption (the power lost 

charging and discharging capacitive load) is a dominant 
factor for chip designs using technology above the 
100nm level; however, for sub 100nm technology, 
transistor leakage current becomes important. This is 
because the dimensions of the gates and oxide layers are 
such that the electrical resistance is reduced. The result 
is that leakage current and hence power dissipation 
rapidly increases with further miniaturisation. This 
problem can be partially ameliorated by running at a 
lower voltage, which reduces power consumption, due 
to both dynamic and leakage sources; however, reducing 
voltage also limits the maximum operating frequency, 
restricting performance.  

A solution to this problem is to limit minaturisation 
and operating frequencies, and instead, use multiple 
processors on a single chip. On 27th July 2006, two years 
after cancellation of Tejas, Intel officially released the 
Core Duo processor. In future, it is expected that high-
end processing performance will be provided by using a 
large number of processor cores on a single chip. For 
example, the Intel Teraflop Research Chip (Polaris), 
announced on Feb 11th 2007, has 80 processor cores 
providing 1 Teraflop performance at 3 GHz. 

Multicore processors from other vendors include:  
o AMD: Opteron, Phenom, Turion 64, Radeon, 

and Firestream;  
o Analog Devices: Blackfin  
o Azul Systems: Vega 1, Vega 2, Vega 3; 
o ARM: MPCore; 
o Cavium Networks: Octeon; 
o Freescale Semiconductor: QorlQ; 
o IBM: POWER4, POWER5, POWER6, 

PowerPC970, Xenon (X-Box 360); 
o Intel: Core Duo, Core 2 Duo, Core 2 Quad, 

Core i3, i5, i7, i9 family, Itanium 2, Pentium D, 
Pentium Dual-Core, Polaris (teraflops research 
chip), Xeon. 

o Nvidia: GeForce 9, GeForce 200, Tesla; 
o NXP Nexperia; 
o Sun Microsystems: MAJC 5200, UltraSPARC 

IV, UltraSPARC T1, UltraSPARC T2; 
o Texas Instruments: TMS320C80 MVP; 
o Tilera: TILE64; 
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o XMOS: XS-G4. 

1.1. Multiprocessor real-time systems and 
scheduling 

Systems are referred to as real-time when their 
correct behaviour depends not only on the operations 
they perform being logically correct, but also on the time 
at which they are performed. For example in avionics, 
flight control software must execute within a fixed time 
interval in order to accurately control the aircraft. In 
automotive systems there are tight time constraints on 
engine management and transmission control systems 
that derive from the mechanical systems that they 
control. 

Guaranteeing real-time performance while making 
the most effective use of the available processing 
capacity requires the use of efficient scheduling policies 
or algorithms supported by accurate schedulability 
analysis techniques. These analysis techniques need to 
be capable of analysing the worst-case behaviour of the 
application under a given scheduling policy, thus 
providing proof, subject to a set of assumptions about 
application behaviour, that timing constraints will 
always be met during operation of the system. 

Research into uniprocessor real-time scheduling can 
trace its origins back to the late 1960’s and early 1970’s 
with significant research effort and advances made in the 
1980’s and 1990’s. The interested reader is referred to 
[16] and [135] which provide an historical account of 
the most important advances in the field of uniprocessor 
scheduling during those decades. Today, although there 
is still significant scope for further research, 
uniprocessor real-time scheduling theory can be viewed 
as reasonably mature, with a large number of key results 
documented in text books [63], [65], [118], and 
successfully transferred into industrial practice. 

Multiprocessor real-time scheduling theory also has 
it origins in the late 1960’s and early 1970’s. In 1969, 
Liu [116] noted that multiprocessor real-time scheduling 
is intrinsically a much more difficult problem than 
uniprocessor scheduling: 

“Few of the results obtained for a single 
processor generalize directly to the multiple 
processor case; bringing in additional processors 
adds a new dimension to the scheduling problem. 
The simple fact that a task can use only one 
processor even when several processors are free 
at the same time adds a surprising amount of 
difficulty to the scheduling of multiple 
processors.” 
The seminal paper of Dhall and Liu [78] in 1978 

heavily influenced the course of research in this area for 
two decades. During the 1980’s and 1990’s, 
conventional wisdom was that global approaches to 
multiprocessor scheduling (where tasks may migrate 

from one processor to another) suffered from the so 
called “Dhall effect”, and were therefore inferior to 
partitioned approaches (with a fixed allocation of tasks 
to processors). Research efforts therefore focused almost 
exclusively on partitioned approaches. 

It was not until 1997 when Phillips et al. [129] 
showed that the “Dhall effect” was more of a problem 
with high utilisation tasks than it was with global 
scheduling algorithms that there was renewed interest in 
global scheduling algorithms. 

In the late 1990’s silicon vendors such as IBM, and 
AMD began research into the development of multicore 
processors, with IBM releasing the first non-embedded 
dual-core processor, the POWER4 in 2001. 

In the late 1990’s, the trend away from increasing 
processing capacity via ever higher clock speeds, 
towards increasing performance via multiple processor 
cores became evident to the real-time systems research 
community. This resulted in significant research effort 
being focussed on the problem of real-time 
multiprocessor scheduling. While markedly more papers 
have been published in this area since 2000 than before, 
and significant progress has been made, there are still 
many open questions and research challenges that 
remain. 

This paper presents a survey of multiprocessor real-
time scheduling algorithms and schedulability analysis 
techniques, from the origins of the field in the late 
1960’s up to the latest research published in 2009. 

The aim of the survey is to provide a classification of 
existing research, providing both a perspective on the 
area, and identifying significant open issues, and future 
research directions. 

1.2. Organisation 
The remainder of the paper is organised as follows: 

Section 2 provides a classification of multiprocessor 
systems, and algorithms. It describes the basic system 
and task models, and defines the terminology and 
notation used. Section 3 describes metrics that can be 
used to compare the performance of different 
multiprocessor real-time scheduling algorithms and their 
analyses. Section 4 describes a set of fundamental 
results that are independent of specific scheduling 
algorithms. This is followed by an overview of 
partitioned and global approaches to multiprocessor real-
time scheduling (Sections 5 and 6 respectively). Section 
7 outlines hybrid approaches that attempt to combine the 
best attributes of both partitioned and global approaches. 
Section 8 describes research into protocols and analyses 
for accessing mutually exclusive shared resources. 
Section 9 reports on the latest empirical research. 
Finally, Section 10 concludes with the identification of 
key open issues in the field. 



2. System models, terminology and notation 
This section provides a primer on the terminology 

and notation used in multiprocessor scheduling research. 
It is aimed both at helping new researchers entering the 
field; and providing a consistent nomenclature that has 
yet to fully emerge from the research community. 

2.1. Classification of multiprocessor systems 
Multiprocessor systems can be classified into three 

categories: 
1. Heterogeneous: The processors are different; 

hence the rate of execution of a task depends on 
both the processor and the task. Indeed, not all 
tasks may be able to execute on all processors. 

2. Homogeneous: The processors are identical; 
hence the rate of execution of all tasks is the 
same on all processors. 

3. Uniform: The rate of execution of a task 
depends only on the speed of the processor. 
Thus a processor of speed 2 will execute all 
tasks at exactly twice the rate of a processor of 
speed 1. 

In this survey, we are concerned with homogeneous 
(or identical) multiprocessor systems, comprising m 
processors. 

2.2. Periodic and sporadic task models 
The aim of multiprocessor real-time scheduling is to 

execute the set of tasks that make up an application, on 
the multiprocessor system, such that their time 
constraints are always met. An application (or taskset 
τ ) is assumed to comprise a static set of n tasks 
( nττ ..1 ). When fixed priority scheduling is used, the task 
number is also used to indicate a unique priority i, from 
1 to n (where n is the lowest priority). 

The overwhelming majority of the research into 
multiprocessor real-time scheduling focuses on two 
simple task models: the periodic task model and the 
sporadic task model. In both models, tasks give rise to a 
potentially infinite sequence of invocations (or jobs). In 
the periodic task model, the jobs of a task arrive strictly 
periodically, separated by a fixed time interval. In the 
sporadic task model, each job of a task may arrive at any 
time once a minimum inter-arrival time has elapsed 
since the arrival of the previous job of the same task. 

Periodic tasksets may be classified as synchronous if 
there is some point in time at which all of the tasks 
arrive simultaneously, or asynchronous, where task 
arrival times are separated by fixed offsets and there is 
no simultaneous arrival time.  

In the sporadic task model, the arrival times of the 
jobs of different tasks are assumed to be independent.  

Intra-task parallelism is not permitted by either 
model; hence, at any given time, each job may execute 
on at most one processor. Also, it is assumed, unless 

otherwise stated, that only a single job of a task is ready 
to execute at any given time. Further, it is assumed that 
once a job starts to execute it will not suspend itself. 

Each task iτ  is characterised by: its relative deadline 
iD , worst-case execution time iC , and minimum inter-

arrival time or period iT . The utilisation iu , of task iτ  
is given by ii TC / . The utilisation sumu  of a taskset is 
the sum of the utilisations of all of its tasks. A task’s 
worst-case response time iR , is defined as the longest 
time from a job of that task arriving to it completing 
execution. The hyperperiod )(τH  of a taskset is defined 
as the least common multiple of the task periods. 

There are three levels of constraint on task deadlines 
that are studied in the literature, these are: 

1. Implicit deadlines: all task deadlines are equal 
to their periods ( ii TD = ). 

2. Constrained deadlines: all task deadlines are 
less than or equal to their periods ( ii TD ≤ ). 

3. Arbitrary deadlines: task deadlines may be less 
than, equal to, or greater than their periods. 

Most of the published research assumes that tasks are 
independent and so cannot be blocked from executing by 
another task other than due to contention for the 
processors.  Section 8 outlines research into policies that 
permit access to mutually exclusive resources lifting the 
restriction of independence. They consider the blocking 
time during which tasks can be prevented from 
executing due to other tasks accessing mutually 
exclusive shared resources. 

As a result of pre-emption and subsequent 
resumption, a job may, in the case of global scheduling, 
migrate from one processor to another. The cost of pre-
emption, migration, and the run-time operation of the 
scheduler is generally assumed to be either negligible, or 
subsumed into the worst-case execution time of each 
task. Empirical research considering the effects of such 
overheads is outlined in Section 9. 

2.3. Taxonomy of multiprocessor scheduling 
algorithms 

Multiprocessor scheduling can be viewed as 
attempting to solve two problems: 

1. The allocation problem: on which processor a 
task should execute. 

2. The priority problem: when, and in what order 
with respect to jobs of other tasks, should each 
job execute. 

Scheduling algorithms for multiprocessor systems 
can be classified according to when changes to priority 
and allocation can be made (referred to as migration-
based and priority-based classifications by Carpenter et 
al [66]). 
Allocation: 

1. No migration: Each task is allocated to a 
processor and no migration is permitted. 



2. Task-level migration: The jobs of a task may 
execute on different processors; however each 
job can only execute on a single processor. 

3. Job-level migration: A single job can migrate to 
and execute on different processors; however 
parallel execution of a job is not permitted. 

Priority: 
1. Fixed task priority: Each task has a single fixed 

priority applied to all of its jobs. 
2. Fixed job priority The jobs of a task may have 

different priorities, but each job has a single 
static priority. An example of this is Earliest 
Deadline First (EDF) scheduling. 

3. Dynamic priority: A single job may have 
different priorities at different times, for 
example Least Laxity First (LLF) scheduling. 

Scheduling algorithms where no migration is permitted 
are referred to as partitioned, those where migration is 
permitted are referred to as global. As the majority of 
research into global scheduling algorithms has focussed 
on models where arbitrary migration (job-level 
migration) is permitted, in the remainder of this paper 
will use the term global to mean job-level migration and 
provide clarification indicating when only task-level 
migration is permitted. 
 A scheduling algorithm is said to be work-
conserving if it does not permit there to be any time at 
which a processor is idle and there is a task ready to 
execute. Partitioned scheduling algorithms are not work-
conserving, as a processor may become idle, but cannot 
be used by ready tasks allocated to a different processor. 

Scheduling algorithms can be further classified as: 
1. Pre-emptive: tasks can be pre-empted by a 

higher priority task at any time. 
2. Non-pre-emptive: once a task starts executing, it 

will not be pre-empted and will therefore 
execute until completion. 

3. Co-operative: tasks may only be pre-empted at 
defined scheduling points within their execution. 
Effectively, execution of a task consists of a 
series of non-pre-emptable sections. 

In this survey, we focus on pre-emptive scheduling 
algorithms. 

2.4. Schedulability, feasibility, and optimality 
A taskset is said to be feasible with respect to a given 

system if there exists some scheduling algorithm that 
can schedule all possible sequences of jobs that may be 
generated by the taskset on that system without missing 
any deadlines. 

A scheduling algorithm is said to be optimal with 
respect to a system and a task model if it can schedule 
all of the tasksets that comply with the task model and 
are feasible on the system. 

A scheduling algorithm is said to be clairvoyant if it 

makes use of information about future events, such as 
the precise arrival times of sporadic tasks, or actual 
execution times, which are not generally known until 
they happen. 

A task is referred to as schedulable according to a 
given scheduling algorithm if its worst-case response 
time under that scheduling algorithm is less than or 
equal to its deadline. Similarly, a taskset is referred to as 
schedulable according to a given scheduling algorithm if 
all of its tasks are schedulable. 

A schedulability test is termed sufficient, with respect 
to a scheduling algorithm and a system, if all of the 
tasksets that are deemed schedulable according to the 
test are in fact schedulable. Similarly, a schedulability 
test is termed necessary, if all of the tasksets that are 
deemed unschedulable according to the test are in fact 
unschedulable. A schedulability test that is both 
sufficient and necessary is referred to as exact. 

2.5. Processor demand function 
The concepts of processor demand bound function 
)(th  and processor load [29] [30] are used extensively 

in the analysis of multiprocessor scheduling. The 
processor demand bound function )(th  corresponds to 
the maximum amount of task execution that can be 
released in an interval [0, t) and also has to complete in 
that interval. 
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The processor load is the maximum value of the 
processor demand bound divided by the length of the 
time interval. 
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As a taskset cannot possibly be schedulable 
according to any algorithm if the total execution that is 
released in an interval and must also complete in that 
interval exceeds the available processing capacity, the 
processor load provides a simple necessary condition for 
taskset feasibility [35]: 

mload ≤)(τ         (3) 
where m is the number of processors. 

2.6. Notation 
For ease of reference, Table 1 provides a summary of 

the notation used in the rest of the paper. 
This notation has been chosen to reflect common 

usage. Standardising on a common notation such as this 
would ease communication of results among the 
research community. 



Table 1: Notation 
Symbol Description 

iτ  Task i at priority level i. 
iB  Blocking time at priority level i. 
iC  Worst-case execution time of task iτ  
iD  Relative deadline of task iτ  
iR  Worst-case response time of task iτ  
)(τH  Hyperperiod of the taskset 

iT  Minimum inter-arrival time of task iτ  
iu  Utilisation of task iτ  

maxu  Max. utilisation of any task in the 
taskset. 

sumu  Taskset utilisation. 
iδ  Density of task iτ , ),min(/ iiii TDC=δ . 

maxδ  Max. density of any task in the taskset. 
sumδ  Taskset density (sum of task densities). 

)(τload  Processor load of taskset τ  
),( kload τ  Processor load of taskset τ , due to tasks 

of priority higher than or equal to k. 
n Number of tasks 
N Number of jobs (typically in the 

hyperperiod of the taskset). 
m Number of processors 
t Time 

)(th  Processor demand in the interval [0,t) 
Af  Speedup factor (resource augmentation 

factor) for scheduling algorithm A. 
)(τAM  Minimum number of processors needed 

to schedule taskset τ  using scheduling 
algorithm A. 

Aℜ  Approximation ratio for scheduling 
algorithm A. 

AU  Utilisation upper bound for scheduling 
algorithm A. 

 
3. Performance metrics 

In this section, we describe four performance metrics 
that have been used to compare the effectiveness of 
different multiprocessor scheduling algorithms / 
schedulability analyses. These are: 

o Utilisation bounds. 
o Approximation Ratio. 
o Resource Augmentation or Speedup factor. 
o Empirical measures, such as the percentage of 

tasksets that are found to be schedulable. 
3.1. Utilisation bounds 

For implicit-deadline tasksets, worst-case utilisation 
bounds are a useful performance metric. The worst-case 
utilisation bound AU  for a scheduling algorithm A is 
defined as the minimum utilisation of any implicit-
deadline taskset that is only just schedulable according 
to algorithm A. Hence there exist implicit-deadline 
tasksets with total utilisation infinitesimally greater than 

AU  that are unschedulable according to algorithm A. 
Conversely, there are no implicit-deadline tasksets with 
total utilisation Asum Uu ≤  that are unschedulable 
according to algorithm A. Hence AU  can be used as a 

simple sufficient (but not necessary) schedulability test. 
3.2. Approximation Ratio 

The approximation ratio is a way of comparing the 
performance of a scheduling algorithm A with that of an 
optimal algorithm. 

For example, consider the problem of determining 
the minimum number of processors required to schedule 
a given taskset (τ ). Let the number of processors 
required according to an optimal algorithm be )(τOM  
and the number required according to algorithm A be 

)(τAM , then the approximation ratio Aℜ  of algorithm 
A is given by: 
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Note that 1≥ℜA , with smaller values of the 

approximation ratio indicative of a more effective 
scheduling algorithm, and 1=ℜA  implying an optimal 
algorithm. 

Scheduling algorithms are referred to as 
approximate, if they have a finite approximation ratio. 
3.3. Resource Augmentation 

The resource augmentation factor f [101], is an 
alternative method of comparing the performance of a 
scheduling algorithm A with that of an optimal 
algorithm. Rather than considering the increased number 
of processors that would be required to obtain 
schedulability under algorithm A, the resource 
augmentation factor instead considers the increase in 
processing speed that would be required, (assuming a 
linear decrease in task execution times with processing 
speed). 

The resource augmentation or speedup factor f for a 
scheduling algorithm A is defined as the minimum factor 
by which the speed of all m processors would need to be 
increased such that all tasksets that are feasible (i.e. 
schedulable according to an optimal scheduling 
algorithm) on m processors of speed 1 become 
schedulable under algorithm A. 

Let τ  be a taskset that is feasible on a system of m 
processors of unit processing speed. Now assume that 
using scheduling algorithm A, taskset τ  is just 
schedulable on a system of m processors, each of speed 

)(τf . The resource augmentation or speedup factor Af  
for algorithm A is given by: 

( ))(max
,

τ
τ

ff
m

A
∀∀
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Note that 1≥Af , with smaller values indicative of a 
more effective algorithm, and 1=Af  implying an 
optimal algorithm. 
3.4. Empirical measures 

A comparative measure of the effectiveness of 
different scheduling algorithms and their analyses can be 
obtained by evaluating the number of randomly 



generated tasksets that each deems schedulable. Ideally, 
the number of tasksets deemed schedulable by a 
schedulability test would be compared against the 
number of feasible tasksets generated; however, as exact 
feasibility tests are not known for the case of sporadic 
tasksets and are potentially intractable for periodic 
tasksets, researchers have typically used this empirical 
measure to compare the relative performance of two or 
more sufficient schedulability tests / scheduling 
algorithms. 

In these empirical comparisons, it is important to use 
a taskset generation algorithm that is unbiased [54], and 
ideally one that allows tasksets to be generated that 
comply with a specified parameter setting. That way the 
dependency of schedulability test effectiveness on each 
taskset parameter can be examined by varying that 
parameter, while holding all other parameters constant, 
avoiding any confounding effects. 

Other useful empirical techniques used by 
researchers include simulation of the schedule produced 
by different algorithms to determine the number of pre-
emptions and migrations. While simulation cannot, in 
general, prove schedulability, it can prove that a taskset 
is unschedulable if the simulation reveals a deadline 
miss. Hence simulation can also be used as a sufficient 
test of un-schedulability. 

4. Fundamental results 
In this section, we describe a set of fundamental 

results about multiprocessor real-time scheduling that 
are independent of specific scheduling algorithms. These 
results cover: 

o Optimality 
o Feasibility 
o Comparability 
o Predictability 
o Sustainability 
o Anomalies 

4.1. Optimality 
As noted in Section 2.4 a scheduling algorithm is 

referred to as optimal if it can schedule all of the tasksets 
that can be scheduled by any other algorithm, i.e. all of 
the feasible tasksets. 

In 1974, Horn [99] gave an )( 3NO  algorithm (where 
N is the number of jobs) that is able to determine an 
optimal multiprocessor schedule for any arbitrary set of 
completely determined jobs where all of the arrival times 
and execution times are known a priori. This algorithm 
can be applied to a set of strictly periodic tasks, by 
considering all of the jobs in the hyperperiod; however, 
the )( 3NO  complexity means that it is only tractable for 
tasksets with a relatively short hyperperiod. This method 
is not applicable to sporadic tasksets where arrival times 
are not known in advance. 

In 1988, Hong and Leung [97] [98] proved that there 
is no optimal online scheduling algorithm for the case of 
an arbitrary collection of jobs that have more than one 
distinct deadline, and are scheduled on more than one 
processor. Hong and Leung showed that such an 
algorithm would require knowledge of future arrivals 
and execution times to avoid making decisions that lead 
to deadline misses; hence optimality in this case is 
impossible without clairvoyance. In 1989, this result was 
extended by Dertouzos and Mok [80] who showed that 
knowledge of arrival times is necessary for optimality, 
even if execution times are known. 

In 2007, Fisher [86] proved that there is no optimal 
online algorithm for sporadic tasksets with constrained 
or arbitrary deadlines, by showing that such an 
algorithm would also require clairvoyance. Optimal 
algorithms are however known for periodic tasksets with 
implicit-deadlines, see Section 6.3. 

4.2. Feasibility 
In 1974, Horn [99] observed that  

musum ≤        (6) 
is a necessary and sufficient condition for the feasibility 
of implicit-deadline periodic tasksets. 

For constrained and arbitrary deadline tasksets, the 
above condition is necessary, but not sufficient. A 
tighter necessary condition given by Baruah and Fisher 
in 2005 [35] is: 

mload ≤)(τ        (7) 
In 2006, Baker and Cirinei [23], improved upon this 

necessary feasibility condition by considering the 
modified processor load; that is the processor load 
including task execution that must unavoidably take 
place within an interval [0, t), even though the release 
time or deadline is not actually within the interval. 

mload ≤)(* τ       (8) 
Baker and Cirinei showed that an upper bound on the 

modified processor load )(* τload  can be found by 
considering a synchronous arrival sequence, with the 
modified processor load calculated from the modified 
processor demand bound function for each task (see 
Equations (1) and (2)): 
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In 2006, Cucu and Goossens [73] showed that the 
taskset hyperperiod ],0( H  is a feasibility interval for 
implicit- and constrained-deadline synchronous periodic 
tasksets, scheduled by a deterministic and memoryless1 
algorithm. For any such algorithm, for example global 
                                                 
1 A memoryless algorithm makes scheduling decisions based only on 
the currently ready tasks, not on previous scheduling decisions. 



EDF, an exact schedulability test can be obtained by 
checking if the schedule generated misses any deadlines 
in ],0( H . Further, an exact feasibility test for fixed job 
priority scheduling could in theory be achieved by 
checking the schedule for all N! possible job priority 
orderings. It is not currently known if ],0( H  is a 
feasibility interval for arbitrary deadline tasksets, under 
fixed job-priority scheduling. 

As far as we are aware, no exact feasibility test has 
yet been determined for sporadic tasksets scheduling by 
a fixed-job priority algorithm. 

In 2007, Cucu and Goossens [74] investigated the 
feasibility for fixed-task priority algorithms. For this 
case, the above result for implicit- and constrained-
deadline synchronous periodic tasksets holds as fixed-
task priority algorithms are both deterministic and 
memoryless. For arbitrary deadline periodic tasksets, 
Cucu and Goossens showed that the hyperperiod ],0( H  
is a feasibility interval provided that all previously 
released jobs are completed by H. For asynchronous, 
periodic task systems, Cucu and Goossens showed that 
longer intervals are required to prove exact 
schedulability. 

In 2008, Cucu noted that using the feasibility interval 
],0( H  and checking all n! possible task priority 

orderings, it is in theory possible to determine exact 
feasibility for periodic tasksets [75] scheduled using 
fixed task priorities; however, this approach quickly 
becomes intractable as taskset cardinality increases. 

As far as we are aware, no exact feasibility test or 
optimal priority ordering algorithm is known for 
sporadic tasksets scheduled using fixed task priorities. 

In 2007, Fisher and Baruah [85] devised a sufficient 
feasibility test for global scheduling of general task 
models. This test determines if a global scheduling 
algorithm exists that is able to schedulable the taskset of 
interest. Unfortunately knowing that such an algorithm 
exists is of limited value without knowing what the 
algorithm is. The test, given by Equation (10) for 
sporadic tasksets with arbitrary deadlines, is sufficient as 
there are tasksets which it deems infeasible which are in 
fact feasible. 
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Fisher and Baruah showed that this feasibility test has a 
resource augmentation bound or speedup factor of 

41.2)12/(1 ≈− , meaning that any sporadic taskset that 
is feasible on m processors of speed )12( −  will be 
deemed feasible by the test on m processors of unit 
speed. 

In 2007, Fisher and Baruah [40] also derived a 
sufficient feasibility test for non-migratory (i.e. 
partitioned) scheduling. This test states that there exists 
a partitioning of the tasks that is schedulable using EDF, 

which is an optimal uniprocessor scheduling algorithm, 
provided that: 

))1((
3
1)( maxδτ −−≤ mmload     (11) 

4.3. Comparability 
In comparing the tasksets that can be scheduled by 

two different multiprocessor scheduling algorithms A 
and B, there are three possible outcomes: 

1. Dominance: Algorithm A is said to dominate 
algorithm B, if all of the tasksets that are 
schedulable according to algorithm B are also 
schedulable according to algorithm A, and 
tasksets exist that are schedulable according to 
A, but not according to B. 

2. Equivalence: Algorithms A and B are 
equivalent, if all of the tasksets that are 
schedulable according to algorithm B are also 
schedulable according to algorithm A, and vice-
versa. 

3. Incomparable: Tasksets exist that are 
schedulable according to algorithm A, but not 
according to algorithm B and vice-versa. 

In 2004, Carpenter et al. [66] considered the 
relationships between the nine different classes of 
multiprocessor scheduling algorithm (the combinations 
of the three migration-based and the three priority based 
categories – see Section 2.3) 

Carpenter’s key comparability results are as follows: 
o Global (i.e. job-level migration), dynamic 

priority scheduling dominates all other classes. 
o All three classes with fixed task priorities 

(partitioned, task-level migration, and job-level 
migration) are incomparable. (Leung and 
Whitehead [119] had previously shown that 
these partitioned and job-level migration classes 
are incomparable). 

o All three partitioned classes (fixed task priority, 
fixed job priority, and dynamic priority) are 
incomparable with respect to all three task-level 
migration classes. 

We note that unlike uniprocessor scheduling where an 
optimal scheduling algorithm for periodic and sporadic 
tasksets exists in the fixed job priority class (i.e. EDF), 
in the case of multiprocessor scheduling, dynamic 
priorities are essential for optimality. 

The maximum possible utilisation bounds 
(applicable to periodic tasksets with implicit-deadlines) 
are given in Table 2 below, for algorithms in the various 
classes: 



Table 2 
Class Maximum utilisation 

bound 
Global (job-level 
migration), dynamic priority 

m 

All other classes 2/)1( +m  [8] 

4.4. Predictability 
In 1994, Ha and Liu [100] defined the concept of 

scheduling algorithm predictability. A scheduling 
algorithm is referred to as predictable if the response 
times of jobs cannot be increased by decreases in their 
execution times, with all other parameters remaining 
constant.  

Predictability is an important property, as in real 
systems task execution times are almost always variable 
up to some worst-case value. 

Ha and Liu [100] proved that all priority driven, i.e. 
fixed task priority or fixed job priority, pre-emptive 
scheduling algorithms for multiprocessor systems are 
predictable. We note that for any dynamic priority 
scheduling algorithm, it is necessary to consider / prove 
predictability before the algorithm can be considered 
useful. 

4.5. Sustainability 
In 2006, Baruah and Burns [37] introduced the 

concept of sustainability. A scheduling algorithm is said 
to be sustainable with respect to a task model, if and 
only if schedulability of any taskset compliant with the 
model implies schedulability of the same taskset 
modified by: 

(i) Decreasing execution times, 
(ii) Increasing periods or inter-arrival times, 
(iii) Increasing deadlines. 

Similarly, a schedulability test is referred to as 
sustainable if the above changes cannot result in a 
taskset that was previously deemed schedulable by the 
test becoming unschedulable. We note that the modified 
taskset may not necessarily be deemed schedulable by 
the test. A schedulability test is referred to as self-
sustainable [28] if such a modified taskset will always 
be deemed schedulable by the test. 

We note that it is possible to devise sustainable 
sufficient schedulability tests for a scheduling algorithm 
that is unsustainable when an exact test is applied. 

While EDF and fixed priority scheduling are 
sustainable algorithms with respect to uniprocessor 
scheduling of both synchronous periodic and sporadic 
tasksets, the same is not true of global EDF and global 
fixed task priority multiprocessor scheduling. This point 
is illustrated by the scheduling anomalies discussed in 
the next section. 

The sustainability of schedulability tests for global 
EDF has been investigated by Baker and Baruah [28] 

and is discussed further in Section 6.1. 

4.6. Anomalies 
A scheduling anomaly occurs when a change in 

taskset parameters results in a counter-intuitive effect on 
schedulability. For example, increasing task periods, 
while keeping all other parameters constant, results in 
lower overall processor utilisation, and so might 
reasonably be expected to improve schedulability; 
however, in some cases, this can result in the taskset 
becoming unschedulable. This effect is referred to as a 
period anomaly and is evidence of un-sustainability. 
4.6.1 Period and execution time anomalies 

In partitioned approaches to multiprocessor 
scheduling, anomalies exist in the task allocation / bin-
packing algorithms used. These anomalies occur when a 
change in a parameter such as an increase in the period 
or a decrease in the worst-case execution time of a task 
results in a different allocation, which is then deemed to 
be unschedulable. Such anomalies are known to exist for 
EDF scheduling, in particular, FF (First Fit) and FFDU 
(First Fit Decreasing Utilisation) allocation [93]. These 
anomalies also exist for many fixed task priority 
partitioning algorithms [9]. 

In 2003, B. Andersson [9] showed that global fixed 
task priority scheduling of periodic tasksets using an 
exact schedulability test is also subject to period 
anomalies. In effect, the schedulability test is 
unsustainable with respect to increasing task periods. 

Period anomalies are known to exist for: 
o Global fixed task priority scheduling of 

synchronous periodic tasksets. 
o Global optimal scheduling (full migration, 

dynamic priorities) of synchronous periodic 
tasksets. 

The interested reader is referred to Chapter 5 of B. 
Andersson’s thesis [9] for a set of illustrative examples. 
4.6.2 Critical instant effect 

In 1998, Lauzac et al. [110] showed that under global 
fixed task priority scheduling, a task does not 
necessarily have its worst-case response time when 
released simultaneously with all higher priority tasks. 
This happens because simultaneous release may not be 
the scenario that results in all processors being occupied 
by higher priority tasks for the longest possible time 
during the interval over which the task of interest is 
active. 

In multiprocessor scheduling, the response time of a 
low priority task is longer if when the task executes, 
zero or only a few higher tasks are executing on other 
processors, and when other higher priority tasks do 
execute, they do so together so that all processors are 
occupied and the task of interest cannot execute. 

The critical instant effect is a fundamental difference 
between global multiprocessor scheduling and 



partitioned / uniprocessor scheduling. In uniprocessor 
scheduling, synchronous release is known to represent 
the worst-case scenario for both periodic and sporadic 
tasksets. 

 

 
Figure 1: Critical instant effect 

The critical instant effect is illustrated by Figure 1. 
the task parameters ( iC , iD , iT ) are as follows: 

1τ (2,2,8), 2τ (2,2,10), 3τ (4,6,8), 4τ (4,7,8). The lowest 
priority task 4τ  misses its deadline at time 13=t , 
despite meeting its deadline on the first invocation 
following simultaneous release of all four tasks. This 
happens because the higher priority tasks occupy both 
processors for 4 time units in the interval [8, 15), 
whereas they only occupy both processors for 2 time 
units in the interval [0, 7). 
 In his thesis, B. Andersson [9] observes that this 
effect has implications for priority assignment policies. 
In particular, the exact response time of a task is 
dependent on both the set of higher priority tasks and 
their specific priority order. This implies that a greedy 
approach to priority assignment as used by Audsley’s 
optimal priority assignment algorithm [15] [17] for the 
uniprocessor case, is not applicable to the multiprocessor 
case, when schedulability analysis uses exact response 
times. In 2009, Davis and Burns [77] showed that this 
does not however rule out the use of Audsley’s 
algorithm in conjunction with some sufficient 
schedulability tests.  

The critical instant effect is also an issue in the 
analysis of global fixed job priority scheduling. In [38] 
Baruah remarks that, “no finite collection of worst-case 
job arrival sequences has been identified for the global 
scheduling of sporadic task systems.” This problem 
remains one of the key open questions in the field today. 

5. Partitioned scheduling 
In this section, we review the key research results in 

partitioned approaches to multiprocessor real-time 
scheduling. 

Partitioned scheduling has the following advantages 
compared to global scheduling: 
o If a task overruns its worst-case execution time 

budget, then it can only affect other tasks on the 
same processor. 

o As each task only runs on a single processor, then 
there is no penalty in terms of migration cost. For 
example, a job that is started on one processor, then 
pre-empted and resumed on another must have its 
context restored on the second processor. This can 
result in additional communication loads and cache 

misses that would not occur in the partitioned / non-
migration case. This problem could be mitigated by 
allowing only task, as opposed to job-level 
migration, or by non-preemptive execution, 
although the later could result in significant loss of 
schedulability due to long non-pre-emptive sections. 

o Partitioned approaches use a separate run-queue per 
processor, rather than a single global queue. For 
large systems, the overheads of manipulating a 
single global queue can become excessive. 
From a practical perspective, the main advantage of 

using a partitioning approach to multiprocessor 
scheduling is that once an allocation of tasks to 
processors has been achieved, a wealth of real-time 
scheduling techniques and analyses for uniprocessor 
systems can be applied.  

The following optimality results for uniprocessor 
scheduling had a strong influence on research into 
partitioned multiprocessor scheduling. 

Considering pre-emptive uniprocessor scheduling 
using fixed task priorities: 

o Rate Monotonic (RM) priority assignment is the 
optimal priority assignment policy for 
synchronous periodic or sporadic tasksets with 
implicit deadlines [116]. 

o Similarly, Deadline Monotonic (DM) priority 
assignment is optimal for such tasksets with 
constrained-deadlines [119]. (We note that DM 
is not optimal for tasksets with arbitrary 
deadlines [113], or for asynchronous periodic 
tasksets; however Audsley’s priority assignment 
algorithm is known to be optimal in these cases 
[15] [17]). 

Considering pre-emptive uniprocessor scheduling 
using fixed job priorities:  

o EDF is the optimal scheduling algorithm for 
sporadic tasksets independent of the deadline 
constraints [79]. 

The main disadvantage of the partitioning approach 
to multiprocessor scheduling is that the task allocation 
problem is analogous to the bin packing problem and is 
known to be NP-Hard [92]. 

5.1. Implicit-deadline tasksets 
Early research into partitioned multiprocessor 

scheduling by Dhall and Liu [78] in 1978, Davari and 
Dhall [76] in 1986, Oh and Son [126], [127] in 1993 and 
1995, and Burchard et al. [62] in 1995, examined the use 
of EDF or Fixed Priority scheduling using Rate 
Monotonic (RM) priority assignment, on each processor, 
combined with bin packing heuristics such as “First-Fit” 
(FF), “Next-Fit” (NF), “Best-Fit” (BF), “Worst-Fit” 
(WF) and task orderings such as “Decreasing 
Utilisation” (DU) for task allocation.  

In the following sections, these algorithms are 



referred to by their abbreviated names, for example 
RMBF, meaning Rate Monotonic (fixed priority) 
scheduling with Best Fit task allocation. 
5.1.1 Approximation Ratio 

Table 3 below gives the approximation ratio required 
for each of these algorithms for periodic tasksets with 
implicit-deadlines. 

Recently in 2009, Rothvoß [132] devised an )( 3nO  
partitioning algorithm called RMMatching and showed 
that it has an approximation ratio of 3/2, improving upon 
the previous best approximation ratio of 7/4 for the fixed 
task priority algorithm RMGT [62]. 

Table 3 
 

Algorithm Approximation 
Ratio ( Aℜ ) 

Ref. 

RMNF  2.67 [78]  
RMFF 2.33 [126] 
RMBF 2.33 [126] 

RM-FFDU 5/3 [127] 
FFDUF 2 [76] 
RMST )1/(1 maxu−  [62] 
RMGT 7/4 [62] 

RMMatching 3/2 [132] 
EDF-FF 1.7 [92] 
EDF-BF 1.7 [92] 

Note, maxu  is the highest utilisation of any task in 
the taskset. 

While these approximation ratios enable a 
comparison to be made between the different algorithms, 
their practical use as a schedulability test is severely 
limited, as determining the minimum number of 
processors required by an optimal algorithm is, as noted 
above, an NP-hard problem. Also, the approximation 
ratio only holds as the number of processors required in 
the optimal case tends to infinity. Further, the utilisation 
bounds that can be derived from these approximation 
ratios are pessimistic [128]. 
5.1.2 Utilisation bounds 

In 2001, B. Andersson et al. [8] showed that for 
periodic tasksets with implicit-deadlines, the largest 
worst-case utilisation bound for any partitioning 
algorithm is: 

2/)1( += mUOPT       (12) 
Equation (12) holds because 1+m  tasks with 

execution time ε+1  and a period of 2 cannot be 
scheduled on m processors regardless of the allocation 
algorithm used. 

The difficulties that partitioned scheduling has 
allocating large utilisation tasks were recognised early 
on by the research community; leading to a significant 
thread of research during the 1990’s providing 
utilisation bounds as a function of maxu , the highest 
utilisation of any task in the taskset. 

In 1995, Burchard et al [62] provided utilisation 
bounds for the RMST (“Small Tasks”) algorithm, which 
attempts to place tasks with periods that are close to 
harmonics of each other on the same processor. This 
algorithm favours tasks with utilisation < 1/2: 

2ln1)1)(2( max −+−−= umU RMST    (13) 
Burchard et al [62] also provided utilisation bounds 

for the RMGT (“General Tasks”) algorithm, which 
separates tasks into two groups depending on whether 
their utilisation is above or below 1/3: 
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In 1998, Oh and Baker [128] showed that RM-FFDU 
has a utilisation bound given by: 

mmU FFDURM 41.0)12( 2/1 ≈−=−     (15) 
They also showed that the utilisation bound for any 

fixed task priority partitioning algorithm is upper 
bounded by: 

)21/()1( )1/(1
)(

+++< m
FTPOPT mU     (16) 

Lopez et al [121], [122], [123] subsequently 
generalised the above result for RM-FFDU, and also 
provided more complex bounds based on the number of 
tasks n and the value of maxu  for RMBF, RMFF, and 
RMWF. 

In 2003, B. Andersson [10] showed that the 
RBOUND-MP-NFR algorithm has a utilisation bound 
of: 

2/mU NFRMPRBOUND =−−      (17) 
This result shows that a fixed task priority partitioning 
algorithm exists that is an optimal partitioning approach 
in the limited sense that its utilisation bound is the 
maximum possible for any partitioning algorithm. We 
note that this does not mean that it is an optimal 
partitioning algorithm in the sense that it can schedule 
any taskset that is schedulable according to any other 
partitioning algorithm. 

In 2000, Lopez et al [120] showed that using EDF, 
the lowest utilisation bound for any reasonable2 
allocation algorithm is given by: 

max)1( ummLRA −−=      (18) 
and that the highest utilisation bound of any reasonable 
allocation algorithm is: 
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(These limits assume that ⎣ ⎦)/1/( maxumn > ). 
Lopez et al. [120] showed that all reasonable 

allocation algorithms that order tasks by decreasing 
utilisation achieve the higher limit, as do EDF-BF and 
EDF-FF. Further, EDF-WF, but not EDF-WFDU, 

                                                 
2 A reasonable allocation algorithm is one that only fails to allocate a 
task once there is no processor on which the task will fit. 



achieves the lower limit. 
When 1max =u , the limit given by Equation (19) 

becomes the same as Equation (12); hence EDF-FF and 
EDF-BF are also ‘optimal’ partitioning approaches in 
the limited sense that their utilisation bounds are as large 
as that of any partitioning algorithm. 

We note that for applications with “small” tasks, then 
RMST and EDF-FF provide reasonably high utilisation 
bounds. For example, assuming 10=m  and 

25.0max =u , the utilisation bounds for RMST and EDF-
FF are 63% and 82% respectively. 

5.2. Constrained and arbitrary deadline tasksets 
In 2005, Baruah and Fisher [35] showed that EDF-

FFD (decreasing density) is able to schedule any 
arbitrary-deadline sporadic taskset provided that: 
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The resource augmentation factor for EDF-FFD is 
however, not finite [35]. 

Baruah and Fisher [35], [36], [39] also developed an 
algorithm EDF-FFID based on ordering tasks by 
increasing relative deadline, and using a sufficient test 
based on a linear upper bound for the processor demand 
bound function to determine schedulability. 

They showed that EDF-FFID is able to schedule any 
sporadic taskset with constrained deadlines provided 
that: 
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For tasksets with arbitrary deadlines, the test becomes: 
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The resource augmentation or speedup factor 
required by this algorithm is: 

o )/12( m−  for tasksets with implicit deadlines. 
o )/13( m−  for tasksets with constrained 

deadlines. 
o )/24( m−  for tasksets with arbitrary deadlines. 

In 2006, Fisher et al. [83] applied a similar approach 
to the problem of partitioning using fixed task priority 
scheduling using Deadline Monotonic priority 
assignment. The algorithm FFB-FFD (from the author’s 
surnames), is based on ordering tasks by decreasing 
relative deadline, and using a sufficient test based on a 
linear upper bound on the processor request bound 
function to determine schedulability.  

They showed that FFB-FFD is able to schedule any 
sporadic taskset with constrained-deadlines provided 
that: 
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For tasksets with arbitrary deadlines, the test 
becomes: 
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Fisher et al. [83] showed that the resource 
augmentation or speedup factor required by this 
algorithm is: 

o )/13( m−  for tasksets with constrained-
deadlines. 

o )/24( m−  for tasksets with arbitrary-deadlines. 

6. Global scheduling 
In this section we outline the key research results in 

global multiprocessor scheduling where tasks are 
permitted to migrate from one processor to another. 

Global scheduling has the following advantages 
compared to partitioned scheduling: 
o There are typically fewer context switches / pre-

emptions when global scheduling is used, this is 
because the scheduler will only pre-empt a task 
when there are no processors idle [6]. 

o Spare capacity created when a task executes for less 
than its worst-case execution time can be utilised by 
all other tasks, not just those on the same processor. 

o If a task overruns its worst-case execution time 
budget, then there is arguably a lower probability of 
deadline failure as worst-case behaviour of the 
entire system, with all tasks taking worst-case 
execution times, worst-case phasing occurring etc. 
is less likely than it is on a single processor. 

o Global scheduling is more appropriate for open 
systems, as there is no need to run load balancing / 
task allocation algorithms when the set of tasks 
changes. 

The majority of the research into global real-time 
scheduling has focussed on approaches that permit job-
level migration, where a job may be pre-empted on one 
processor and resumed on another. In the descriptions 
that follow, job-level migration should be assumed 
unless task-level migration, where each job executes on 
a single processor, but jobs of the same task may 
execute on different processors, is explicitly stated. 

The seminal work of Dhall and Liu in 1978 [78] 
considered global scheduling of periodic tasksets with 
implicit deadlines on m processors. They showed that 
the utilisation bound for global EDF scheduling is ε+1 , 
for arbitrary small ε . This occurs when there are m 
tasks with short periods/deadlines and infinitesimal 
utilisation, and one task with a longer period/deadline 
and utilisation that approaches 1. 

This “Dhall effect” led to a general view that global 
approaches to multiprocessor scheduling were inferior to 
partitioned approaches. As a result, throughout the 
1980’s and early 1990’s, the majority of research into 



multiprocessor real-time scheduling focussed on 
partitioned approaches, as described in the previous 
section. 

In 1997, Phillips et al. [129] showed that augmenting 
a system by increasing processor speed is more effective 
that augmenting a system by adding processors. They 
showed that the resource augmentation or speedup factor 
required for global EDF is at most )/12( m− . (This 
result also applies to global Least Laxity First (LLF), 
which can schedule any taskset schedulable by global 
EDF). 

The resource augmentation results of Phillips et al. 
[129], along with research by Funk et al. [88] in 2001 
into uniform multiprocessor scheduling, led to the 
observation that for the “Dhall effect” to occur at least 
one task is needed with very high utilisation. This 
observation was exploited in much of the subsequent 
research to provide utilisation bounds that are dependent 
on the maximum task utilisation maxu . 

6.1. Global fixed job priority scheduling 
6.1.1 Implicit deadline tasksets 

In 2001, B. Andersson et al. [8] considered 
utilisation bounds for periodic tasksets with implicit 
deadlines. They showed that the maximum utilisation 
bound for any global fixed job priority algorithm is: 

2/)1( += mUOPT       (25) 
In 2002, Srinvasan and Baruah [138] proposed the 

EDF-US[ς ] algorithm that gives the highest priority to 
tasks with utilisation greater than the threshold ς , with 
ties broken arbitrarily. Setting the threshold to 

)12/( −mm  results in a utilisation bound that is 
independent of maxu : 

)12/(2
)]12/([ −=−− mmU mmUSEDF    (26) 

In 2003, Goossens et al. [94] derived a utilisation 
bound for global EDF applicable to periodic tasksets 
with implicit-deadlines and showed that this bound is 
tight: 

max)1( ummU EDF −−=      (27) 
Later that year, Baruah and Carpenter [34] showed that 
this same utilisation bound applies to global EDF 
scheduling, assuming task level, migration. 

Goossens et al. [94] also proposed an algorithm 
called EDF(k) that assigns the highest priority to the k 
tasks with the highest utilisation. They showed that a 
sufficient schedulability condition for EDF(k) is: 
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where ku  is the utilisation of the kth task, in order of 
decreasing utilisation. 

In 2005, Baker [20], [24] showed that setting the 
threshold used in EDF-US[ς ] to 1/2, results in the 
following utilisation bound which is the maximum 

possible bound for this class of algorithm [8]: 
2/)1(]2/1[ +=− mU USEDF      (29) 

Baker [20] also proposed a variant of EDF(k) called 
EDF( mink ), where mink  is the minimum value of k for 
which the sufficient test in Equation (29) holds. Baker 
showed that the utilisation bound for EDF( mink ) is also: 

2/)1(][ min
+= mU kEDF      (30) 

Again, this is the maximum possible utilisation 
bound for this class of scheduling algorithm. However, 
EDF( mink ) dominates EDF-US[ 2/1 ] in terms of the 
tasksets that it can schedule. 
6.1.2 Constrained and arbitrary-deadline tasksets 

The proof of the utilisation bound given in Equation 
(27) was extended by Bertogna et al. [48] to the case of 
sporadic tasksets with constrained deadlines and by 
Baruah and Baker [25] to the arbitrary-deadline case, 
giving the following sufficient schedulability test based 
on task density: 

max)1( δδ −−≤ mmsum      (31) 
Bertogna [49] also adapted the utilisation separation 

approach of EDF-US to the case of sporadic tasksets 
with constrained and arbitrary deadlines, forming the 
EDF-DS[ς ] algorithm. This algorithm gives the highest 
priority to tasks with density greater than the threshold 
ς . Bertogna showed that a sporadic taskset is 
schedulable according to EDF-DS[1/2] provided that: 

2/)1( +≤ msumδ        (32) 
 

 
Figure 2: Problem window 

 
In 2003, Baker [19] developed a general strategy for 

determining the schedulability of sporadic tasksets. The 
outline of this basic strategy is as follows; 

1. Consider an interval, referred to as the problem 
window, at the end of which a deadline is 
missed, see Figure 2, for example the interval 

],[ kk dr  from the arrival to the deadline of some 
job of task kτ . 

2. Establish a condition necessary for the job to 
miss its deadline, for example, all m processors 
execute other jobs for more than kk CD −  
during the interval. 

3. Derive an upper bound UBI  on the maximum 
interference in the interval due to jobs of other 



tasks, including both jobs released in the interval 
and so called carry-in jobs that have not 
completed execution before the start of the 
interval. 

4. Form a necessary un-schedulability test; in the 
form of an inequality between UBI  and the 
amount of execution necessary for a deadline to 
be missed.  

5. Negate this inequality to form a sufficient 
schedulability test. 

The idea presented by Baker in [19] is that if the job 
of task kτ  misses its deadline, then the load in the 
interval must be at least: kkm δδ +− )1( . In order to 
improve the estimate of execution time carried-in, Baker 
extended the interval back as far as possible before the 
release of the job, such that the load remained just 
greater than kkm δδ +− )1( . This gives the following 
sufficient schedulability test:  

A constrained-deadline taskset is schedulable under 
pre-emptive global EDF scheduling if for every task kτ : 

kk
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)1(),1min(     (33) 

where iβ  is an upper bound on the processor load due to 
task iτ  for any problem window relating to kτ . See 
lemma 11in [19] for a definition of iβ . 

In 2005, Baker [20] extended this approach to 
sporadic tasksets with arbitrary deadlines. We note that 
the complexity of Baker’s test is )( 3nO  in the number 
of tasks. 

The basic strategy proposed by Baker in [19] is a 
seminal result which has been built upon by a significant 
thread of subsequent research. 

In 2005, Bertogna et al. [48] showed that the test 
proposed by Baker [20] (Equation (33)) does not 
dominate the extended version of test proposed by 
Goossens et al. [94] (Equation (31)). In fact, the test 
given by Equation (33) performs relatively poorly when 
tasks with high individual utilisations are considered. 
Bertogna et al. [48] proposed an alternative sufficient 
test based on the strategy of Baker, but using some 
simple observations to limit the amount of interference 
counted as falling in the problem window. This 
sufficient test can be summarised as follows: 

A constrained-deadline taskset is schedulable under 
pre-emptive global EDF scheduling if for every task kτ , 
one of the following holds: 
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The complexity of this test is )( 2nO  in the number 
of tasks. 

We note that the schedulability tests given by 
Equations (33) and (34) become pessimistic when the 
number of tasks is much greater than the number of 
processors ( mn >> ). This happens because every task is 
counted as contributing some carry-in interference. 
Further, these tests tend to perform poorly on tasksets 
where the task parameters are of different orders of 
magnitude. 

In 2007, Baruah [38] derived a sufficient 
schedulability test for global EDF scheduling of 
sporadic tasksets with constrained deadlines. This test 
uses the same basic approach as Baker [19] but extends 
the interval during which task execution is considered 
back to some point in time 0t  at which at least one of 
the m processors is idle. In this way, the test limits the 
number of tasks that are counted as causing carry-in 
interference to m-1. 

For each task, the schedulability test presented in 
[38] checks values of kA  representing the time interval 
between 0t  and the arrival of the first job of task kτ  to 
miss its deadline. The range of values of kA  to be 
checked is constrained by the following upper bound. 
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Where ∑C  is the sum of the m-1 largest task 
execution times. Within this range of possible values for 

kA , only those values where the processor demand 
bound function )( kk DAh +  changes need to be 
checked, making the test pseudo-polynomial in 
complexity. 

A constrained-deadline taskset is schedulable under 
pre-emptive global EDF scheduling if for every task kτ , 
the following holds for all values of kA : 
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Notably, the above test reverts to the processor load-
based test ( 1)( ≤τload ) for uniprocessor systems [29], 
[30], when m = 1. 

In 2008, building on their previous work [38], 
Baruah and Baker [27] derived a further sufficient test 
for global EDF scheduling of sporadic tasksets with 
constrained deadlines, which also limits the number of 
tasks that are counted as causing carry-in interference. 
This processor load based test is given by:  

⎡ ⎤ max)1()( δμμτ −−≤load    (38) 
where max)1( δμ −−= mm . 
Baruah and Baker showed that the sufficient test 

given by Equation (38), combined with global EDF, 
scheduling, has a resource augmentation or speedup 
factor of: 

62.2
53

2
≈

−
=f      (39) 

This speedup factor is sufficient to compensate for both 
the non-optimality of global EDF and the sufficiency of 
the test. 

Later in 2008, Baruah and Baker [43] extended the 
results in [27] to sporadic tasksets with arbitrary 
deadlines, showing that Equation (38) still applies. 
Baruah and Baker [44] also extended their results to the 
case where jobs of an arbitrary deadline task may 
execute in parallel on different processors. They showed 
that unlike the partitioned case (see Section 5.2), there 
appears to be no performance penalty for permitting 
arbitrary deadlines. However, the analysis provided is 
only sufficient, and the speedup factor derived is an 
upper bound, so it is possible that the lack of a penalty 
could be an artefact of the analysis used. 

In 2008, Bertogna et al. [51], presented a 
schedulability test for sporadic tasksets with constrained 
deadlines that is valid for any work conserving 
algorithm. This schedulability test is based on a 
consideration of the densest possible packing of 
interfering jobs in the problem window, see Figure 3. 

  
Figure 3: Densest packing for work conserving 

algorithms 
Bertogna et al. [51] showed that )(LWi  is an upper 

bound on the workload of task iτ  in an interval of 
length L. 

))(,min()()( iiiiiiii TLNCDLCCLNLW −−++=
 (40) 

where )(LNi  is the maximum number of jobs of task iτ  
that contribute all of their execution time in the interval. 
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A taskset is therefore schedulable with any work-
conserving global scheduling algorithm if for each task 

kτ : 
)1()1),(min( +−<+−∑

≠
kkkkki
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Bertogna et al. [51] extended this test to the specific 
cases of global EDF, and global FP (fixed task priority) 
scheduling (see Section 6.2.2). Under global EDF, they 
showed that a taskset is schedulable provided that for 
each task kτ  the following holds: 
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Bertogna et al. further extended their approach via an 
iterative schedulability test that calculates the slack for 
each task, and then uses this value to limit the amount of 
carry-in interference and hence calculate a new value for 
the task slack. This approach is also applicable to any 
work-conserving algorithm and was also specialised for 
global EDF and global FP scheduling. 

They showed that the iterative test for global EDF 
admits nearly as many randomly generated tasksets as 
the sufficient feasibility test of Fisher and Baruah [85], 
see Section 4.2, Equation (10). This iterative test has 
complexity that is pseudo polynomial: )( 2

max
3DnO . 

In 2007, Baruah and Fisher [40] derived the 
following sufficient test for jobs of sporadic tasks 
scheduled by global EDF. Note, ),( jload τ  is the 
processor load due to all jobs with higher priority than 
job j: 

)/)1((
1

1),( jj DCmm
K

jload −−
+

≤τ   (44) 

where K is the largest ratio task deadlines. As K may 
potentially take any value, this test does not have a finite 
resource augmentation factor. 

In 2009, Baker and Baruah [28] showed that the 
sufficient schedulability tests for global EDF given in 
[20], [27], and [48] (Equations (33), (34) and (38) are 
unsustainable with respect to increases in relative 
deadline, and the test given in [27], Equation (38) is 
unsustainable with respect to decreases in worst-case 
execution times. That is increases in relative deadlines 
(decreases in worst-case execution times) can result in a 
taskset being deemed unschedulable when it was 
previously deemed schedulable by the test. Baruah [44] 
improved the sufficient test from [27], Equation (38), 
making it sustainable. The improved schedulability test 
is as follows: 



⎡ ⎤ ),)1(max(()( maxδμμτ −−≤load      

⎡ ⎤ )))2(( maxδμμ −−  (45) 
where max)1( δμ −−= mm . 
In 2008, Bonifaci et al. [64] derived a sufficient 

schedulability test for global EDF scheduling of 
sporadic tasksets with arbitrary deadlines which has a 
speedup factor of )/12( ε++ m  for arbitrarily small ε . 
Recall that Phillips et al. [129] showed that global EDF 
requires m processors of speed (2+1/m) in order to 
schedule all tasksets that are feasible on m processors of 
unit speed. The schedulability test introduced by 
Bonifaci et al. [64] and extended by Baruah et al. in [45] 
therefore has the property that there are no tasksets that 
are feasible on m processors of unit speed that are not 
deemed to be schedulable by the test under global EDF 
on m processors of speed (2+1/m). In this sense, the test 
is speedup optimal, as no schedulability test exists for 
global EDF that requires a smaller speedup factor. 

6.2. Global fixed task priority scheduling 
This section outlines research into global fixed task 

priority scheduling. For conciseness we use the 
following abbreviated descriptions for various 
scheduling algorithms: 

o Global FP scheduling: global fixed task priority 
scheduling. 

o Global RM scheduling: global FP scheduling 
using Rate Monotonic priority ordering. 

o Global DM scheduling: global FP scheduling 
using Deadline Monotonic priority ordering. 

6.2.1 Implicit deadline tasksets 
As well as global EDF scheduling, discussed in 

Section 6.1, the seminal work of Dhall and Liu in 1978 
[78] also considered global scheduling of periodic 
tasksets with implicit deadlines on m processors. They 
showed that the utilisation bound for global RM 
scheduling is ε+1 , for arbitrarily small ε . This occurs 
when there are m tasks with short periods/deadlines and 
infinitesimal utilisation, and one task with a longer 
period/deadline and utilisation that approaches 1. 

In 2000, B. Andersson and Jonsson [6], designed the 
TkC priority assignment policy to circumvent the “Dhall 
effect”. TkC assigns priorities based on a task’s period 

iT  minus k times its worst-case execution time iC , 
where k is a real value computed on the basis of the 
number of processors.  

m
mmmk

2
1651 2 +−+−

=     (46) 

Via an empirical investigation, B. Andersson and 
Jonsson showed that TkC is an effective priority 
assignment policy for periodic tasksets with implicit 
deadlines. 

In 2001, B. Andersson et al. [8] showed that any 
periodic taskset with implicit deadlines can be scheduled 

using global RM scheduling provided that: 
)23/(max −≤ mmu  and )13/(2 −≤ mmusum  (47) 

This result, albeit in a weaker form, also appeared in 
a paper [33] by the co-authors Baruah and Goossens in 
2003: 

3/1max ≤u  and 3/musum ≤     (48) 
B. Andersson et al. [8] also proposed the RM-US[ς ] 

algorithm that gives the highest priority to tasks with 
utilisation greater than the threshold ς  (with ties broken 
arbitrarily), and otherwise assigns priorities in RM 
order. B. Andersson et al. showed that RM-
US[ )23/( −mm ] has a utilisation bound of: 

)13/(2
)]23/([ −=−− mmU mmUSRM    (49) 

In 2002, Lundberg [124] showed that that setting the 
threshold used in RM-US[ς ] to 0.375 results in the 
following utilisation bound which is the maximum 
possible bound for this algorithm: 

mU USRM 375.0]375.0[ ≈−     (50) 
In 2003, B. Andersson and Jonsson [10] showed that 

for periodic tasksets with implicit deadlines, the 
maximum utilisation bound for any global fixed task 
priority scheduling algorithm where priorities are 
defined as a scale invariant function of task periods and 
worst-case execution times is: 

mmUOPT 41.0)12( ≈−≤     (51) 
In 2005, Bertogna et al. [47] tightened the bound for 

global RM scheduling to: 

maxmax )1(
2

uumusum +−≤     (52) 

In 2008, B. Andersson [14] proposed a ‘slack 
monotonic’ algorithm, where priorities are ordered 
according to the slack of each task given by ii CT − . 
This algorithm, called SM-US, otherwise works in the 
same way as RM-US. B. Andersson showed that SM-
US[ )53/(2 + ] has a utilisation bound of: 

mmU USSM 382.0)53/(2)]53/(2[ ≈+=+−   (53) 

for sporadic tasksets with implicit deadlines. 
6.2.2 Constrained and arbitrary deadline tasksets 

In 2000, B. Andersson and Jonsson [7] gave a 
simple, but pessimistic, response time upper bound 
applicable to sporadic tasksets with constrained 
deadlines scheduled using fixed priorities. This response 
time upper bound effectively assumes that the execution 
time of carried in and carried out jobs in an interval is 
equal to the entire worst-case execution time of the task. 
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In 2003, Baker [19], [21] applied the same general 
strategy described in section 6.1.2 for global EDF to 
global FP scheduling of sporadic tasksets with 



constrained deadlines. 
In 2005, Bertogna [47] proved the following density 

bound for global DM scheduling of sporadic tasksets 
with constrained deadlines: 

maxmax )1(
2

δδδ +−≤
m

sum     (55) 

Bertogna et al. [47] used the above result as the basis 
for a density-based test for the hybrid DM-DS[ς ] 
algorithm. This algorithm gives the highest priority to at 
most m-1 tasks with density greater than the threshold 
ς , and otherwise assigns priorities in Deadline 
Monotonic priority order. Under DM-DS[ς ] a taskset is 
schedulable provided that: 
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Where ψ  is the number of ‘privileged’ tasks with 
density higher than the threshold, and )(mδ  is the 
density of the mth highest density task. 

Bertogna et al. [47] proved the following sufficient 
test for DM-DS[1/3]: 

3
1+
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m

sumδ       (57) 

Bertogna et al. [47] also proposed the following 
alternative sufficient test based on the strategy of Baker, 
but using some simple observations to limit the amount 
of interference counted as falling in the problem 
window. 

A constrained-deadline taskset is schedulable under 
pre-emptive global DM scheduling if for every task kτ , 
one of the following holds: 
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In 2006, Fisher and Baruah [84], derived a sufficient 
test for global DM scheduling of sporadic tasksets with 
arbitrary deadlines, under the assumption that intra-task 
parallelism, where jobs of the same task can execute in 
parallel on different processors, is permitted; while 
inter-job parallelism is not. 

This sufficient test for each task kτ  is as follows: 
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 (59) 
where ),( kload τ  is the processor load due to all tasks 
with priority higher than or equal to k. Note, due to the 
use of Deadline Monotonic priority ordering, the 
minimum value for the fractional term is 1/3. 

In 2007, Baruah [46] derived an alternative sufficient 
test for global DM scheduling of sporadic tasksets with 
constrained deadlines using a similar approach to [84], 
but limiting the amount of carry-in execution in a 
different way. This sufficient test for each task kτ  is as 
follows: 

)/)(/)1((
2
1),( kkk DkCDCmmkload ∑−−−≤τ  

(60) 
where )(kC∑  is the sum of the m largest worst-case 
execution times of tasks of priority k or higher. 

The above test can be weakened to: 

))(1)(/)1((
2
1)( max kDCmmkload kk δ−−−≤  (61) 

where )(max kδ  is the maximum density of any of the k 
highest priority tasks. Baruah showed that this 
schedulability test has a resource augmentation or 
speedup factor for large m of 73.3)32( ≈+ , which 
compensates for both the non-optimality of global DM 
scheduling and the sufficiency of the test. 

In 2008, Fisher and Baruah [41] showed that the 
result derived in [84], Equation (59), also applies to 
systems where intra-task parallelism is not permitted. 
They showed that DM is the optimal priority assignment 
policy with respect to this schedulability test and that the 
test has a resource augmentation or speedup factor of 

)/14( m− . 
In 2008, Bertogna et al. [51] specialised their 

sufficient schedulability test for any work-conserving 
algorithm, (see Section 6.1.2 Equation (42)), to global 
FP scheduling. They showed that a sporadic taskset with 
constrained deadlines is schedulable under global FP 
scheduling if for each task kτ : 
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where )(LWi  is the bound on the workload of task iτ  in 
an interval of length L, given by Equation (40). 

Bertogna et al. [51] extended their approach via an 
iterative schedulability test that calculates the slack for 
each task, and then uses this value to limit the amount of 
carry-in interference and hence calculate a new value for 
the task slack.  

Further, Bertogna and Cirinei [50] showed how this 
approach could be adapted to provide response time 
analysis for multiprocessor systems, by iteratively 
computing an upper bound on the response time of each 



task, while using the response times of higher priority 
tasks to limit the carry-in interference from those tasks. 
This analysis can be expressed in the following fixed 
point iteration: 
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where, assuming that kτ  is schedulable, )( UB
k

CI
i RI  is an 

upper bound on the interference due to task iτ  within 
the worst-case response time of kτ , given by:  
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where )(LW CI
i  is a bound on the workload of task iτ  in 

an interval of length L, given by: 
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and )(LN CI

i  is the maximum number of jobs of task iτ  
that contribute all of their execution time in the interval: 
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In 2009, Guan et al. [95] extended the response time 
analysis of Bertogna and Cirinei [50], limiting the 
amount of ‘carry-in’ interference using ideas from [38]. 
An important observation following from the analysis of 
Guan et al. [95] concerns the pattern of task execution 
that results in the worst-case response time for a job of 
task kτ  under global FP scheduling: The worst-case 
response time for a job of task kτ  occurs when that job 
is released at some time t when all m processors are busy 
executing higher priority tasks, and during the preceding 
time interval ),[ tt ε−  (for some arbitrary value of ε ) at 
least one processor was not occupied by a higher priority 
task. 

Guan et al. [95] showed that if task iτ  does not have 
a carry-in job, then the interference is given by: 
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where: 
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The difference between the two interference terms 
(Equations (64) and (67)) is given by: 
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Using this result, Guan et al. [95] improved upon the 
response time test of Bertogna and Cirinei [50] as 
follows: 
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where Max(k, m-1) is the subset of tasks with higher 

priorities than kτ , with the m-1 largest values of 
)( UB

k
DIFF
i RI . 

 The improved response time test of Guan et al. [95] 
(Equation (73)) dominates the response time test of 
Bertogna and Cirinei [50] (Equation (63)) which in turn 
dominates the deadline based test of Bertogna et al. [51]. 

Guan et al. [95] also extended their response time 
test to tasksets with arbitrary deadlines. 

In 2009, Davis and Burns [77] showed that 
Audsley’s optimal priority assignment algorithm [15] 
[17] is applicable to some sufficient tests for global FP 
scheduling, including those of B. Andersson and 
Jonsson [7] (Equation (54)) and Bertogna et al. [51] 
(Equation (62)). Davis and Burns also extended the TkC 
priority assignment policy to sporadic tasksets to form 
“DkC” priority assignment, which orders task priorities 
based on their deadlines less some constant (given by 
Equation (46) times their worst-case execution times. 

6.3. Global dynamic priority scheduling 
In this section, we outline research into global 

dynamic priority scheduling algorithms. A number of 
these algorithms are known to be optimal for periodic 
tasksets with implicit deadlines (Pfair and its variants 
PD, PD2, ERFair, BF, and also SA, LLREF). However, 
it is known that there are no optimal online (non-
clairvoyant) algorithms for the pre-emptive scheduling 
of sporadic tasksets on multiprocessors [86]. 

Global dynamic priority algorithms dominate 
algorithms in all other classes; however their practical 
use can be problematic due to the potentially excessive 
overheads caused by frequent pre-emption and 
migration. 
6.3.1 Proportionate fairness algorithms 

The Proportionate Fair (Pfair) algorithm was 
introduced by Baruah et al. in 1996 [32]. Pfair is a 
schedule generation algorithm which is applicable to 
periodic tasksets with implicit deadlines. Pfair is based 
on the idea of fluid scheduling where each task makes 
progress proportionate to its utilisation (or weight in 
Pfair terminology). Pfair scheduling divides the timeline 
into equal length quanta or slots. At each time quanta t, 
the schedule allocates tasks to processors, such that the 
accumulated processor time allocated to each task iτ  
will be either ⎡ ⎤itu  or ⎣ ⎦itu . Baruah et al. [32] showed 
that the Pfair algorithm is optimal for periodic tasksets 
with implicit deadlines, with a utilisation bound of: 

mU PFAIR =       (74) 
In practice; however, the Pfair algorithm incurs very 

high overheads by making scheduling decisions at each 
time quanta. Further, all processors need to synchronise 
on the boundary between quanta when scheduling 
decisions are taken. 

A number of variants on the Pfair approach have 
been introduced, including ERFair [2], PD [31], and PD2 



[4]. The Pfair algorithm ensures that the ),( tlag iτ , 
given by the amount of execution time that should 
ideally have been allocated to task iτ  by time t (i.e. itu ) 
less the processing time actually allocated is between -1 
and +1. ERFair lifts the restriction that this lag must be 
greater than -1, thus allowing quanta of a job to execute 
before their PFair scheduling windows provided that the 
previous quanta of the same job has completed 
execution. This makes ERFair a work conserving 
algorithm, whereas Pfair is not. PD [31], and PD2 [4] 
improve on the efficiency of Pfair by separating tasks 
into groups of heavy ( 5.0>iu ) and light tasks. 

In 2000, J. Anderson and Srinivasan [3] extended 
the PFair approach to sporadic tasksets, showing that the 
EPDF (earliest pseudo-deadline first) algorithm, a 
variant of PD, is optimal for sporadic tasksets with 
implicit deadlines executing on 2 processors, but is not 
optimal for more than 2 processors.  

In 2003, Zhu et al. [140] introduced the Boundary 
Fair (BF) algorithm. Zhu et al. recognised that implicit-
deadline tasks can only miss deadlines at times which 
are period boundaries. The BF algorithm is similar to 
Pfair; however it only makes scheduling decisions at 
period boundaries. At any such time bt , the difference 
between i

but  and the accumulated processor time 
allocated to each task iτ  is again less than one time unit. 
In this sense BF is fair, but less fair than Pfair, as BF 
ensures only that proportionate progress is made on all 
tasks at period boundaries, but not at other times. 

Zhu et al. [140] proved that BF is also an optimal 
algorithm for periodic tasksets with implicit deadlines, 
and showed via an empirical evaluation that the number 
of scheduling points is typically 25-50% of the number 
required for PD. 

In 2005, Holman and J. Anderson [96] implemented 
Pfair scheduling on a symmetric multiprocessor. They 
found that the synchronised re-scheduling of all 
processors every time quanta caused significant bus 
contention due to data being re-loaded into cache. To 
address this problem, Holman and J. Anderson [96] 
developed a variant of Pfair which staggers the time 
quanta on each processor. This reduces bus contention, 
at the cost of a reduction in schedulability. A task 
requiring a quanta every b slots, under Pfair, will require 
a quanta every b-1 slots with the staggered approach. 
6.3.2 SA 

In 1997, Khemka and Shyamasundar [107] 
developed an optimal algorithm for periodic tasksets 
with implicit-deadlines called SA This algorithm takes 
at most )(/)()1( ττ GCDHmnO ++  operations to build a 
schedule, where )(τH is the least common multiple of 
task periods and )(τGCD  is the greatest common 
divisor of the task periods. We note that as with Pfair, 
the number of task pre-emptions with SA can be 
prohibitively large.  

6.3.3 LLREF 
In 2006, Cho et al. [69] introduced the LLREF 

algorithm, which is also optimal for periodic tasksets 
with implicit deadlines. LLREF is based on the fluid 
scheduling model, using a T-L plane abstraction. 
LLREF divides the timeline into sections separated by 
normal scheduling events, i.e. task releases, and co-
incident deadlines. At the start of each section, m tasks 
are selected to execute on the basis of largest local 
remaining execution time first (LLREF). The local 
remaining execution time for task iτ  at the start of 
section k, is the amount of execution time that the task 
would be allocated during that section in a fluid 
schedule, i.e. i

k
f ut , where k

ft  is the length of the 
section. The local remaining execution time decrements 
as a task executes during the section. LLREF gives rise 
to additional scheduling events either when a running 
task completes its local execution time, or a non-running 
task reaches a state where it has no local laxity. At these 
additional scheduling points, the m tasks with the largest 
local remaining execution time are again selected to 
execute. 

Cho et al. [69] showed that LLREF introduces at 
most an additional n scheduling events per section, 
giving a total of at most n+1 scheduling events per task 
release. 

In 2008, Funaoka et al. [87] extended the LLREF 
approach, apportioning processing time that would 
otherwise be unused among the tasks, and re-
apportioning processing time when a task completes 
earlier than expected, thus creating a work-conserving 
algorithm. Funaoka et al. [87] showed that for taskset 
utilisations below 100% this approach results in 
significantly fewer pre-emptions than LLREF. 

In 2009, Funk and Nadadur [89] extended the 
LLREF approach, forming the LRE-TL algorithm. The 
key observation of Funk and Nadadur was that within 
each section, there is no need to select tasks for 
execution based on largest local remaining execution 
time, in fact any task with remaining local execution 
time will do. This observation greatly reduces the 
maximum number of migrations per section, compared 
to LLREF. Funk and Nadadur also showed how the 
LRE-TL algorithm could be applied to sporadic tasksets 
and proved that it is optimal (utilisation bound of 100%) 
for sporadic tasksets with implicit deadlines.  
6.3.4 EDZL 

In 1994, Lee [111] introduced the Earliest Deadline 
until Zero Laxity (EDZL) algorithm and showed that it 
dominates global EDF scheduling. Indeed, EDZL results 
in the same schedule as EDF until a situation is reached 
when a task will miss its deadline unless it executes for 
all of the remaining time up to its deadline (zero laxity), 
EDZL gives such a task the highest priority. 

In 2007, Cirinei and Baker [70] showed that EDZL 



is predictable in the sense defined by Ha and Liu [100], 
(see Section 4.4). Cirinei and Baker provided the 
following sufficient schedulability test for EDZL: 

A sporadic task system is schedulable by EDZL on 
m identical processors unless the following condition 
holds for at least m + 1 tasks and it holds strictly (>) for 
at least one of them: 
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In 2008, Baker et al [26] refined the sufficient test 
for EDZL, replacing Equation (75) with: 
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They also gave an iterative sufficient test for EDZL 
based on the approach taken by Bertogna et al. in [51] 
for work conserving algorithms and EDF. The tests 
given by Equations (75) and (76) suffer from an over-
estimation of the amount of carry-in interference, 
particularly for tasksets with cardinality mn >> . The 
iterative test of Baker et al [26] reduces this problem by 
calculating a lower bound on the slack for each task, and 
then using this value to limit the amount of carry-in 
interference and hence calculate a new value for the task 
slack. The empirical evaluation in [26] shows that this 
iterative test for EDZL outperforms previous tests given 
in [70] and (as expected) similar tests for global EDF. 

Also in 2008, Chao et al [67] showed that the 
utilisation bound for EDZL, assuming tasksets with 
implicit deadlines and large m, is: 

memU EDZL 63.0)/11( ≈−≤     (77) 
where e is Euler’s number 2.718. 

7. Hybrid approaches 
Depending on the hardware architecture, the 

overheads incurred by global scheduling can potentially 
be very high. The fact that jobs can migrate from one 
processor to another can result in additional 
communication loads and cache misses, leading to 
increased worst-case execution times, that would not 
occur in the fully partitioned / non-migration case. 
However, fully partitioned approaches suffer from the 
drawback that the available processing capacity can 
become fragmented, such that although in total a large 
amount of capacity is unused, no single processor has 
sufficient capacity remaining to schedule further tasks. 
Indeed, the maximum utilisation bound is just 50% of 
the total processing capacity. 

In this section we outline recent research into hybrid 
approaches which combines elements of both partitioned 
and global scheduling. 

7.1. Semi-partitioned approaches 
One approach aimed at addressing the fragmentation 

of spare capacity in partitioned systems is to split a small 
number of tasks between processors. 

In 2006, B. Andersson and Tovar [11] introduced 
EKG, an approach to scheduling periodic tasksets with 
implicit deadlines, based on partitioned scheduling, but 
splitting some tasks into two components that execute at 
different times on different processors. Andresson and 
Tovar showed that the utilisation bound for EKG 
depends on the parameter k, used to control division of 
tasks into groups of heavy and light tasks. The utilisation 
bound for EKG is given by:   
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Hence the utilisation bound is 100% for k = m. Further, 
the average number of pre-emptions per job over the 
hyperperiod is bounded by 2k. Thus as suggested by B. 
Andersson and Tovar, choosing a value of k = 2, gives a 
utilisation bound of 66% and at most an average of 4 
pre-emptions per job. 

In 2008, B. Andersson and Bletsas [13] developed 
the idea of job splitting to cater for sporadic tasksets 
with implicit deadlines. In this case, each processor p 
executes at most two split tasks, one executed by 
processor p-1 and one executed by processor p+1. B. 
Andersson et al. [12] later extended this approach to 
tasksets with arbitrary deadlines. They showed that first-
fit and next-fit were not good allocation strategies when 
task splitting is employed. Instead, they ordered tasks by 
decreasing relative deadline and tried to fit all tasks on 
the first processor before then choosing the remaining 
task with the shortest relative deadline to be split. At 
run-time, the split tasks are scheduled at the start and 
end of fixed duration time slots. The disadvantage of this 
approach is that the capacity required for the split tasks 
is inflated if these slots are long, while the number of 
pre-emptions is increased if the time slots are short. 

In the implicit deadline case, B. Andersson and 
Bletsas [13] showed that this approach has a utilisation 
bound of: 

1))1((4 −−+= δδδU       (79) 
where δ  effectively defines the slot length ( δ/minT ). 
This utilisation bound equates to approximately 88% for 

4=δ . Further, the number of additional pre-emptions 
in an interval of length t is given by: 

⎡ ⎤ 2/3 min +Ttδ       (80) 
 In 2009, Bletsas and B. Andersson [57] developed 
an alternative approach based on the concept of 
‘notional processors’. With this method, tasks are first 
allocated to physical processors (heavy tasks first) until 
a task is encountered that cannot be assigned. Then the 
workload assigned to each processor is restricted to 



periodic reserves and the spare time slots between these 
reserves organised to form notional processors. (A 
notional processor is formed from time slots on a 
number of physical processors which taken together 
provide continuous execution capacity). 

Bletsas and B. Andersson showed that this method 
has a utilisation bound of at least 66.6% for tasksets with 
implicit deadlines, and that the number of additional pre-
emption, above those caused by task arrivals is given by: 
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where t is the length of the time interval, and S is the 
minimum period of any task on the processor 
considered. This number of additional pre-emptions 
compares favourably with that given by Equation (80) 
even when 1=δ . 

In 2007, Kato and Yamasaki [102] introduced the 
Ehd2-SIP algorithm. Ehd2-SIP is predominantly a 
partitioning algorithm, with each processor scheduled 
according to an algorithm based on EDF; however, 
Ehd2-SIP splits at most m-1 tasks into two portions to be 
executed on two separate processors. EhD2-SIP has a 
utilisation bound of 50%. 

In 2008, Kato and Yamasaki [103], presented a 
further semi-partitioning algorithm called EDDP, also 
based on EDF. EDDP again splits at most m-1 tasks 
across two processors. The two portions of each split 
task are prevented from executing simultaneously by 
EDDP, which instead defers execution of the portion of 
the task on the lower numbered processor, while the 
portion on the higher numbered processor executes. 
During the partitioning phase, EDDP places each heavy 
task with utilisation greater than 65% on its own 
processor. The light tasks are then allocated to the 
remaining processors, with at most m-1 tasks split into 
two portions. Kato and Yamasaki [103] showed that 
EDDP has a utilisation bound of 65% for periodic 
tasksets with implicit deadlines, and performs well in 
terms of the typical number of context switches required 
which is less than that of EDF due to the placement 
strategy for heavy tasks. Subsequently, Kato and 
Yamasaki [104] also extended this approach to fixed 
task priority scheduling, showing that the RMDP 
algorithm has a utilisation bound of 50%. 

In 2009, Kato et al. [105] developed a semi-
partitioning algorithm called DM-PM (Deadline-
Monotonic with Priority Migration); applicable to 
sporadic tasksets, and using fixed priority scheduling. 
DM-PM strictly dominates fully partitioned fixed task 
priority approaches, as tasks are only permitted to 
migrate if they won’t fit on any single processor. Tasks 
chosen for migration are assigned the highest priority, 
with portions of their execution time assigned to 
processors, effectively filling up the available capacity 

of each processor in turn. At run-time, the execution of a 
migrating task is staggered across a number of 
processors, with execution beginning on the next 
processor once the portion assigned to the previous 
processor completes. Thus no job of a migrating task 
returns to a processor it has previously executed on. 
Kato et al. [105] showed that DM-PM has a utilisation 
bound of 50% for tasksets with implicit deadlines. 
Subsequently, Kato et al. [106] extended the same basic 
approach to EDF scheduling; forming the EDF-WM 
algorithm (EDF with Window constrained Migration). 

In 2009, Lakshmanan et al. [108] developed a semi-
partitioning method based on fixed priority scheduling 
of sporadic tasksets with implicit or constrained 
deadlines. This method called PDMS_HPTS splits only 
a single task on each processor; the task with the highest 
priority. Note that a split task may be chosen again for 
splitting if it has the highest priority on another 
processor. PDMS_HPTS takes advantage of the fact that 
under fixed priority pre-emptive scheduling, the 
response time of the highest priority task on a processor 
is the same as its worst-case execution time; leaving the 
maximum amount of the original task deadline for the 
part of the task split on to another processor to execute. 

Lakshmanan et al. [108] showed that for any task 
allocation PDMS_HPTS has a utilisation bound of 60% 
for tasksets with implicit deadlines; however, if tasks are 
allocated to processors in order of decreasing density 
(PDMS_HPTS_DS), then this bound increases to 65%. 
Further, PDMS_HPTS_DS has a utilisation bound of 
69.3% if the maximum utilisation of any individual task 
is no greater than 0.41. Notably, this is the same as the 
Liu and Layland bound [117] for single processor 
systems, without the restriction on individual task 
utilisation. 
7.2. Clustering 

Clustering can be thought of as a form of partitioning 
with the clusters effectively forming a smaller number of 
faster processors to which tasks are allocated. Thus 
capacity fragmentation is less of an issue than 
partitioned approaches, while the small number of 
processors in each cluster reduces global queue length 
and has the potential to reduce migration overheads, 
depending on the particular hardware architecture. For 
example, processors in a cluster may share the same 
cache, reducing the penalty in terms of increased worst-
case execution time, of allowing tasks to migrate from 
one processor to another. 

In 2008, Shin et al. [136] derived schedulability 
analysis for multiprocessor systems, where tasks are 
allocated to clusters of processors, and scheduled 
according to global EDF on processors within their 
cluster. Clusters are represented by a Multiprocessor 
Periodic Resource (MPR) abstraction and may be either 
physical, with a static mapping to processors, or virtual, 



with a dynamic mapping to processors. Shin et al. 
develop a hierarchical scheduling model and analysis 
appropriate to tasks executing within MPRs which are 
then scheduled on the multiple processors. The 
algorithm proposed was shown to be optimal for tasksets 
with implicit deadlines; however, the maximum number 
of pre-emptions which can take place is m-1 in an 
interval equal to the GCD (Greatest Common Divisor) 
of the task periods. We note that in practice, this number 
of context switches can be prohibitive. 

In 2008, Leontyev and J. Anderson [114], developed 
a container-based hierarchical scheduling scheme for 
multiprocessor systems executing both hard and soft 
real-time tasks. Here, each container is allocated a 
specific bandwidth, which is provided via minimum 
parallelism, using the maximum number of fully utilised 
processors and at most one processor which is partially 
utilised. This partial bandwidth is provided by a periodic 
server. Leontyev and J. Anderson showed how the 
tardiness of soft real-time tasks can be bounded in this 
model, without any loss of utilisation. Utilisation loss 
does occur when hard-real-time tasks are included; 
however, this loss is shown to be small provided that the 
utilisation of hard real-time tasks represents a small 
fraction of the total. 

8. Resource sharing 
The previous sections described partitioned, global, 

and hybrid scheduling algorithms and analyses for 
simple periodic and sporadic task models where the 
execution of one task is independent of the others. In 
this section, we survey research lifting this assumption 
of independence and therefore allowing tasks to share 
resources that have to be accessed in mutual exclusion. 

We note that as an alternative to mechanisms that 
support mutual exclusion, there are non-blocking 
solutions to the specific problem of single-writer, single-
reader communication which can support asynchronous 
access by tasks on multiprocessors for example, 
Simpson’s four-slot mechanism [137], which preserves 
independence of execution. This mechanism does 
however require memory space for four copies of the 
data. For more complex cases with multiple writers, and 
access to other types of shared object, e.g. registers in 
hardware peripherals, then mutual exclusion is required.  

In uniprocessor systems, the Stack Resource Policy 
(SRP) [18] and Priority Ceiling Protocol (PCP) [134] are 
widely accepted as the most appropriate mechanisms to 
use to provide access to mutually exclusive shared 
resources. Initial research into suitable policies for 
multiprocessor real-time systems built on these 
uniprocessor protocols. 
8.1. Partitioned scheduling 

In 1988 Rajkumar et al [130] introduced a 
Multiprocessor variant of the Priority Ceiling Protocol 

called MPCP, which is applicable to partitioned systems 
using fixed priorities. 

Under MPCP the priority ceilings of global shared 
resources are set to levels that are strictly higher than 
that of any task in the system. At run-time when a task 
attempts to access a locked global resource, it is 
suspended, and waits in a FIFO queue associated with 
the resource. This allows lower priority local tasks to 
continue executing. When the resource is unlocked, then 
the task at the head of the queue waiting on it is resumed 
and executes at the ceiling priority of the resource.  

Allowing low priority tasks to execute while a 
higher priority task on the same processor is blocked on 
a global resource has the important effect of permitting 
further priority inversion. The low priority task can 
attempt to access another locked global resource with a 
higher ceiling and can therefore subsequently execute 
ahead of the high priority task even when the original 
resource is unlocked. MPCP has the restrictions that 
nested access to globally shared resources is not 
permitted, and that nesting of local and global critical 
sections is not permitted. 

MPCP provides a bounded blocking time, with a 
sufficient schedulability test based on the utilisation 
bound of Liu and Layland. The blocking factor is made 
up of five different components, which are summarised 
in [91]. 

In 1994 Chen et al. [68] described a further variant 
of PCP called MDPCP, and provided a simple sufficient 
test for partitioned EDF using this protocol. This test is 
based on computing blocking factors due to four 
different types of blocking. 

In 2001, Gai et al [90] introduced the MSRP 
protocol based on SRP [18]. MSRP is again applicable 
to partitioned systems, using either fixed priorities or 
EDF. A significant difference between MSRP and 
MPCP is that when a task is blocked on a global 
resource under MSRP, it busy waits and is not pre-
emptable. This behaviour is referred to as a spin-lock. A 
FIFO queue is again used to grant access to tasks 
waiting on a global resource when it is unlocked. MSRP 
provides both a bounded blocking time, and bounded 
increases in task execution times due to the spin locks. 
MSRP can also be analysed using a simple sufficient 
schedulability test. Under MSRP, task execution on each 
processor is perfectly nested and so the tasks can share a 
single stack. 

In comparison with MPCP, MSRP removes two of 
the five contributions to the blocking factor; however, 
the spin-locks consume processing time, which could 
otherwise be used by other tasks. Further, MSRP has the 
advantage that it is significantly simpler to implement 
than MPCP. 

In 2003, a study performed by Gai et al. [91] 
showed that MSRP typically outperforms MPCP when 



global critical sections are short and access to local 
resources dominates access to global resources. 
8.2. Global scheduling 

In 2006, Devi et al [81], considered the problem of 
accessing mutually exclusive shared resources under 
global EDF scheduling. They suggested two simple 
approaches for short non-nested accesses to shared data 
structures: Spin-based queue locks [125] and lock-free 
synchronisation. 

With spin-based queue locks, tasks waiting for 
access to a resource busy-wait on a “spin variable” 
which is exclusive to that task. When a task exits the 
resource, it updates the spin variable of the next task in 
the queue. In [81], the spin queue grants access to 
resources in FIFO order, further access to each resource 
is non-pre-emptable; hence the longest time for which a 
task can be blocked waiting to access a global shared 
resource, with access time e, on an m processor system 
is ecm )1),(min( − , where c is the number of tasks that 
access the resource. 

With lock-free synchronization, operations on 
shared resources (data structures) are implemented as 
“retry-loops”; thus operations are opportunistically 
attempted and if there is contention, then they are retried 
until they are successful. 

Devi et al. [81] showed how simple schedulability 
tests for global EDF can be modified to take account of 
the effects of spin-based queue locking and lock-free 
synchronisation using retries. The performance 
evaluation reported in [81] suggests that the total 
overheads of spin-based queue locks are significantly 
less than that of lock-free synchronisation. 

In 2007, Block et al. [58] introduced the flexible 
multiprocessor locking protocol (FMLP). FMLP 
operates using a variant of global EDF (or other 
algorithms) which ensures that a job can only be blocked 
by another non-preemptable job when it is release or 
resumed. 

FMLP divides resources into two types with long 
and short access times. Jobs waiting to access a short 
resource do so by becoming non-preemptable and busy 
waiting. Jobs waiting to access long resources do so by 
blocking on a semaphore queue, in which case the job 
currently accessing the resource inherits the priority of 
the highest priority job in the queue. FMLP uses a 
simple method of avoiding deadlock by grouping 
resources that can be nested and ensuring that only a 
single job can access the resources in a group at any 
given time. 

FMLP has the advantage that it can handle nested 
resource access without the requirement for tasks 
accessing nested resources to be allocated the same 
processor, as is the case with MSRP. Further, FMLP 
optimises the simple case of non-nested access to short 
resources. In [58], Block et al. showed via some simple 

experiments that FMLP has better performance than 
MSRP. This advantage is at least partly due to the fact 
that FMLP removes the restriction on task allocation 
required by MSRP. 

In 2008, Brandenburg et al. [61] examined the 
relative performance of blocking and non-blocking 
approaches to accessing shared resources. The blocking 
approaches used FMLP and considered both spinning, 
i.e. busy-waiting, and suspending. The non-blocking 
approaches considered were lock-freedom and wait-
freedom. Brandenburg et al. concluded that non-
blocking approaches are preferable for small and simple 
resource objects and that for more complex resource 
objects with longer access times wait-free or spin-based 
algorithms are generally preferable. Suspension based 
algorithms were almost never better than spin-based 
variants. 

9. Empirical investigations 
In this section, we review recent empirical 

investigations into the performance of multiprocessor 
scheduling algorithms and their associated 
schedulability tests. 
9.1. Schedulability test performance  

As well as producing theoretical results regarding 
approximation ratios, utilisation bounds, and speedup 
factors, many researchers have also used empirical 
methods to investigate the relative performance of 
different real-time scheduling algorithms and their 
analyses. 

The most commonly used metric is the number of 
randomly generated tasksets that are deemed 
schedulable. This empirical metric is an important one in 
real-time systems research. For techniques to be 
transferred into industrial practice, it is essential that 
they are both simple and efficient, as well as being 
highly effective for the majority of realistic cases. While 
utilisation / density based tests, and speedup factors are 
useful performance indicators, they focus heavily on 
specific pathological tasksets. By comparison, more 
general schedulability tests that take into account the 
parameters of individual tasks have the potential to 
provide superior performance in the vast majority of 
cases; something that is highlighted by empirical studies. 

In empirical studies, parameters such as: the number 
of tasks, the number of processors, taskset utilisation, 
range of task periods, distribution of task deadlines, 
distribution of individual task utilisations, can be varied 
to examine the performance of the algorithms and their 
schedulability tests over a range of different credible 
scenarios. 

In 2005, Baker [22] made an empirical comparison 
between the best global EDF, and partitioned EDF 
scheduling algorithms available at that time. The 
empirical performance measure used was the number of 



randomly generated tasksets that were schedulable 
according to each algorithm. The conclusion of this 
study was that although the two approaches are 
incomparable, the partitioned approach appeared to 
outperform the global approach on this metric by a 
significant margin. 

In 2007, considering global scheduling algorithms, 
in the simulation chapter of his thesis, Bertogna [49] 
showed that the iterative response time test for global FP 
scheduling (Equation (63)) outperformed all other tests 
for global FP and global EDF scheduling and also 
similar tests for EDZL (see Section 6.3.4), known at the 
time. Since real-time system designers are interested in 
provable schedulability, Bertogna argues that global FP 
scheduling can reasonably be regarded as one of the best 
global scheduling techniques to use as it is simple to 
implement and is supported by a demonstrably effective 
schedulability test. 

In 2009, Bertogna [52] investigated the performance 
of the following schedulability tests for global EDF: 

o Goossens et al. [94] (GFB) density-based test; 
o Baker [20] (BAK); 
o Baruah [38] (BAR); 
o Baruah and Baker [44], (LOAD) processor load 

based test; 
o Bertogna et al. [48] (BCL); 
o Bertogna and Cirinei [50] (RTA) response time 

analysis test; 
o Baruah et al. [45] (FF-DBF) speedup optimal 

test. 
Bertogna showed that of these tests, the RTA test [50] 
was the most effective in terms of the number of 
randomly generated tasksets deemed to be schedulable, 
although the RTA test can only be shown to strictly 
dominate the BCL test, and is incomparable with all of 
the other tests listed above. Bertogna also sequentially 
applied the RTA test, the BAR test and the FF-DBF test 
to form a composite test (COMP). This test utilises 
intermediate information from the RTA test, when it 
fails to show schedulability, to improve the performance 
of the BAR test. The COMP test was shown to improve 
upon the performance of the RTA test. 

In 2009, Davis and Burns [77] showed that, in 
global FP scheduling, the number of randomly generated 
tasksets deemed schedulable using the schedulability 
tests of Bertogna et al. [51] is significantly increased by 
using Audsley’s optimal priority assignment policy [15] 
[17] rather than Deadline Monotonic priority 
assignment. The latter policy, although optimal for 
uniprocessor systems, was shown to perform poorly in 
the multiprocessor case. Davis and Burns also showed 
that “DkC” is a highly effective priority assignment 
policy for global FP schedulability tests that are not 
compatible with the optimal priority assignment 
algorithm. Again, performance was significantly better 

than with Deadline Monotonic priority assignment. 
Davis and Burns [77] also showed how the UUnifast 

method of taskset generation [54], which is the de facto 
standard for investigation of schedulability test 
performance in uniprocessor systems, could be extended 
to the multiprocessor case. The resulting method, called 
UUnifast-Discard, generates tasksets with specific 
parameter settings, thus facilitating an empirical study of 
schedulability test effectiveness without the problem of 
confounding variables. We note that the method of 
taskset generation used in [50], [52] while valid in 
comparing the performance of different schedulability 
tests, suffers from a problem of confounding variables: 
As taskset utilisation is increased, so the average 
cardinality of the tasksets generated increases, 
effectively linking these two variables and so obscuring 
their individual influences on schedulability test 
effectiveness. 

While empirical studies of schedulability test 
performance, such as those described above, provide 
important information about the theoretical effectiveness 
of different algorithms and their schedulability tests, 
they leave an important question unanswered. How does 
this theoretical performance translate in practice, when 
the overheads involved in scheduling decisions, context 
switches, and migration are considered? 
9.2. Measurements  

In 2008, Brandenburg et al. [60] measured the 
performance of various scheduling algorithms and their 
overheads on a LITMUS test-bed using a Sun 
UltraSPARC Niagra multicore platform with 32 logical 
processors (actually 4 hardware threads on each of 8 
CPUs). Brandenburg et al. examined partitioned, 
clustered and global approaches using EDF and Pfair 
algorithms. They found that the overheads of pure Pfair 
meant it had very poor performance, while staggered 
Pfair performed much better in practice. Global EDF 
scheduling performed poorly due to the overheads 
involved in manipulating a lengthy global queue, 
accessible to all processors. Partitioned EDF was shown 
to work best for hard real time tasksets, except when the 
tasks had high individual utilisations, then staggered 
Pfair was best. 

For soft real-time tasksets, partitioned EDF was 
again effective unless the tasks had high individual 
utilisations >0.5. Clustered EDF was also highly 
effective for soft-real time tasksets. 

The key point that can be drawn from this work is 
that overheads are a significant issue for multiprocessor 
real-time scheduling. 
10. Summary, open issues and direction for 

future research 
Although research into multiprocessor real-time 

scheduling and schedulability analysis has advanced 
markedly since the seminal paper of Dhall and Liu 1978 



[78], there are still significant and fundamental research 
challenges that remain. 

Global, clustered, and semi-partitioned approaches 
to multiprocessor scheduling offer potential solutions for 
future, complex high-performance real-times systems; 
however, few results can be identified in these areas that 
are ready to be transferred into industrial practice. 
10.1. Open issues 

The following are a selection of key open issues with 
existing research into multiprocessor real-time 
scheduling identified by this survey: 

Limits on processor utilisation: Fixed job-priority 
and partitioning algorithms are in the worst-case capable 
of utilising only 50% of the available processing 
resource. While global dynamic algorithms can in some 
cases utilise up to 100%, their overheads are typically 
prohibitive. Further research is needed into minimally 
dynamic algorithms, and novel approaches to 
partitioning task execution that can increase guaranteed 
processing capability, without introducing significant 
overheads. Recent progress in this area is summarised in 
Section 7.  

Ineffective schedulability tests: For the sporadic 
task model, empirical studies have shown that there is a 
large gap that exists between the best sufficient 
schedulability tests currently available for global fixed 
job priority and fixed task priority scheduling and what 
may be possible as indicated by feasibility / infeasibility 
tests. Closing this gap is a key area for future research. 

Fundamental to this problem is the fact that: “no 
finite collection of worst-case job arrival sequences has 
been identified for the global scheduling of sporadic task 
systems”. Baruah 2007 [38]. 

Consideration of overheads: Advanced hardware 
features, such as cache architectures, have a large impact 
on the cost of migration (at the task and job level). 
Recent experimental implementations [60] on 
multiprocessor platforms show that the overheads of 
migration, context switching, and run-queue 
manipulation are a key issue for multiprocessor 
scheduling. Research into scheduling algorithms and 
analysis needs to take appropriate account of such 
overheads. Further research is needed into algorithms 
that permit only task-level migration, or only permit 
migration within a limited cluster of processors. 

Limited task models for multiprocessor systems: 
The vast majority of existing research into hard real-time 
scheduling on multiprocessors addresses simple periodic 
or sporadic task models originally developed with 
uniprocessor systems in mind. More general task models 
are needed that can express both the benefits and 
overheads of executing parts of the same task in parallel.  

Initial work in this area by Collette et al. [71], [72] 
considers the work limited job parallelism of each task 
defined by the rate at which it can execute on 1 to m 

processors. 
Another relevant model is the task model of 

Edmonds and Pruhs [82] which considers each task as 
being made up of a number of phases each of which has 
an amount of computation that must be completed in 
that phase and a speedup function indicating how the 
rate at which that computation is executed increases with 
the degree of parallelism (number of processors 
executing the phase). 

Work in the area of on-line scheduling methods 
covering scalable tasks [112], and the application of 
Divisible Load Theory [53], [131], [139], [115] are also 
of interest in this respect.  

As well as more expressive task models, more 
general models of processing supply would provide a 
means of abstracting away from specific hardware 
platforms, to a virtual platform model, thus enabling 
composition. Initial work in this area by Bini et al. [55], 
[56] models the parallel supply of a virtual platform as a 
set of m supply functions indicating how the minimum 
supply of processing capacity on 1 to m processors 
varies as a function of time. 

Limited policies for access to shared resources: 
Unlike uniprocessor systems, where the Stack Resource 
Policy [18] is widely accepted as the most effective 
protocol to use to control mutually exclusive accesses to 
shared resources, there is no such consensus for 
multiprocessor scheduling. Research in this area 
indicates that spin-based approaches appear to be 
preferable to suspension-based methods; however non-
blocking approaches also perform well for simple 
resource accesses. It therefore seems unlikely that there 
will be a single best solution here. Different forms of 
resource sharing and different architectures are likely to 
require different forms of support. 
10.2. Related areas of research 

This survey covers research into hard real-time 
scheduling for homogeneous multiprocessor systems. 
There are a number of related areas that, while outside 
the scope of the survey, are likely to be of interest to 
researchers and practitioners developing multiprocessor 
real-time systems. These include: 

o Worst-case Execution Time (WCET) analysis; 
o Network / bus scheduling; 
o Memory architectures; 
o Uniform and heterogeneous processors; 
o Operating Systems; 
o Power consumption and dissipation; 
o Scheduling tasks with soft real-time 

constraints. 
o Non-real-time issues such as load balancing. 

11. Conclusions 
Currently, progress in developing multiprocessor 

systems is a long way ahead of research efforts to 
determine the best mechanisms, policies and analysis to 



use in these systems. At best, this can result in systems 
that are heavily over-specified and expensive; at worst, 
it can lead to intermittent and unexpected timing faults 
that compromise system reliability. Functionality, unit 
cost, time-to-market, and a reputation based on product 
reliability are key factors for companies developing real-
time embedded systems. All of these factors can be 
compromised by building systems using approaches that 
lack the necessary theoretical underpinnings. Ultimately, 
multiprocessors will be used in high integrity real-time 
systems, and consequently, timing failures could affect 
safety. 

Future advances along the research directions 
indicated in this survey should help resolve the key open 
issues identified. These advances hold of promise of 
providing the effective and efficient mechanisms, 
policies, and analyses required for a sound engineering-
based approach to the development of complex 
commercial multiprocessor real-time systems. 
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