
A Survey of Hard Real-Time Scheduling Algorithms and Schedulability
Analysis Techniques for Multiprocessor Systems

Robert I. Davis and Alan Burns

Real-Time Systems Research Group, Department of Computer Science,
University of York, YO10 5DD, York (UK)

rob.davis@cs.york.ac.uk, alan.burns@cs.york.ac.uk

Abstract
This survey covers hard real-time scheduling

algorithms and schedulability analysis techniques for
homogeneous multiprocessor systems. It reviews the key
results in this field from its origins in the late 1960’s to
the latest research published in late 2009. The survey
outlines fundamental results about multiprocessor real-
time scheduling that hold independent of the scheduling
algorithms employed. It provides a taxonomy of the
different scheduling methods, and considers the various
performance metrics that can be used for comparison
purposes. A detailed review is provided covering
partitioned, global, and hybrid scheduling algorithms,
approaches to resource sharing, and the latest results
from empirical investigations. The survey identifies open
issues, key research challenges and likely productive
research directions.

1. Background
Today, real-time embedded systems are found in

many diverse application areas including; automotive
electronics, avionics, telecommunications, space
systems, medical imaging, and consumer electronics. In
all of these areas, there is rapid technological progress.
Companies building embedded real-time systems are
driven by a profit motive. To succeed, they aim to meet
the needs and desires of their customers by providing
systems that are more capable, more flexible, and more
effective than their competition, and by bringing these
systems to market earlier. This desire for technological
progress has resulted in a rapid increase in both software
complexity and the processing demands placed on the
underlying hardware.

To address demands for increasing processor
performance, silicon vendors no longer concentrate
wholly on the miniaturisation needed to increase
processor clock speeds, as this approach has led to
problems with both high power consumption and
excessive heat dissipation. Instead, there is now an
increasing trend towards using multiprocessor platforms
for high-end real-time applications.

A key date in the move towards multiprocessor
systems was the 7th May 2004, when Intel cancelled the
successor to the Pentium P4 processor called Tejas, due

to extremely high power consumption [109].
Dynamic power consumption (the power lost

charging and discharging capacitive load) is a dominant
factor for chip designs using technology above the
100nm level; however, for sub 100nm technology,
transistor leakage current becomes important. This is
because the dimensions of the gates and oxide layers are
such that the electrical resistance is reduced. The result
is that leakage current and hence power dissipation
rapidly increases with further miniaturisation. This
problem can be partially ameliorated by running at a
lower voltage, which reduces power consumption, due
to both dynamic and leakage sources; however, reducing
voltage also limits the maximum operating frequency,
restricting performance.

A solution to this problem is to limit minaturisation
and operating frequencies, and instead, use multiple
processors on a single chip. On 27th July 2006, two years
after cancellation of Tejas, Intel officially released the
Core Duo processor. In future, it is expected that high-
end processing performance will be provided by using a
large number of processor cores on a single chip. For
example, the Intel Teraflop Research Chip (Polaris),
announced on Feb 11th 2007, has 80 processor cores
providing 1 Teraflop performance at 3 GHz.

Multicore processors from other vendors include:
o AMD: Opteron, Phenom, Turion 64, Radeon,

and Firestream;
o Analog Devices: Blackfin
o Azul Systems: Vega 1, Vega 2, Vega 3;
o ARM: MPCore;
o Cavium Networks: Octeon;
o Freescale Semiconductor: QorlQ;
o IBM: POWER4, POWER5, POWER6,

PowerPC970, Xenon (X-Box 360);
o Intel: Core Duo, Core 2 Duo, Core 2 Quad,

Core i3, i5, i7, i9 family, Itanium 2, Pentium D,
Pentium Dual-Core, Polaris (teraflops research
chip), Xeon.

o Nvidia: GeForce 9, GeForce 200, Tesla;
o NXP Nexperia;
o Sun Microsystems: MAJC 5200, UltraSPARC

IV, UltraSPARC T1, UltraSPARC T2;
o Texas Instruments: TMS320C80 MVP;
o Tilera: TILE64;

mailto:rob.davis@cs.york.ac.uk�
mailto:alan.burns@cs.york.ac.uk�

o XMOS: XS-G4.

1.1. Multiprocessor real-time systems and
scheduling

Systems are referred to as real-time when their
correct behaviour depends not only on the operations
they perform being logically correct, but also on the time
at which they are performed. For example in avionics,
flight control software must execute within a fixed time
interval in order to accurately control the aircraft. In
automotive systems there are tight time constraints on
engine management and transmission control systems
that derive from the mechanical systems that they
control.

Guaranteeing real-time performance while making
the most effective use of the available processing
capacity requires the use of efficient scheduling policies
or algorithms supported by accurate schedulability
analysis techniques. These analysis techniques need to
be capable of analysing the worst-case behaviour of the
application under a given scheduling policy, thus
providing proof, subject to a set of assumptions about
application behaviour, that timing constraints will
always be met during operation of the system.

Research into uniprocessor real-time scheduling can
trace its origins back to the late 1960’s and early 1970’s
with significant research effort and advances made in the
1980’s and 1990’s. The interested reader is referred to
[16] and [135] which provide an historical account of
the most important advances in the field of uniprocessor
scheduling during those decades. Today, although there
is still significant scope for further research,
uniprocessor real-time scheduling theory can be viewed
as reasonably mature, with a large number of key results
documented in text books [63], [65], [118], and
successfully transferred into industrial practice.

Multiprocessor real-time scheduling theory also has
it origins in the late 1960’s and early 1970’s. In 1969,
Liu [116] noted that multiprocessor real-time scheduling
is intrinsically a much more difficult problem than
uniprocessor scheduling:

“Few of the results obtained for a single
processor generalize directly to the multiple
processor case; bringing in additional processors
adds a new dimension to the scheduling problem.
The simple fact that a task can use only one
processor even when several processors are free
at the same time adds a surprising amount of
difficulty to the scheduling of multiple
processors.”
The seminal paper of Dhall and Liu [78] in 1978

heavily influenced the course of research in this area for
two decades. During the 1980’s and 1990’s,
conventional wisdom was that global approaches to
multiprocessor scheduling (where tasks may migrate

from one processor to another) suffered from the so
called “Dhall effect”, and were therefore inferior to
partitioned approaches (with a fixed allocation of tasks
to processors). Research efforts therefore focused almost
exclusively on partitioned approaches.

It was not until 1997 when Phillips et al. [129]
showed that the “Dhall effect” was more of a problem
with high utilisation tasks than it was with global
scheduling algorithms that there was renewed interest in
global scheduling algorithms.

In the late 1990’s silicon vendors such as IBM, and
AMD began research into the development of multicore
processors, with IBM releasing the first non-embedded
dual-core processor, the POWER4 in 2001.

In the late 1990’s, the trend away from increasing
processing capacity via ever higher clock speeds,
towards increasing performance via multiple processor
cores became evident to the real-time systems research
community. This resulted in significant research effort
being focussed on the problem of real-time
multiprocessor scheduling. While markedly more papers
have been published in this area since 2000 than before,
and significant progress has been made, there are still
many open questions and research challenges that
remain.

This paper presents a survey of multiprocessor real-
time scheduling algorithms and schedulability analysis
techniques, from the origins of the field in the late
1960’s up to the latest research published in 2009.

The aim of the survey is to provide a classification of
existing research, providing both a perspective on the
area, and identifying significant open issues, and future
research directions.

1.2. Organisation
The remainder of the paper is organised as follows:

Section 2 provides a classification of multiprocessor
systems, and algorithms. It describes the basic system
and task models, and defines the terminology and
notation used. Section 3 describes metrics that can be
used to compare the performance of different
multiprocessor real-time scheduling algorithms and their
analyses. Section 4 describes a set of fundamental
results that are independent of specific scheduling
algorithms. This is followed by an overview of
partitioned and global approaches to multiprocessor real-
time scheduling (Sections 5 and 6 respectively). Section
7 outlines hybrid approaches that attempt to combine the
best attributes of both partitioned and global approaches.
Section 8 describes research into protocols and analyses
for accessing mutually exclusive shared resources.
Section 9 reports on the latest empirical research.
Finally, Section 10 concludes with the identification of
key open issues in the field.

2. System models, terminology and notation
This section provides a primer on the terminology

and notation used in multiprocessor scheduling research.
It is aimed both at helping new researchers entering the
field; and providing a consistent nomenclature that has
yet to fully emerge from the research community.

2.1. Classification of multiprocessor systems
Multiprocessor systems can be classified into three

categories:
1. Heterogeneous: The processors are different;

hence the rate of execution of a task depends on
both the processor and the task. Indeed, not all
tasks may be able to execute on all processors.

2. Homogeneous: The processors are identical;
hence the rate of execution of all tasks is the
same on all processors.

3. Uniform: The rate of execution of a task
depends only on the speed of the processor.
Thus a processor of speed 2 will execute all
tasks at exactly twice the rate of a processor of
speed 1.

In this survey, we are concerned with homogeneous
(or identical) multiprocessor systems, comprising m
processors.

2.2. Periodic and sporadic task models
The aim of multiprocessor real-time scheduling is to

execute the set of tasks that make up an application, on
the multiprocessor system, such that their time
constraints are always met. An application (or taskset
τ) is assumed to comprise a static set of n tasks
(nττ ..1). When fixed priority scheduling is used, the task
number is also used to indicate a unique priority i, from
1 to n (where n is the lowest priority).

The overwhelming majority of the research into
multiprocessor real-time scheduling focuses on two
simple task models: the periodic task model and the
sporadic task model. In both models, tasks give rise to a
potentially infinite sequence of invocations (or jobs). In
the periodic task model, the jobs of a task arrive strictly
periodically, separated by a fixed time interval. In the
sporadic task model, each job of a task may arrive at any
time once a minimum inter-arrival time has elapsed
since the arrival of the previous job of the same task.

Periodic tasksets may be classified as synchronous if
there is some point in time at which all of the tasks
arrive simultaneously, or asynchronous, where task
arrival times are separated by fixed offsets and there is
no simultaneous arrival time.

In the sporadic task model, the arrival times of the
jobs of different tasks are assumed to be independent.

Intra-task parallelism is not permitted by either
model; hence, at any given time, each job may execute
on at most one processor. Also, it is assumed, unless

otherwise stated, that only a single job of a task is ready
to execute at any given time. Further, it is assumed that
once a job starts to execute it will not suspend itself.

Each task iτ is characterised by: its relative deadline
iD , worst-case execution time iC , and minimum inter-

arrival time or period iT . The utilisation iu , of task iτ
is given by ii TC / . The utilisation sumu of a taskset is
the sum of the utilisations of all of its tasks. A task’s
worst-case response time iR , is defined as the longest
time from a job of that task arriving to it completing
execution. The hyperperiod)(τH of a taskset is defined
as the least common multiple of the task periods.

There are three levels of constraint on task deadlines
that are studied in the literature, these are:

1. Implicit deadlines: all task deadlines are equal
to their periods (ii TD =).

2. Constrained deadlines: all task deadlines are
less than or equal to their periods (ii TD ≤).

3. Arbitrary deadlines: task deadlines may be less
than, equal to, or greater than their periods.

Most of the published research assumes that tasks are
independent and so cannot be blocked from executing by
another task other than due to contention for the
processors. Section 8 outlines research into policies that
permit access to mutually exclusive resources lifting the
restriction of independence. They consider the blocking
time during which tasks can be prevented from
executing due to other tasks accessing mutually
exclusive shared resources.

As a result of pre-emption and subsequent
resumption, a job may, in the case of global scheduling,
migrate from one processor to another. The cost of pre-
emption, migration, and the run-time operation of the
scheduler is generally assumed to be either negligible, or
subsumed into the worst-case execution time of each
task. Empirical research considering the effects of such
overheads is outlined in Section 9.

2.3. Taxonomy of multiprocessor scheduling
algorithms

Multiprocessor scheduling can be viewed as
attempting to solve two problems:

1. The allocation problem: on which processor a
task should execute.

2. The priority problem: when, and in what order
with respect to jobs of other tasks, should each
job execute.

Scheduling algorithms for multiprocessor systems
can be classified according to when changes to priority
and allocation can be made (referred to as migration-
based and priority-based classifications by Carpenter et
al [66]).
Allocation:

1. No migration: Each task is allocated to a
processor and no migration is permitted.

2. Task-level migration: The jobs of a task may
execute on different processors; however each
job can only execute on a single processor.

3. Job-level migration: A single job can migrate to
and execute on different processors; however
parallel execution of a job is not permitted.

Priority:
1. Fixed task priority: Each task has a single fixed

priority applied to all of its jobs.
2. Fixed job priority The jobs of a task may have

different priorities, but each job has a single
static priority. An example of this is Earliest
Deadline First (EDF) scheduling.

3. Dynamic priority: A single job may have
different priorities at different times, for
example Least Laxity First (LLF) scheduling.

Scheduling algorithms where no migration is permitted
are referred to as partitioned, those where migration is
permitted are referred to as global. As the majority of
research into global scheduling algorithms has focussed
on models where arbitrary migration (job-level
migration) is permitted, in the remainder of this paper
will use the term global to mean job-level migration and
provide clarification indicating when only task-level
migration is permitted.
 A scheduling algorithm is said to be work-
conserving if it does not permit there to be any time at
which a processor is idle and there is a task ready to
execute. Partitioned scheduling algorithms are not work-
conserving, as a processor may become idle, but cannot
be used by ready tasks allocated to a different processor.

Scheduling algorithms can be further classified as:
1. Pre-emptive: tasks can be pre-empted by a

higher priority task at any time.
2. Non-pre-emptive: once a task starts executing, it

will not be pre-empted and will therefore
execute until completion.

3. Co-operative: tasks may only be pre-empted at
defined scheduling points within their execution.
Effectively, execution of a task consists of a
series of non-pre-emptable sections.

In this survey, we focus on pre-emptive scheduling
algorithms.

2.4. Schedulability, feasibility, and optimality
A taskset is said to be feasible with respect to a given

system if there exists some scheduling algorithm that
can schedule all possible sequences of jobs that may be
generated by the taskset on that system without missing
any deadlines.

A scheduling algorithm is said to be optimal with
respect to a system and a task model if it can schedule
all of the tasksets that comply with the task model and
are feasible on the system.

A scheduling algorithm is said to be clairvoyant if it

makes use of information about future events, such as
the precise arrival times of sporadic tasks, or actual
execution times, which are not generally known until
they happen.

A task is referred to as schedulable according to a
given scheduling algorithm if its worst-case response
time under that scheduling algorithm is less than or
equal to its deadline. Similarly, a taskset is referred to as
schedulable according to a given scheduling algorithm if
all of its tasks are schedulable.

A schedulability test is termed sufficient, with respect
to a scheduling algorithm and a system, if all of the
tasksets that are deemed schedulable according to the
test are in fact schedulable. Similarly, a schedulability
test is termed necessary, if all of the tasksets that are
deemed unschedulable according to the test are in fact
unschedulable. A schedulability test that is both
sufficient and necessary is referred to as exact.

2.5. Processor demand function
The concepts of processor demand bound function
)(th and processor load [29] [30] are used extensively

in the analysis of multiprocessor scheduling. The
processor demand bound function)(th corresponds to
the maximum amount of task execution that can be
released in an interval [0, t) and also has to complete in
that interval.

i

n

i i

i C
T

Dt
th ∑

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢ −
=

1
1,0max)((1)

The processor load is the maximum value of the
processor demand bound divided by the length of the
time interval.

⎟
⎠
⎞

⎜
⎝
⎛=

∀ t
thload

t

)(max)(τ (2)

As a taskset cannot possibly be schedulable
according to any algorithm if the total execution that is
released in an interval and must also complete in that
interval exceeds the available processing capacity, the
processor load provides a simple necessary condition for
taskset feasibility [35]:

mload ≤)(τ (3)
where m is the number of processors.

2.6. Notation
For ease of reference, Table 1 provides a summary of

the notation used in the rest of the paper.
This notation has been chosen to reflect common

usage. Standardising on a common notation such as this
would ease communication of results among the
research community.

Table 1: Notation
Symbol Description

iτ Task i at priority level i.
iB Blocking time at priority level i.
iC Worst-case execution time of task iτ
iD Relative deadline of task iτ
iR Worst-case response time of task iτ
)(τH Hyperperiod of the taskset

iT Minimum inter-arrival time of task iτ
iu Utilisation of task iτ

maxu Max. utilisation of any task in the
taskset.

sumu Taskset utilisation.
iδ Density of task iτ ,),min(/ iiii TDC=δ .

maxδ Max. density of any task in the taskset.
sumδ Taskset density (sum of task densities).

)(τload Processor load of taskset τ
),(kload τ Processor load of taskset τ , due to tasks

of priority higher than or equal to k.
n Number of tasks
N Number of jobs (typically in the

hyperperiod of the taskset).
m Number of processors
t Time

)(th Processor demand in the interval [0,t)
Af Speedup factor (resource augmentation

factor) for scheduling algorithm A.
)(τAM Minimum number of processors needed

to schedule taskset τ using scheduling
algorithm A.

Aℜ Approximation ratio for scheduling
algorithm A.

AU Utilisation upper bound for scheduling
algorithm A.

3. Performance metrics

In this section, we describe four performance metrics
that have been used to compare the effectiveness of
different multiprocessor scheduling algorithms /
schedulability analyses. These are:

o Utilisation bounds.
o Approximation Ratio.
o Resource Augmentation or Speedup factor.
o Empirical measures, such as the percentage of

tasksets that are found to be schedulable.
3.1. Utilisation bounds

For implicit-deadline tasksets, worst-case utilisation
bounds are a useful performance metric. The worst-case
utilisation bound AU for a scheduling algorithm A is
defined as the minimum utilisation of any implicit-
deadline taskset that is only just schedulable according
to algorithm A. Hence there exist implicit-deadline
tasksets with total utilisation infinitesimally greater than

AU that are unschedulable according to algorithm A.
Conversely, there are no implicit-deadline tasksets with
total utilisation Asum Uu ≤ that are unschedulable
according to algorithm A. Hence AU can be used as a

simple sufficient (but not necessary) schedulability test.
3.2. Approximation Ratio

The approximation ratio is a way of comparing the
performance of a scheduling algorithm A with that of an
optimal algorithm.

For example, consider the problem of determining
the minimum number of processors required to schedule
a given taskset (τ). Let the number of processors
required according to an optimal algorithm be)(τOM
and the number required according to algorithm A be

)(τAM , then the approximation ratio Aℜ of algorithm
A is given by:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=ℜ

∀∞→ O

A
MA M

M
O τ

maxlim

 (4)
Note that 1≥ℜA , with smaller values of the

approximation ratio indicative of a more effective
scheduling algorithm, and 1=ℜA implying an optimal
algorithm.

Scheduling algorithms are referred to as
approximate, if they have a finite approximation ratio.
3.3. Resource Augmentation

The resource augmentation factor f [101], is an
alternative method of comparing the performance of a
scheduling algorithm A with that of an optimal
algorithm. Rather than considering the increased number
of processors that would be required to obtain
schedulability under algorithm A, the resource
augmentation factor instead considers the increase in
processing speed that would be required, (assuming a
linear decrease in task execution times with processing
speed).

The resource augmentation or speedup factor f for a
scheduling algorithm A is defined as the minimum factor
by which the speed of all m processors would need to be
increased such that all tasksets that are feasible (i.e.
schedulable according to an optimal scheduling
algorithm) on m processors of speed 1 become
schedulable under algorithm A.

Let τ be a taskset that is feasible on a system of m
processors of unit processing speed. Now assume that
using scheduling algorithm A, taskset τ is just
schedulable on a system of m processors, each of speed

)(τf . The resource augmentation or speedup factor Af
for algorithm A is given by:

())(max
,

τ
τ

ff
m

A
∀∀

= (5)

Note that 1≥Af , with smaller values indicative of a
more effective algorithm, and 1=Af implying an
optimal algorithm.
3.4. Empirical measures

A comparative measure of the effectiveness of
different scheduling algorithms and their analyses can be
obtained by evaluating the number of randomly

generated tasksets that each deems schedulable. Ideally,
the number of tasksets deemed schedulable by a
schedulability test would be compared against the
number of feasible tasksets generated; however, as exact
feasibility tests are not known for the case of sporadic
tasksets and are potentially intractable for periodic
tasksets, researchers have typically used this empirical
measure to compare the relative performance of two or
more sufficient schedulability tests / scheduling
algorithms.

In these empirical comparisons, it is important to use
a taskset generation algorithm that is unbiased [54], and
ideally one that allows tasksets to be generated that
comply with a specified parameter setting. That way the
dependency of schedulability test effectiveness on each
taskset parameter can be examined by varying that
parameter, while holding all other parameters constant,
avoiding any confounding effects.

Other useful empirical techniques used by
researchers include simulation of the schedule produced
by different algorithms to determine the number of pre-
emptions and migrations. While simulation cannot, in
general, prove schedulability, it can prove that a taskset
is unschedulable if the simulation reveals a deadline
miss. Hence simulation can also be used as a sufficient
test of un-schedulability.

4. Fundamental results
In this section, we describe a set of fundamental

results about multiprocessor real-time scheduling that
are independent of specific scheduling algorithms. These
results cover:

o Optimality
o Feasibility
o Comparability
o Predictability
o Sustainability
o Anomalies

4.1. Optimality
As noted in Section 2.4 a scheduling algorithm is

referred to as optimal if it can schedule all of the tasksets
that can be scheduled by any other algorithm, i.e. all of
the feasible tasksets.

In 1974, Horn [99] gave an)(3NO algorithm (where
N is the number of jobs) that is able to determine an
optimal multiprocessor schedule for any arbitrary set of
completely determined jobs where all of the arrival times
and execution times are known a priori. This algorithm
can be applied to a set of strictly periodic tasks, by
considering all of the jobs in the hyperperiod; however,
the)(3NO complexity means that it is only tractable for
tasksets with a relatively short hyperperiod. This method
is not applicable to sporadic tasksets where arrival times
are not known in advance.

In 1988, Hong and Leung [97] [98] proved that there
is no optimal online scheduling algorithm for the case of
an arbitrary collection of jobs that have more than one
distinct deadline, and are scheduled on more than one
processor. Hong and Leung showed that such an
algorithm would require knowledge of future arrivals
and execution times to avoid making decisions that lead
to deadline misses; hence optimality in this case is
impossible without clairvoyance. In 1989, this result was
extended by Dertouzos and Mok [80] who showed that
knowledge of arrival times is necessary for optimality,
even if execution times are known.

In 2007, Fisher [86] proved that there is no optimal
online algorithm for sporadic tasksets with constrained
or arbitrary deadlines, by showing that such an
algorithm would also require clairvoyance. Optimal
algorithms are however known for periodic tasksets with
implicit-deadlines, see Section 6.3.

4.2. Feasibility
In 1974, Horn [99] observed that

musum ≤ (6)
is a necessary and sufficient condition for the feasibility
of implicit-deadline periodic tasksets.

For constrained and arbitrary deadline tasksets, the
above condition is necessary, but not sufficient. A
tighter necessary condition given by Baruah and Fisher
in 2005 [35] is:

mload ≤)(τ (7)
In 2006, Baker and Cirinei [23], improved upon this

necessary feasibility condition by considering the
modified processor load; that is the processor load
including task execution that must unavoidably take
place within an interval [0, t), even though the release
time or deadline is not actually within the interval.

mload ≤)(* τ (8)
Baker and Cirinei showed that an upper bound on the

modified processor load)(* τload can be found by
considering a synchronous arrival sequence, with the
modified processor load calculated from the modified
processor demand bound function for each task (see
Equations (1) and (2)):

+=)()(* thth

∑
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢ −
−

n

i
iii

i

i CDT
T

Dt
t

1
1,0max,0max (9)

In 2006, Cucu and Goossens [73] showed that the
taskset hyperperiod],0(H is a feasibility interval for
implicit- and constrained-deadline synchronous periodic
tasksets, scheduled by a deterministic and memoryless1
algorithm. For any such algorithm, for example global

1 A memoryless algorithm makes scheduling decisions based only on
the currently ready tasks, not on previous scheduling decisions.

EDF, an exact schedulability test can be obtained by
checking if the schedule generated misses any deadlines
in],0(H . Further, an exact feasibility test for fixed job
priority scheduling could in theory be achieved by
checking the schedule for all N! possible job priority
orderings. It is not currently known if],0(H is a
feasibility interval for arbitrary deadline tasksets, under
fixed job-priority scheduling.

As far as we are aware, no exact feasibility test has
yet been determined for sporadic tasksets scheduling by
a fixed-job priority algorithm.

In 2007, Cucu and Goossens [74] investigated the
feasibility for fixed-task priority algorithms. For this
case, the above result for implicit- and constrained-
deadline synchronous periodic tasksets holds as fixed-
task priority algorithms are both deterministic and
memoryless. For arbitrary deadline periodic tasksets,
Cucu and Goossens showed that the hyperperiod],0(H
is a feasibility interval provided that all previously
released jobs are completed by H. For asynchronous,
periodic task systems, Cucu and Goossens showed that
longer intervals are required to prove exact
schedulability.

In 2008, Cucu noted that using the feasibility interval
],0(H and checking all n! possible task priority

orderings, it is in theory possible to determine exact
feasibility for periodic tasksets [75] scheduled using
fixed task priorities; however, this approach quickly
becomes intractable as taskset cardinality increases.

As far as we are aware, no exact feasibility test or
optimal priority ordering algorithm is known for
sporadic tasksets scheduled using fixed task priorities.

In 2007, Fisher and Baruah [85] devised a sufficient
feasibility test for global scheduling of general task
models. This test determines if a global scheduling
algorithm exists that is able to schedulable the taskset of
interest. Unfortunately knowing that such an algorithm
exists is of limited value without knowing what the
algorithm is. The test, given by Equation (10) for
sporadic tasksets with arbitrary deadlines, is sufficient as
there are tasksets which it deems infeasible which are in
fact feasible.

max

max

1
)2((

)(
δ

δ
τ

+
−−

<
mm

load (10)

Fisher and Baruah showed that this feasibility test has a
resource augmentation bound or speedup factor of

41.2)12/(1 ≈− , meaning that any sporadic taskset that
is feasible on m processors of speed)12(− will be
deemed feasible by the test on m processors of unit
speed.

In 2007, Fisher and Baruah [40] also derived a
sufficient feasibility test for non-migratory (i.e.
partitioned) scheduling. This test states that there exists
a partitioning of the tasks that is schedulable using EDF,

which is an optimal uniprocessor scheduling algorithm,
provided that:

))1((
3
1)(maxδτ −−≤ mmload (11)

4.3. Comparability
In comparing the tasksets that can be scheduled by

two different multiprocessor scheduling algorithms A
and B, there are three possible outcomes:

1. Dominance: Algorithm A is said to dominate
algorithm B, if all of the tasksets that are
schedulable according to algorithm B are also
schedulable according to algorithm A, and
tasksets exist that are schedulable according to
A, but not according to B.

2. Equivalence: Algorithms A and B are
equivalent, if all of the tasksets that are
schedulable according to algorithm B are also
schedulable according to algorithm A, and vice-
versa.

3. Incomparable: Tasksets exist that are
schedulable according to algorithm A, but not
according to algorithm B and vice-versa.

In 2004, Carpenter et al. [66] considered the
relationships between the nine different classes of
multiprocessor scheduling algorithm (the combinations
of the three migration-based and the three priority based
categories – see Section 2.3)

Carpenter’s key comparability results are as follows:
o Global (i.e. job-level migration), dynamic

priority scheduling dominates all other classes.
o All three classes with fixed task priorities

(partitioned, task-level migration, and job-level
migration) are incomparable. (Leung and
Whitehead [119] had previously shown that
these partitioned and job-level migration classes
are incomparable).

o All three partitioned classes (fixed task priority,
fixed job priority, and dynamic priority) are
incomparable with respect to all three task-level
migration classes.

We note that unlike uniprocessor scheduling where an
optimal scheduling algorithm for periodic and sporadic
tasksets exists in the fixed job priority class (i.e. EDF),
in the case of multiprocessor scheduling, dynamic
priorities are essential for optimality.

The maximum possible utilisation bounds
(applicable to periodic tasksets with implicit-deadlines)
are given in Table 2 below, for algorithms in the various
classes:

Table 2
Class Maximum utilisation

bound
Global (job-level
migration), dynamic priority

m

All other classes 2/)1(+m [8]

4.4. Predictability
In 1994, Ha and Liu [100] defined the concept of

scheduling algorithm predictability. A scheduling
algorithm is referred to as predictable if the response
times of jobs cannot be increased by decreases in their
execution times, with all other parameters remaining
constant.

Predictability is an important property, as in real
systems task execution times are almost always variable
up to some worst-case value.

Ha and Liu [100] proved that all priority driven, i.e.
fixed task priority or fixed job priority, pre-emptive
scheduling algorithms for multiprocessor systems are
predictable. We note that for any dynamic priority
scheduling algorithm, it is necessary to consider / prove
predictability before the algorithm can be considered
useful.

4.5. Sustainability
In 2006, Baruah and Burns [37] introduced the

concept of sustainability. A scheduling algorithm is said
to be sustainable with respect to a task model, if and
only if schedulability of any taskset compliant with the
model implies schedulability of the same taskset
modified by:

(i) Decreasing execution times,
(ii) Increasing periods or inter-arrival times,
(iii) Increasing deadlines.

Similarly, a schedulability test is referred to as
sustainable if the above changes cannot result in a
taskset that was previously deemed schedulable by the
test becoming unschedulable. We note that the modified
taskset may not necessarily be deemed schedulable by
the test. A schedulability test is referred to as self-
sustainable [28] if such a modified taskset will always
be deemed schedulable by the test.

We note that it is possible to devise sustainable
sufficient schedulability tests for a scheduling algorithm
that is unsustainable when an exact test is applied.

While EDF and fixed priority scheduling are
sustainable algorithms with respect to uniprocessor
scheduling of both synchronous periodic and sporadic
tasksets, the same is not true of global EDF and global
fixed task priority multiprocessor scheduling. This point
is illustrated by the scheduling anomalies discussed in
the next section.

The sustainability of schedulability tests for global
EDF has been investigated by Baker and Baruah [28]

and is discussed further in Section 6.1.

4.6. Anomalies
A scheduling anomaly occurs when a change in

taskset parameters results in a counter-intuitive effect on
schedulability. For example, increasing task periods,
while keeping all other parameters constant, results in
lower overall processor utilisation, and so might
reasonably be expected to improve schedulability;
however, in some cases, this can result in the taskset
becoming unschedulable. This effect is referred to as a
period anomaly and is evidence of un-sustainability.
4.6.1 Period and execution time anomalies

In partitioned approaches to multiprocessor
scheduling, anomalies exist in the task allocation / bin-
packing algorithms used. These anomalies occur when a
change in a parameter such as an increase in the period
or a decrease in the worst-case execution time of a task
results in a different allocation, which is then deemed to
be unschedulable. Such anomalies are known to exist for
EDF scheduling, in particular, FF (First Fit) and FFDU
(First Fit Decreasing Utilisation) allocation [93]. These
anomalies also exist for many fixed task priority
partitioning algorithms [9].

In 2003, B. Andersson [9] showed that global fixed
task priority scheduling of periodic tasksets using an
exact schedulability test is also subject to period
anomalies. In effect, the schedulability test is
unsustainable with respect to increasing task periods.

Period anomalies are known to exist for:
o Global fixed task priority scheduling of

synchronous periodic tasksets.
o Global optimal scheduling (full migration,

dynamic priorities) of synchronous periodic
tasksets.

The interested reader is referred to Chapter 5 of B.
Andersson’s thesis [9] for a set of illustrative examples.
4.6.2 Critical instant effect

In 1998, Lauzac et al. [110] showed that under global
fixed task priority scheduling, a task does not
necessarily have its worst-case response time when
released simultaneously with all higher priority tasks.
This happens because simultaneous release may not be
the scenario that results in all processors being occupied
by higher priority tasks for the longest possible time
during the interval over which the task of interest is
active.

In multiprocessor scheduling, the response time of a
low priority task is longer if when the task executes,
zero or only a few higher tasks are executing on other
processors, and when other higher priority tasks do
execute, they do so together so that all processors are
occupied and the task of interest cannot execute.

The critical instant effect is a fundamental difference
between global multiprocessor scheduling and

partitioned / uniprocessor scheduling. In uniprocessor
scheduling, synchronous release is known to represent
the worst-case scenario for both periodic and sporadic
tasksets.

Figure 1: Critical instant effect

The critical instant effect is illustrated by Figure 1.
the task parameters (iC , iD , iT) are as follows:

1τ (2,2,8), 2τ (2,2,10), 3τ (4,6,8), 4τ (4,7,8). The lowest
priority task 4τ misses its deadline at time 13=t ,
despite meeting its deadline on the first invocation
following simultaneous release of all four tasks. This
happens because the higher priority tasks occupy both
processors for 4 time units in the interval [8, 15),
whereas they only occupy both processors for 2 time
units in the interval [0, 7).
 In his thesis, B. Andersson [9] observes that this
effect has implications for priority assignment policies.
In particular, the exact response time of a task is
dependent on both the set of higher priority tasks and
their specific priority order. This implies that a greedy
approach to priority assignment as used by Audsley’s
optimal priority assignment algorithm [15] [17] for the
uniprocessor case, is not applicable to the multiprocessor
case, when schedulability analysis uses exact response
times. In 2009, Davis and Burns [77] showed that this
does not however rule out the use of Audsley’s
algorithm in conjunction with some sufficient
schedulability tests.

The critical instant effect is also an issue in the
analysis of global fixed job priority scheduling. In [38]
Baruah remarks that, “no finite collection of worst-case
job arrival sequences has been identified for the global
scheduling of sporadic task systems.” This problem
remains one of the key open questions in the field today.

5. Partitioned scheduling
In this section, we review the key research results in

partitioned approaches to multiprocessor real-time
scheduling.

Partitioned scheduling has the following advantages
compared to global scheduling:
o If a task overruns its worst-case execution time

budget, then it can only affect other tasks on the
same processor.

o As each task only runs on a single processor, then
there is no penalty in terms of migration cost. For
example, a job that is started on one processor, then
pre-empted and resumed on another must have its
context restored on the second processor. This can
result in additional communication loads and cache

misses that would not occur in the partitioned / non-
migration case. This problem could be mitigated by
allowing only task, as opposed to job-level
migration, or by non-preemptive execution,
although the later could result in significant loss of
schedulability due to long non-pre-emptive sections.

o Partitioned approaches use a separate run-queue per
processor, rather than a single global queue. For
large systems, the overheads of manipulating a
single global queue can become excessive.
From a practical perspective, the main advantage of

using a partitioning approach to multiprocessor
scheduling is that once an allocation of tasks to
processors has been achieved, a wealth of real-time
scheduling techniques and analyses for uniprocessor
systems can be applied.

The following optimality results for uniprocessor
scheduling had a strong influence on research into
partitioned multiprocessor scheduling.

Considering pre-emptive uniprocessor scheduling
using fixed task priorities:

o Rate Monotonic (RM) priority assignment is the
optimal priority assignment policy for
synchronous periodic or sporadic tasksets with
implicit deadlines [116].

o Similarly, Deadline Monotonic (DM) priority
assignment is optimal for such tasksets with
constrained-deadlines [119]. (We note that DM
is not optimal for tasksets with arbitrary
deadlines [113], or for asynchronous periodic
tasksets; however Audsley’s priority assignment
algorithm is known to be optimal in these cases
[15] [17]).

Considering pre-emptive uniprocessor scheduling
using fixed job priorities:

o EDF is the optimal scheduling algorithm for
sporadic tasksets independent of the deadline
constraints [79].

The main disadvantage of the partitioning approach
to multiprocessor scheduling is that the task allocation
problem is analogous to the bin packing problem and is
known to be NP-Hard [92].

5.1. Implicit-deadline tasksets
Early research into partitioned multiprocessor

scheduling by Dhall and Liu [78] in 1978, Davari and
Dhall [76] in 1986, Oh and Son [126], [127] in 1993 and
1995, and Burchard et al. [62] in 1995, examined the use
of EDF or Fixed Priority scheduling using Rate
Monotonic (RM) priority assignment, on each processor,
combined with bin packing heuristics such as “First-Fit”
(FF), “Next-Fit” (NF), “Best-Fit” (BF), “Worst-Fit”
(WF) and task orderings such as “Decreasing
Utilisation” (DU) for task allocation.

In the following sections, these algorithms are

referred to by their abbreviated names, for example
RMBF, meaning Rate Monotonic (fixed priority)
scheduling with Best Fit task allocation.
5.1.1 Approximation Ratio

Table 3 below gives the approximation ratio required
for each of these algorithms for periodic tasksets with
implicit-deadlines.

Recently in 2009, Rothvoß [132] devised an)(3nO
partitioning algorithm called RMMatching and showed
that it has an approximation ratio of 3/2, improving upon
the previous best approximation ratio of 7/4 for the fixed
task priority algorithm RMGT [62].

Table 3

Algorithm Approximation
Ratio (Aℜ)

Ref.

RMNF 2.67 [78]
RMFF 2.33 [126]
RMBF 2.33 [126]

RM-FFDU 5/3 [127]
FFDUF 2 [76]
RMST)1/(1 maxu− [62]
RMGT 7/4 [62]

RMMatching 3/2 [132]
EDF-FF 1.7 [92]
EDF-BF 1.7 [92]

Note, maxu is the highest utilisation of any task in
the taskset.

While these approximation ratios enable a
comparison to be made between the different algorithms,
their practical use as a schedulability test is severely
limited, as determining the minimum number of
processors required by an optimal algorithm is, as noted
above, an NP-hard problem. Also, the approximation
ratio only holds as the number of processors required in
the optimal case tends to infinity. Further, the utilisation
bounds that can be derived from these approximation
ratios are pessimistic [128].
5.1.2 Utilisation bounds

In 2001, B. Andersson et al. [8] showed that for
periodic tasksets with implicit-deadlines, the largest
worst-case utilisation bound for any partitioning
algorithm is:

2/)1(+= mUOPT (12)
Equation (12) holds because 1+m tasks with

execution time ε+1 and a period of 2 cannot be
scheduled on m processors regardless of the allocation
algorithm used.

The difficulties that partitioned scheduling has
allocating large utilisation tasks were recognised early
on by the research community; leading to a significant
thread of research during the 1990’s providing
utilisation bounds as a function of maxu , the highest
utilisation of any task in the taskset.

In 1995, Burchard et al [62] provided utilisation
bounds for the RMST (“Small Tasks”) algorithm, which
attempts to place tasks with periods that are close to
harmonics of each other on the same processor. This
algorithm favours tasks with utilisation < 1/2:

2ln1)1)(2(max −+−−= umU RMST (13)
Burchard et al [62] also provided utilisation bounds

for the RMGT (“General Tasks”) algorithm, which
separates tasks into two groups depending on whether
their utilisation is above or below 1/3:

)42.1(5.0
3
12ln

2
5

2
1

−≈⎟
⎠
⎞

⎜
⎝
⎛ +−= mmU RMGT (14)

In 1998, Oh and Baker [128] showed that RM-FFDU
has a utilisation bound given by:

mmU FFDURM 41.0)12(2/1 ≈−=− (15)
They also showed that the utilisation bound for any

fixed task priority partitioning algorithm is upper
bounded by:

)21/()1()1/(1
)(

+++< m
FTPOPT mU (16)

Lopez et al [121], [122], [123] subsequently
generalised the above result for RM-FFDU, and also
provided more complex bounds based on the number of
tasks n and the value of maxu for RMBF, RMFF, and
RMWF.

In 2003, B. Andersson [10] showed that the
RBOUND-MP-NFR algorithm has a utilisation bound
of:

2/mU NFRMPRBOUND =−− (17)
This result shows that a fixed task priority partitioning
algorithm exists that is an optimal partitioning approach
in the limited sense that its utilisation bound is the
maximum possible for any partitioning algorithm. We
note that this does not mean that it is an optimal
partitioning algorithm in the sense that it can schedule
any taskset that is schedulable according to any other
partitioning algorithm.

In 2000, Lopez et al [120] showed that using EDF,
the lowest utilisation bound for any reasonable2
allocation algorithm is given by:

max)1(ummLRA −−= (18)
and that the highest utilisation bound of any reasonable
allocation algorithm is:

⎣ ⎦
⎣ ⎦)1/1(

)1/1(

max

max

+
+

=
u

mu
H RA (19)

(These limits assume that ⎣ ⎦)/1/(maxumn >).
Lopez et al. [120] showed that all reasonable

allocation algorithms that order tasks by decreasing
utilisation achieve the higher limit, as do EDF-BF and
EDF-FF. Further, EDF-WF, but not EDF-WFDU,

2 A reasonable allocation algorithm is one that only fails to allocate a
task once there is no processor on which the task will fit.

achieves the lower limit.
When 1max =u , the limit given by Equation (19)

becomes the same as Equation (12); hence EDF-FF and
EDF-BF are also ‘optimal’ partitioning approaches in
the limited sense that their utilisation bounds are as large
as that of any partitioning algorithm.

We note that for applications with “small” tasks, then
RMST and EDF-FF provide reasonably high utilisation
bounds. For example, assuming 10=m and

25.0max =u , the utilisation bounds for RMST and EDF-
FF are 63% and 82% respectively.

5.2. Constrained and arbitrary deadline tasksets
In 2005, Baruah and Fisher [35] showed that EDF-

FFD (decreasing density) is able to schedule any
arbitrary-deadline sporadic taskset provided that:

⎩
⎨
⎧

≥+
≤−−

≤
2/12/
2/1)1(

maxmax

maxmax

δδ
δδ

δ
m

mm
sum (20)

The resource augmentation factor for EDF-FFD is
however, not finite [35].

Baruah and Fisher [35], [36], [39] also developed an
algorithm EDF-FFID based on ordering tasks by
increasing relative deadline, and using a sufficient test
based on a linear upper bound for the processor demand
bound function to determine schedulability.

They showed that EDF-FFID is able to schedule any
sporadic taskset with constrained deadlines provided
that:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
≥

max

max

1
)(2
δ

δτload
m (21)

For tasksets with arbitrary deadlines, the test becomes:

max

max

max

max

11
)(

u
uuload

m sum

−
−

+
−

−
≥

δ
δτ

 (22)

The resource augmentation or speedup factor
required by this algorithm is:

o)/12(m− for tasksets with implicit deadlines.
o)/13(m− for tasksets with constrained

deadlines.
o)/24(m− for tasksets with arbitrary deadlines.

In 2006, Fisher et al. [83] applied a similar approach
to the problem of partitioning using fixed task priority
scheduling using Deadline Monotonic priority
assignment. The algorithm FFB-FFD (from the author’s
surnames), is based on ordering tasks by decreasing
relative deadline, and using a sufficient test based on a
linear upper bound on the processor request bound
function to determine schedulability.

They showed that FFB-FFD is able to schedule any
sporadic taskset with constrained-deadlines provided
that:

max

max

1
)(

δ
δτ

−
−+

≥ sumuload
m (23)

For tasksets with arbitrary deadlines, the test
becomes:

max

max

max

max

11
)(

u
uuuload

m sumsum

−
−

+
−

−+
≥

δ
δτ

 (24)

Fisher et al. [83] showed that the resource
augmentation or speedup factor required by this
algorithm is:

o)/13(m− for tasksets with constrained-
deadlines.

o)/24(m− for tasksets with arbitrary-deadlines.

6. Global scheduling
In this section we outline the key research results in

global multiprocessor scheduling where tasks are
permitted to migrate from one processor to another.

Global scheduling has the following advantages
compared to partitioned scheduling:
o There are typically fewer context switches / pre-

emptions when global scheduling is used, this is
because the scheduler will only pre-empt a task
when there are no processors idle [6].

o Spare capacity created when a task executes for less
than its worst-case execution time can be utilised by
all other tasks, not just those on the same processor.

o If a task overruns its worst-case execution time
budget, then there is arguably a lower probability of
deadline failure as worst-case behaviour of the
entire system, with all tasks taking worst-case
execution times, worst-case phasing occurring etc.
is less likely than it is on a single processor.

o Global scheduling is more appropriate for open
systems, as there is no need to run load balancing /
task allocation algorithms when the set of tasks
changes.

The majority of the research into global real-time
scheduling has focussed on approaches that permit job-
level migration, where a job may be pre-empted on one
processor and resumed on another. In the descriptions
that follow, job-level migration should be assumed
unless task-level migration, where each job executes on
a single processor, but jobs of the same task may
execute on different processors, is explicitly stated.

The seminal work of Dhall and Liu in 1978 [78]
considered global scheduling of periodic tasksets with
implicit deadlines on m processors. They showed that
the utilisation bound for global EDF scheduling is ε+1 ,
for arbitrary small ε . This occurs when there are m
tasks with short periods/deadlines and infinitesimal
utilisation, and one task with a longer period/deadline
and utilisation that approaches 1.

This “Dhall effect” led to a general view that global
approaches to multiprocessor scheduling were inferior to
partitioned approaches. As a result, throughout the
1980’s and early 1990’s, the majority of research into

multiprocessor real-time scheduling focussed on
partitioned approaches, as described in the previous
section.

In 1997, Phillips et al. [129] showed that augmenting
a system by increasing processor speed is more effective
that augmenting a system by adding processors. They
showed that the resource augmentation or speedup factor
required for global EDF is at most)/12(m− . (This
result also applies to global Least Laxity First (LLF),
which can schedule any taskset schedulable by global
EDF).

The resource augmentation results of Phillips et al.
[129], along with research by Funk et al. [88] in 2001
into uniform multiprocessor scheduling, led to the
observation that for the “Dhall effect” to occur at least
one task is needed with very high utilisation. This
observation was exploited in much of the subsequent
research to provide utilisation bounds that are dependent
on the maximum task utilisation maxu .

6.1. Global fixed job priority scheduling
6.1.1 Implicit deadline tasksets

In 2001, B. Andersson et al. [8] considered
utilisation bounds for periodic tasksets with implicit
deadlines. They showed that the maximum utilisation
bound for any global fixed job priority algorithm is:

2/)1(+= mUOPT (25)
In 2002, Srinvasan and Baruah [138] proposed the

EDF-US[ς] algorithm that gives the highest priority to
tasks with utilisation greater than the threshold ς , with
ties broken arbitrarily. Setting the threshold to

)12/(−mm results in a utilisation bound that is
independent of maxu :

)12/(2
)]12/([−=−− mmU mmUSEDF (26)

In 2003, Goossens et al. [94] derived a utilisation
bound for global EDF applicable to periodic tasksets
with implicit-deadlines and showed that this bound is
tight:

max)1(ummU EDF −−= (27)
Later that year, Baruah and Carpenter [34] showed that
this same utilisation bound applies to global EDF
scheduling, assuming task level, migration.

Goossens et al. [94] also proposed an algorithm
called EDF(k) that assigns the highest priority to the k
tasks with the highest utilisation. They showed that a
sufficient schedulability condition for EDF(k) is:

⎥
⎥

⎤
⎢
⎢

⎡
−
−

+−≥
k

ksum

u
uu

km
1

)1((28)

where ku is the utilisation of the kth task, in order of
decreasing utilisation.

In 2005, Baker [20], [24] showed that setting the
threshold used in EDF-US[ς] to 1/2, results in the
following utilisation bound which is the maximum

possible bound for this class of algorithm [8]:
2/)1(]2/1[+=− mU USEDF (29)

Baker [20] also proposed a variant of EDF(k) called
EDF(mink), where mink is the minimum value of k for
which the sufficient test in Equation (29) holds. Baker
showed that the utilisation bound for EDF(mink) is also:

2/)1(][min
+= mU kEDF (30)

Again, this is the maximum possible utilisation
bound for this class of scheduling algorithm. However,
EDF(mink) dominates EDF-US[2/1] in terms of the
tasksets that it can schedule.
6.1.2 Constrained and arbitrary-deadline tasksets

The proof of the utilisation bound given in Equation
(27) was extended by Bertogna et al. [48] to the case of
sporadic tasksets with constrained deadlines and by
Baruah and Baker [25] to the arbitrary-deadline case,
giving the following sufficient schedulability test based
on task density:

max)1(δδ −−≤ mmsum (31)
Bertogna [49] also adapted the utilisation separation

approach of EDF-US to the case of sporadic tasksets
with constrained and arbitrary deadlines, forming the
EDF-DS[ς] algorithm. This algorithm gives the highest
priority to tasks with density greater than the threshold
ς . Bertogna showed that a sporadic taskset is
schedulable according to EDF-DS[1/2] provided that:

2/)1(+≤ msumδ (32)

Figure 2: Problem window

In 2003, Baker [19] developed a general strategy for

determining the schedulability of sporadic tasksets. The
outline of this basic strategy is as follows;

1. Consider an interval, referred to as the problem
window, at the end of which a deadline is
missed, see Figure 2, for example the interval

],[kk dr from the arrival to the deadline of some
job of task kτ .

2. Establish a condition necessary for the job to
miss its deadline, for example, all m processors
execute other jobs for more than kk CD −
during the interval.

3. Derive an upper bound UBI on the maximum
interference in the interval due to jobs of other

tasks, including both jobs released in the interval
and so called carry-in jobs that have not
completed execution before the start of the
interval.

4. Form a necessary un-schedulability test; in the
form of an inequality between UBI and the
amount of execution necessary for a deadline to
be missed.

5. Negate this inequality to form a sufficient
schedulability test.

The idea presented by Baker in [19] is that if the job
of task kτ misses its deadline, then the load in the
interval must be at least: kkm δδ +−)1(. In order to
improve the estimate of execution time carried-in, Baker
extended the interval back as far as possible before the
release of the job, such that the load remained just
greater than kkm δδ +−)1(. This gives the following
sufficient schedulability test:

A constrained-deadline taskset is schedulable under
pre-emptive global EDF scheduling if for every task kτ :

kk
i

i m δδβ +−<∑
∀

)1(),1min((33)

where iβ is an upper bound on the processor load due to
task iτ for any problem window relating to kτ . See
lemma 11in [19] for a definition of iβ .

In 2005, Baker [20] extended this approach to
sporadic tasksets with arbitrary deadlines. We note that
the complexity of Baker’s test is)(3nO in the number
of tasks.

The basic strategy proposed by Baker in [19] is a
seminal result which has been built upon by a significant
thread of subsequent research.

In 2005, Bertogna et al. [48] showed that the test
proposed by Baker [20] (Equation (33)) does not
dominate the extended version of test proposed by
Goossens et al. [94] (Equation (31)). In fact, the test
given by Equation (33) performs relatively poorly when
tasks with high individual utilisations are considered.
Bertogna et al. [48] proposed an alternative sufficient
test based on the strategy of Baker, but using some
simple observations to limit the amount of interference
counted as falling in the problem window. This
sufficient test can be summarised as follows:

A constrained-deadline taskset is schedulable under
pre-emptive global EDF scheduling if for every task kτ ,
one of the following holds:

)1()1),(min(k
ki

kk mi δδβ −<−∑
≠∀

or
)1()1),(min(k

ki
kk mi δδβ −=−∑

≠∀

and kk iki δβ −≤<≠∃ 1)(0: (34)
where

k

iikiii
k D

TNDCCN
i

))(,min(
)(0−+
=β (35)

The complexity of this test is)(2nO in the number
of tasks.

We note that the schedulability tests given by
Equations (33) and (34) become pessimistic when the
number of tasks is much greater than the number of
processors (mn >>). This happens because every task is
counted as contributing some carry-in interference.
Further, these tests tend to perform poorly on tasksets
where the task parameters are of different orders of
magnitude.

In 2007, Baruah [38] derived a sufficient
schedulability test for global EDF scheduling of
sporadic tasksets with constrained deadlines. This test
uses the same basic approach as Baker [19] but extends
the interval during which task execution is considered
back to some point in time 0t at which at least one of
the m processors is idle. In this way, the test limits the
number of tasks that are counted as causing carry-in
interference to m-1.

For each task, the schedulability test presented in
[38] checks values of kA representing the time interval
between 0t and the arrival of the first job of task kτ to
miss its deadline. The range of values of kA to be
checked is constrained by the following upper bound.

sum

kiiisumk
k um

mCuDTumDC
A

−

+−+−−
≤ ∑∑)()(

 (36)

Where ∑C is the sum of the m-1 largest task
execution times. Within this range of possible values for

kA , only those values where the processor demand
bound function)(kk DAh + changes need to be
checked, making the test pseudo-polynomial in
complexity.

A constrained-deadline taskset is schedulable under
pre-emptive global EDF scheduling if for every task kτ ,
the following holds for all values of kA :

)()(' kkk
i

kk CDAmIiI −+<+∑
∀

∈ (37)

where

∑
−∀

∈ −=
estlmi

kkk iIiII
arg)1(

))(')(''(

⎩
⎨
⎧

=−+
≠−++

=
kiACDAh
kiCDADAh

I
kkkki

kkkkki
k),)(min(

)),(min(
'

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛
−++⎥

⎦

⎥
⎢
⎣

⎢ +

≠
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−+

++⎥
⎦

⎥
⎢
⎣

⎢ +

=

ki

A

CTDACC
T

DA

ki
CDA

TDACC
T

DA

I

k

kikkii
i

kk

kkk

ikkii
i

kk

k

,mod)(,min(
min

),mod)(,min(
min

''

Notably, the above test reverts to the processor load-
based test (1)(≤τload) for uniprocessor systems [29],
[30], when m = 1.

In 2008, building on their previous work [38],
Baruah and Baker [27] derived a further sufficient test
for global EDF scheduling of sporadic tasksets with
constrained deadlines, which also limits the number of
tasks that are counted as causing carry-in interference.
This processor load based test is given by:

⎡ ⎤ max)1()(δμμτ −−≤load (38)
where max)1(δμ −−= mm .
Baruah and Baker showed that the sufficient test

given by Equation (38), combined with global EDF,
scheduling, has a resource augmentation or speedup
factor of:

62.2
53

2
≈

−
=f (39)

This speedup factor is sufficient to compensate for both
the non-optimality of global EDF and the sufficiency of
the test.

Later in 2008, Baruah and Baker [43] extended the
results in [27] to sporadic tasksets with arbitrary
deadlines, showing that Equation (38) still applies.
Baruah and Baker [44] also extended their results to the
case where jobs of an arbitrary deadline task may
execute in parallel on different processors. They showed
that unlike the partitioned case (see Section 5.2), there
appears to be no performance penalty for permitting
arbitrary deadlines. However, the analysis provided is
only sufficient, and the speedup factor derived is an
upper bound, so it is possible that the lack of a penalty
could be an artefact of the analysis used.

In 2008, Bertogna et al. [51], presented a
schedulability test for sporadic tasksets with constrained
deadlines that is valid for any work conserving
algorithm. This schedulability test is based on a
consideration of the densest possible packing of
interfering jobs in the problem window, see Figure 3.

Figure 3: Densest packing for work conserving

algorithms
Bertogna et al. [51] showed that)(LWi is an upper

bound on the workload of task iτ in an interval of
length L.

))(,min()()(iiiiiiii TLNCDLCCLNLW −−++=
 (40)

where)(LNi is the maximum number of jobs of task iτ
that contribute all of their execution time in the interval.

⎥
⎦

⎥
⎢
⎣

⎢ −+
=

i

ii
i T

CDL
LN)((41)

A taskset is therefore schedulable with any work-
conserving global scheduling algorithm if for each task

kτ :
)1()1),(min(+−<+−∑

≠
kkkkki

ki
CDmCDDW (42)

Bertogna et al. [51] extended this test to the specific
cases of global EDF, and global FP (fixed task priority)
scheduling (see Section 6.2.2). Under global EDF, they
showed that a taskset is schedulable provided that for
each task kτ the following holds:

)1()1),(min(+−<+−Λ∑
≠

kkkkk
i
k

ki
CDmCDD (43)

where:

),min(i
i

k
kii

i

ki
k T

T
D

DCC
T
D

⎥
⎦

⎥
⎢
⎣

⎢
−+⎥

⎦

⎥
⎢
⎣

⎢
=Λ

Bertogna et al. further extended their approach via an
iterative schedulability test that calculates the slack for
each task, and then uses this value to limit the amount of
carry-in interference and hence calculate a new value for
the task slack. This approach is also applicable to any
work-conserving algorithm and was also specialised for
global EDF and global FP scheduling.

They showed that the iterative test for global EDF
admits nearly as many randomly generated tasksets as
the sufficient feasibility test of Fisher and Baruah [85],
see Section 4.2, Equation (10). This iterative test has
complexity that is pseudo polynomial:)(2

max
3DnO .

In 2007, Baruah and Fisher [40] derived the
following sufficient test for jobs of sporadic tasks
scheduled by global EDF. Note,),(jload τ is the
processor load due to all jobs with higher priority than
job j:

)/)1((
1

1),(jj DCmm
K

jload −−
+

≤τ (44)

where K is the largest ratio task deadlines. As K may
potentially take any value, this test does not have a finite
resource augmentation factor.

In 2009, Baker and Baruah [28] showed that the
sufficient schedulability tests for global EDF given in
[20], [27], and [48] (Equations (33), (34) and (38) are
unsustainable with respect to increases in relative
deadline, and the test given in [27], Equation (38) is
unsustainable with respect to decreases in worst-case
execution times. That is increases in relative deadlines
(decreases in worst-case execution times) can result in a
taskset being deemed unschedulable when it was
previously deemed schedulable by the test. Baruah [44]
improved the sufficient test from [27], Equation (38),
making it sustainable. The improved schedulability test
is as follows:

⎡ ⎤),)1(max(()(maxδμμτ −−≤load

⎡ ⎤)))2((maxδμμ −− (45)
where max)1(δμ −−= mm .
In 2008, Bonifaci et al. [64] derived a sufficient

schedulability test for global EDF scheduling of
sporadic tasksets with arbitrary deadlines which has a
speedup factor of)/12(ε++ m for arbitrarily small ε .
Recall that Phillips et al. [129] showed that global EDF
requires m processors of speed (2+1/m) in order to
schedule all tasksets that are feasible on m processors of
unit speed. The schedulability test introduced by
Bonifaci et al. [64] and extended by Baruah et al. in [45]
therefore has the property that there are no tasksets that
are feasible on m processors of unit speed that are not
deemed to be schedulable by the test under global EDF
on m processors of speed (2+1/m). In this sense, the test
is speedup optimal, as no schedulability test exists for
global EDF that requires a smaller speedup factor.

6.2. Global fixed task priority scheduling
This section outlines research into global fixed task

priority scheduling. For conciseness we use the
following abbreviated descriptions for various
scheduling algorithms:

o Global FP scheduling: global fixed task priority
scheduling.

o Global RM scheduling: global FP scheduling
using Rate Monotonic priority ordering.

o Global DM scheduling: global FP scheduling
using Deadline Monotonic priority ordering.

6.2.1 Implicit deadline tasksets
As well as global EDF scheduling, discussed in

Section 6.1, the seminal work of Dhall and Liu in 1978
[78] also considered global scheduling of periodic
tasksets with implicit deadlines on m processors. They
showed that the utilisation bound for global RM
scheduling is ε+1 , for arbitrarily small ε . This occurs
when there are m tasks with short periods/deadlines and
infinitesimal utilisation, and one task with a longer
period/deadline and utilisation that approaches 1.

In 2000, B. Andersson and Jonsson [6], designed the
TkC priority assignment policy to circumvent the “Dhall
effect”. TkC assigns priorities based on a task’s period

iT minus k times its worst-case execution time iC ,
where k is a real value computed on the basis of the
number of processors.

m
mmmk

2
1651 2 +−+−

= (46)

Via an empirical investigation, B. Andersson and
Jonsson showed that TkC is an effective priority
assignment policy for periodic tasksets with implicit
deadlines.

In 2001, B. Andersson et al. [8] showed that any
periodic taskset with implicit deadlines can be scheduled

using global RM scheduling provided that:
)23/(max −≤ mmu and)13/(2 −≤ mmusum (47)

This result, albeit in a weaker form, also appeared in
a paper [33] by the co-authors Baruah and Goossens in
2003:

3/1max ≤u and 3/musum ≤ (48)
B. Andersson et al. [8] also proposed the RM-US[ς]

algorithm that gives the highest priority to tasks with
utilisation greater than the threshold ς (with ties broken
arbitrarily), and otherwise assigns priorities in RM
order. B. Andersson et al. showed that RM-
US[)23/(−mm] has a utilisation bound of:

)13/(2
)]23/([−=−− mmU mmUSRM (49)

In 2002, Lundberg [124] showed that that setting the
threshold used in RM-US[ς] to 0.375 results in the
following utilisation bound which is the maximum
possible bound for this algorithm:

mU USRM 375.0]375.0[≈− (50)
In 2003, B. Andersson and Jonsson [10] showed that

for periodic tasksets with implicit deadlines, the
maximum utilisation bound for any global fixed task
priority scheduling algorithm where priorities are
defined as a scale invariant function of task periods and
worst-case execution times is:

mmUOPT 41.0)12(≈−≤ (51)
In 2005, Bertogna et al. [47] tightened the bound for

global RM scheduling to:

maxmax)1(
2

uumusum +−≤ (52)

In 2008, B. Andersson [14] proposed a ‘slack
monotonic’ algorithm, where priorities are ordered
according to the slack of each task given by ii CT − .
This algorithm, called SM-US, otherwise works in the
same way as RM-US. B. Andersson showed that SM-
US[)53/(2 +] has a utilisation bound of:

mmU USSM 382.0)53/(2)]53/(2[≈+=+− (53)

for sporadic tasksets with implicit deadlines.
6.2.2 Constrained and arbitrary deadline tasksets

In 2000, B. Andersson and Jonsson [7] gave a
simple, but pessimistic, response time upper bound
applicable to sporadic tasksets with constrained
deadlines scheduled using fixed priorities. This response
time upper bound effectively assumes that the execution
time of carried in and carried out jobs in an interval is
equal to the entire worst-case execution time of the task.

∑
<

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+←

ki
ii

i

ub
k

k
ub
k CC

T
R

m
CR 1 (54)

In 2003, Baker [19], [21] applied the same general
strategy described in section 6.1.2 for global EDF to
global FP scheduling of sporadic tasksets with

constrained deadlines.
In 2005, Bertogna [47] proved the following density

bound for global DM scheduling of sporadic tasksets
with constrained deadlines:

maxmax)1(
2

δδδ +−≤
m

sum (55)

Bertogna et al. [47] used the above result as the basis
for a density-based test for the hybrid DM-DS[ς]
algorithm. This algorithm gives the highest priority to at
most m-1 tasks with density greater than the threshold
ς , and otherwise assigns priorities in Deadline
Monotonic priority order. Under DM-DS[ς] a taskset is
schedulable provided that:

⎪
⎪
⎩

⎪⎪
⎨

⎧

−<−
−

+

−=
+

+
+≤

1)1(
2

1
1

2ln)(
)(

mm

mm
m

sum
ψςψς

ψ
δ

δ
ψςδ (56)

Where ψ is the number of ‘privileged’ tasks with
density higher than the threshold, and)(mδ is the
density of the mth highest density task.

Bertogna et al. [47] proved the following sufficient
test for DM-DS[1/3]:

3
1+

≤
m

sumδ (57)

Bertogna et al. [47] also proposed the following
alternative sufficient test based on the strategy of Baker,
but using some simple observations to limit the amount
of interference counted as falling in the problem
window.

A constrained-deadline taskset is schedulable under
pre-emptive global DM scheduling if for every task kτ ,
one of the following holds:

)1()1),(min(k
ki

kk mi δδβ −<−∑
<

or
)1()1),(min(k

ki
kk mi δδβ −=−∑

<

and kk iki δβ −≤<≠∃ 1)(0: (58)
where

k

iiikikiiki
k D

CDTNDCCN
i

))(,min(
)(0,, −+−+
=β

1, +⎥
⎦

⎥
⎢
⎣

⎢ −
=

i

ik
ki T

CD
N

In 2006, Fisher and Baruah [84], derived a sufficient
test for global DM scheduling of sporadic tasksets with
arbitrary deadlines, under the assumption that intra-task
parallelism, where jobs of the same task can execute in
parallel on different processors, is permitted; while
inter-job parallelism is not.

This sufficient test for each task kτ is as follows:

)/)1((
)/(max(21

1),(
)(

kk
kj

khpj

DCmm
DD

kload −−
+

≤
∈

τ

 (59)
where),(kload τ is the processor load due to all tasks
with priority higher than or equal to k. Note, due to the
use of Deadline Monotonic priority ordering, the
minimum value for the fractional term is 1/3.

In 2007, Baruah [46] derived an alternative sufficient
test for global DM scheduling of sporadic tasksets with
constrained deadlines using a similar approach to [84],
but limiting the amount of carry-in execution in a
different way. This sufficient test for each task kτ is as
follows:

)/)(/)1((
2
1),(kkk DkCDCmmkload ∑−−−≤τ

(60)
where)(kC∑ is the sum of the m largest worst-case
execution times of tasks of priority k or higher.

The above test can be weakened to:

))(1)(/)1((
2
1)(max kDCmmkload kk δ−−−≤ (61)

where)(max kδ is the maximum density of any of the k
highest priority tasks. Baruah showed that this
schedulability test has a resource augmentation or
speedup factor for large m of 73.3)32(≈+ , which
compensates for both the non-optimality of global DM
scheduling and the sufficiency of the test.

In 2008, Fisher and Baruah [41] showed that the
result derived in [84], Equation (59), also applies to
systems where intra-task parallelism is not permitted.
They showed that DM is the optimal priority assignment
policy with respect to this schedulability test and that the
test has a resource augmentation or speedup factor of

)/14(m− .
In 2008, Bertogna et al. [51] specialised their

sufficient schedulability test for any work-conserving
algorithm, (see Section 6.1.2 Equation (42)), to global
FP scheduling. They showed that a sporadic taskset with
constrained deadlines is schedulable under global FP
scheduling if for each task kτ :

)1()1),(min(+−<+−∑
<

kkkkki
ki

CDmCDDW (62)

where)(LWi is the bound on the workload of task iτ in
an interval of length L, given by Equation (40).

Bertogna et al. [51] extended their approach via an
iterative schedulability test that calculates the slack for
each task, and then uses this value to limit the amount of
carry-in interference and hence calculate a new value for
the task slack.

Further, Bertogna and Cirinei [50] showed how this
approach could be adapted to provide response time
analysis for multiprocessor systems, by iteratively
computing an upper bound on the response time of each

task, while using the response times of higher priority
tasks to limit the carry-in interference from those tasks.
This analysis can be expressed in the following fixed
point iteration:

()∑
<

+←
ki

UB
k

CI
ik

ub
k RI

m
CR)(min1 (63)

where, assuming that kτ is schedulable,)(UB
k

CI
i RI is an

upper bound on the interference due to task iτ within
the worst-case response time of kτ , given by:

)1),(min()(+−= k
UB
k

UB
k

CI
i

UB
k

CI
i CRRWRI (64)

where)(LW CI
i is a bound on the workload of task iτ in

an interval of length L, given by:
))(,min()()(i

CI
ii

ub
iii

CI
i

CI
i TLNCRLCCLNLW −−++=

(65)
and)(LN CI

i is the maximum number of jobs of task iτ
that contribute all of their execution time in the interval:

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −+
=

i

i
ub
iCI

i T
CRL

LN)((66)

In 2009, Guan et al. [95] extended the response time
analysis of Bertogna and Cirinei [50], limiting the
amount of ‘carry-in’ interference using ideas from [38].
An important observation following from the analysis of
Guan et al. [95] concerns the pattern of task execution
that results in the worst-case response time for a job of
task kτ under global FP scheduling: The worst-case
response time for a job of task kτ occurs when that job
is released at some time t when all m processors are busy
executing higher priority tasks, and during the preceding
time interval),[tt ε− (for some arbitrary value of ε) at
least one processor was not occupied by a higher priority
task.

Guan et al. [95] showed that if task iτ does not have
a carry-in job, then the interference is given by:

)1),(min()(+−= k
UB
k

UB
k

NC
i

UB
k

NC
i CRRWRI (67)

where:
))(,min()()(i

NC
iii

NC
i

NC
i TLNLCCLNLW −+= (70)

and

⎥
⎦

⎥
⎢
⎣

⎢
=

i

NC
i T

LLN) ((71)

The difference between the two interference terms
(Equations (64) and (67)) is given by:

)()()(UB
k

NC
i

UB
k

CI
i

UB
k

DIFF
i RIRIRI −= (72)

Using this result, Guan et al. [95] improved upon the
response time test of Bertogna and Cirinei [50] as
follows:

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++← ∑∑

−∈∈∀)1,()(
)()(1

mkMaxi

UB
k

DIFF
i

khpi

UB
k

NC
ik

UB
k RIRI

m
CR

 (73)
where Max(k, m-1) is the subset of tasks with higher

priorities than kτ , with the m-1 largest values of
)(UB

k
DIFF
i RI .

 The improved response time test of Guan et al. [95]
(Equation (73)) dominates the response time test of
Bertogna and Cirinei [50] (Equation (63)) which in turn
dominates the deadline based test of Bertogna et al. [51].

Guan et al. [95] also extended their response time
test to tasksets with arbitrary deadlines.

In 2009, Davis and Burns [77] showed that
Audsley’s optimal priority assignment algorithm [15]
[17] is applicable to some sufficient tests for global FP
scheduling, including those of B. Andersson and
Jonsson [7] (Equation (54)) and Bertogna et al. [51]
(Equation (62)). Davis and Burns also extended the TkC
priority assignment policy to sporadic tasksets to form
“DkC” priority assignment, which orders task priorities
based on their deadlines less some constant (given by
Equation (46) times their worst-case execution times.

6.3. Global dynamic priority scheduling
In this section, we outline research into global

dynamic priority scheduling algorithms. A number of
these algorithms are known to be optimal for periodic
tasksets with implicit deadlines (Pfair and its variants
PD, PD2, ERFair, BF, and also SA, LLREF). However,
it is known that there are no optimal online (non-
clairvoyant) algorithms for the pre-emptive scheduling
of sporadic tasksets on multiprocessors [86].

Global dynamic priority algorithms dominate
algorithms in all other classes; however their practical
use can be problematic due to the potentially excessive
overheads caused by frequent pre-emption and
migration.
6.3.1 Proportionate fairness algorithms

The Proportionate Fair (Pfair) algorithm was
introduced by Baruah et al. in 1996 [32]. Pfair is a
schedule generation algorithm which is applicable to
periodic tasksets with implicit deadlines. Pfair is based
on the idea of fluid scheduling where each task makes
progress proportionate to its utilisation (or weight in
Pfair terminology). Pfair scheduling divides the timeline
into equal length quanta or slots. At each time quanta t,
the schedule allocates tasks to processors, such that the
accumulated processor time allocated to each task iτ
will be either ⎡ ⎤itu or ⎣ ⎦itu . Baruah et al. [32] showed
that the Pfair algorithm is optimal for periodic tasksets
with implicit deadlines, with a utilisation bound of:

mU PFAIR = (74)
In practice; however, the Pfair algorithm incurs very

high overheads by making scheduling decisions at each
time quanta. Further, all processors need to synchronise
on the boundary between quanta when scheduling
decisions are taken.

A number of variants on the Pfair approach have
been introduced, including ERFair [2], PD [31], and PD2

[4]. The Pfair algorithm ensures that the),(tlag iτ ,
given by the amount of execution time that should
ideally have been allocated to task iτ by time t (i.e. itu)
less the processing time actually allocated is between -1
and +1. ERFair lifts the restriction that this lag must be
greater than -1, thus allowing quanta of a job to execute
before their PFair scheduling windows provided that the
previous quanta of the same job has completed
execution. This makes ERFair a work conserving
algorithm, whereas Pfair is not. PD [31], and PD2 [4]
improve on the efficiency of Pfair by separating tasks
into groups of heavy (5.0>iu) and light tasks.

In 2000, J. Anderson and Srinivasan [3] extended
the PFair approach to sporadic tasksets, showing that the
EPDF (earliest pseudo-deadline first) algorithm, a
variant of PD, is optimal for sporadic tasksets with
implicit deadlines executing on 2 processors, but is not
optimal for more than 2 processors.

In 2003, Zhu et al. [140] introduced the Boundary
Fair (BF) algorithm. Zhu et al. recognised that implicit-
deadline tasks can only miss deadlines at times which
are period boundaries. The BF algorithm is similar to
Pfair; however it only makes scheduling decisions at
period boundaries. At any such time bt , the difference
between i

but and the accumulated processor time
allocated to each task iτ is again less than one time unit.
In this sense BF is fair, but less fair than Pfair, as BF
ensures only that proportionate progress is made on all
tasks at period boundaries, but not at other times.

Zhu et al. [140] proved that BF is also an optimal
algorithm for periodic tasksets with implicit deadlines,
and showed via an empirical evaluation that the number
of scheduling points is typically 25-50% of the number
required for PD.

In 2005, Holman and J. Anderson [96] implemented
Pfair scheduling on a symmetric multiprocessor. They
found that the synchronised re-scheduling of all
processors every time quanta caused significant bus
contention due to data being re-loaded into cache. To
address this problem, Holman and J. Anderson [96]
developed a variant of Pfair which staggers the time
quanta on each processor. This reduces bus contention,
at the cost of a reduction in schedulability. A task
requiring a quanta every b slots, under Pfair, will require
a quanta every b-1 slots with the staggered approach.
6.3.2 SA

In 1997, Khemka and Shyamasundar [107]
developed an optimal algorithm for periodic tasksets
with implicit-deadlines called SA This algorithm takes
at most)(/)()1(ττ GCDHmnO ++ operations to build a
schedule, where)(τH is the least common multiple of
task periods and)(τGCD is the greatest common
divisor of the task periods. We note that as with Pfair,
the number of task pre-emptions with SA can be
prohibitively large.

6.3.3 LLREF
In 2006, Cho et al. [69] introduced the LLREF

algorithm, which is also optimal for periodic tasksets
with implicit deadlines. LLREF is based on the fluid
scheduling model, using a T-L plane abstraction.
LLREF divides the timeline into sections separated by
normal scheduling events, i.e. task releases, and co-
incident deadlines. At the start of each section, m tasks
are selected to execute on the basis of largest local
remaining execution time first (LLREF). The local
remaining execution time for task iτ at the start of
section k, is the amount of execution time that the task
would be allocated during that section in a fluid
schedule, i.e. i

k
f ut , where k

ft is the length of the
section. The local remaining execution time decrements
as a task executes during the section. LLREF gives rise
to additional scheduling events either when a running
task completes its local execution time, or a non-running
task reaches a state where it has no local laxity. At these
additional scheduling points, the m tasks with the largest
local remaining execution time are again selected to
execute.

Cho et al. [69] showed that LLREF introduces at
most an additional n scheduling events per section,
giving a total of at most n+1 scheduling events per task
release.

In 2008, Funaoka et al. [87] extended the LLREF
approach, apportioning processing time that would
otherwise be unused among the tasks, and re-
apportioning processing time when a task completes
earlier than expected, thus creating a work-conserving
algorithm. Funaoka et al. [87] showed that for taskset
utilisations below 100% this approach results in
significantly fewer pre-emptions than LLREF.

In 2009, Funk and Nadadur [89] extended the
LLREF approach, forming the LRE-TL algorithm. The
key observation of Funk and Nadadur was that within
each section, there is no need to select tasks for
execution based on largest local remaining execution
time, in fact any task with remaining local execution
time will do. This observation greatly reduces the
maximum number of migrations per section, compared
to LLREF. Funk and Nadadur also showed how the
LRE-TL algorithm could be applied to sporadic tasksets
and proved that it is optimal (utilisation bound of 100%)
for sporadic tasksets with implicit deadlines.
6.3.4 EDZL

In 1994, Lee [111] introduced the Earliest Deadline
until Zero Laxity (EDZL) algorithm and showed that it
dominates global EDF scheduling. Indeed, EDZL results
in the same schedule as EDF until a situation is reached
when a task will miss its deadline unless it executes for
all of the remaining time up to its deadline (zero laxity),
EDZL gives such a task the highest priority.

In 2007, Cirinei and Baker [70] showed that EDZL

is predictable in the sense defined by Ha and Liu [100],
(see Section 4.4). Cirinei and Baker provided the
following sufficient schedulability test for EDZL:

A sporadic task system is schedulable by EDZL on
m identical processors unless the following condition
holds for at least m + 1 tasks and it holds strictly (>) for
at least one of them:

)1(k
ki

i
k m λβ −≥∑

≠∀

 (75)

Where, kik C Δ= /λ and =Δ k),min(ii TD and

k

iikiiii
k

TnCCn
Δ

−Δ+
=

)),0max(,min(
β

In 2008, Baker et al [26] refined the sufficient test
for EDZL, replacing Equation (75) with:

)1()1,min(kk
ki

i
k m λλβ −≥−∑

≠∀

 (76)

They also gave an iterative sufficient test for EDZL
based on the approach taken by Bertogna et al. in [51]
for work conserving algorithms and EDF. The tests
given by Equations (75) and (76) suffer from an over-
estimation of the amount of carry-in interference,
particularly for tasksets with cardinality mn >> . The
iterative test of Baker et al [26] reduces this problem by
calculating a lower bound on the slack for each task, and
then using this value to limit the amount of carry-in
interference and hence calculate a new value for the task
slack. The empirical evaluation in [26] shows that this
iterative test for EDZL outperforms previous tests given
in [70] and (as expected) similar tests for global EDF.

Also in 2008, Chao et al [67] showed that the
utilisation bound for EDZL, assuming tasksets with
implicit deadlines and large m, is:

memU EDZL 63.0)/11(≈−≤ (77)
where e is Euler’s number 2.718.

7. Hybrid approaches
Depending on the hardware architecture, the

overheads incurred by global scheduling can potentially
be very high. The fact that jobs can migrate from one
processor to another can result in additional
communication loads and cache misses, leading to
increased worst-case execution times, that would not
occur in the fully partitioned / non-migration case.
However, fully partitioned approaches suffer from the
drawback that the available processing capacity can
become fragmented, such that although in total a large
amount of capacity is unused, no single processor has
sufficient capacity remaining to schedule further tasks.
Indeed, the maximum utilisation bound is just 50% of
the total processing capacity.

In this section we outline recent research into hybrid
approaches which combines elements of both partitioned
and global scheduling.

7.1. Semi-partitioned approaches
One approach aimed at addressing the fragmentation

of spare capacity in partitioned systems is to split a small
number of tasks between processors.

In 2006, B. Andersson and Tovar [11] introduced
EKG, an approach to scheduling periodic tasksets with
implicit deadlines, based on partitioned scheduling, but
splitting some tasks into two components that execute at
different times on different processors. Andresson and
Tovar showed that the utilisation bound for EKG
depends on the parameter k, used to control division of
tasks into groups of heavy and light tasks. The utilisation
bound for EKG is given by:

⎩
⎨
⎧ <+

=
k

mkkk
U EKG 1

1/
 (78)

Hence the utilisation bound is 100% for k = m. Further,
the average number of pre-emptions per job over the
hyperperiod is bounded by 2k. Thus as suggested by B.
Andersson and Tovar, choosing a value of k = 2, gives a
utilisation bound of 66% and at most an average of 4
pre-emptions per job.

In 2008, B. Andersson and Bletsas [13] developed
the idea of job splitting to cater for sporadic tasksets
with implicit deadlines. In this case, each processor p
executes at most two split tasks, one executed by
processor p-1 and one executed by processor p+1. B.
Andersson et al. [12] later extended this approach to
tasksets with arbitrary deadlines. They showed that first-
fit and next-fit were not good allocation strategies when
task splitting is employed. Instead, they ordered tasks by
decreasing relative deadline and tried to fit all tasks on
the first processor before then choosing the remaining
task with the shortest relative deadline to be split. At
run-time, the split tasks are scheduled at the start and
end of fixed duration time slots. The disadvantage of this
approach is that the capacity required for the split tasks
is inflated if these slots are long, while the number of
pre-emptions is increased if the time slots are short.

In the implicit deadline case, B. Andersson and
Bletsas [13] showed that this approach has a utilisation
bound of:

1))1((4 −−+= δδδU (79)
where δ effectively defines the slot length (δ/minT).
This utilisation bound equates to approximately 88% for

4=δ . Further, the number of additional pre-emptions
in an interval of length t is given by:

⎡ ⎤ 2/3 min +Ttδ (80)
 In 2009, Bletsas and B. Andersson [57] developed
an alternative approach based on the concept of
‘notional processors’. With this method, tasks are first
allocated to physical processors (heavy tasks first) until
a task is encountered that cannot be assigned. Then the
workload assigned to each processor is restricted to

periodic reserves and the spare time slots between these
reserves organised to form notional processors. (A
notional processor is formed from time slots on a
number of physical processors which taken together
provide continuous execution capacity).

Bletsas and B. Andersson showed that this method
has a utilisation bound of at least 66.6% for tasksets with
implicit deadlines, and that the number of additional pre-
emption, above those caused by task arrivals is given by:

⎥⎥
⎤

⎢⎢
⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎥
⎤

⎢⎢
⎡+

S
tmm

3
2 (81)

where t is the length of the time interval, and S is the
minimum period of any task on the processor
considered. This number of additional pre-emptions
compares favourably with that given by Equation (80)
even when 1=δ .

In 2007, Kato and Yamasaki [102] introduced the
Ehd2-SIP algorithm. Ehd2-SIP is predominantly a
partitioning algorithm, with each processor scheduled
according to an algorithm based on EDF; however,
Ehd2-SIP splits at most m-1 tasks into two portions to be
executed on two separate processors. EhD2-SIP has a
utilisation bound of 50%.

In 2008, Kato and Yamasaki [103], presented a
further semi-partitioning algorithm called EDDP, also
based on EDF. EDDP again splits at most m-1 tasks
across two processors. The two portions of each split
task are prevented from executing simultaneously by
EDDP, which instead defers execution of the portion of
the task on the lower numbered processor, while the
portion on the higher numbered processor executes.
During the partitioning phase, EDDP places each heavy
task with utilisation greater than 65% on its own
processor. The light tasks are then allocated to the
remaining processors, with at most m-1 tasks split into
two portions. Kato and Yamasaki [103] showed that
EDDP has a utilisation bound of 65% for periodic
tasksets with implicit deadlines, and performs well in
terms of the typical number of context switches required
which is less than that of EDF due to the placement
strategy for heavy tasks. Subsequently, Kato and
Yamasaki [104] also extended this approach to fixed
task priority scheduling, showing that the RMDP
algorithm has a utilisation bound of 50%.

In 2009, Kato et al. [105] developed a semi-
partitioning algorithm called DM-PM (Deadline-
Monotonic with Priority Migration); applicable to
sporadic tasksets, and using fixed priority scheduling.
DM-PM strictly dominates fully partitioned fixed task
priority approaches, as tasks are only permitted to
migrate if they won’t fit on any single processor. Tasks
chosen for migration are assigned the highest priority,
with portions of their execution time assigned to
processors, effectively filling up the available capacity

of each processor in turn. At run-time, the execution of a
migrating task is staggered across a number of
processors, with execution beginning on the next
processor once the portion assigned to the previous
processor completes. Thus no job of a migrating task
returns to a processor it has previously executed on.
Kato et al. [105] showed that DM-PM has a utilisation
bound of 50% for tasksets with implicit deadlines.
Subsequently, Kato et al. [106] extended the same basic
approach to EDF scheduling; forming the EDF-WM
algorithm (EDF with Window constrained Migration).

In 2009, Lakshmanan et al. [108] developed a semi-
partitioning method based on fixed priority scheduling
of sporadic tasksets with implicit or constrained
deadlines. This method called PDMS_HPTS splits only
a single task on each processor; the task with the highest
priority. Note that a split task may be chosen again for
splitting if it has the highest priority on another
processor. PDMS_HPTS takes advantage of the fact that
under fixed priority pre-emptive scheduling, the
response time of the highest priority task on a processor
is the same as its worst-case execution time; leaving the
maximum amount of the original task deadline for the
part of the task split on to another processor to execute.

Lakshmanan et al. [108] showed that for any task
allocation PDMS_HPTS has a utilisation bound of 60%
for tasksets with implicit deadlines; however, if tasks are
allocated to processors in order of decreasing density
(PDMS_HPTS_DS), then this bound increases to 65%.
Further, PDMS_HPTS_DS has a utilisation bound of
69.3% if the maximum utilisation of any individual task
is no greater than 0.41. Notably, this is the same as the
Liu and Layland bound [117] for single processor
systems, without the restriction on individual task
utilisation.
7.2. Clustering

Clustering can be thought of as a form of partitioning
with the clusters effectively forming a smaller number of
faster processors to which tasks are allocated. Thus
capacity fragmentation is less of an issue than
partitioned approaches, while the small number of
processors in each cluster reduces global queue length
and has the potential to reduce migration overheads,
depending on the particular hardware architecture. For
example, processors in a cluster may share the same
cache, reducing the penalty in terms of increased worst-
case execution time, of allowing tasks to migrate from
one processor to another.

In 2008, Shin et al. [136] derived schedulability
analysis for multiprocessor systems, where tasks are
allocated to clusters of processors, and scheduled
according to global EDF on processors within their
cluster. Clusters are represented by a Multiprocessor
Periodic Resource (MPR) abstraction and may be either
physical, with a static mapping to processors, or virtual,

with a dynamic mapping to processors. Shin et al.
develop a hierarchical scheduling model and analysis
appropriate to tasks executing within MPRs which are
then scheduled on the multiple processors. The
algorithm proposed was shown to be optimal for tasksets
with implicit deadlines; however, the maximum number
of pre-emptions which can take place is m-1 in an
interval equal to the GCD (Greatest Common Divisor)
of the task periods. We note that in practice, this number
of context switches can be prohibitive.

In 2008, Leontyev and J. Anderson [114], developed
a container-based hierarchical scheduling scheme for
multiprocessor systems executing both hard and soft
real-time tasks. Here, each container is allocated a
specific bandwidth, which is provided via minimum
parallelism, using the maximum number of fully utilised
processors and at most one processor which is partially
utilised. This partial bandwidth is provided by a periodic
server. Leontyev and J. Anderson showed how the
tardiness of soft real-time tasks can be bounded in this
model, without any loss of utilisation. Utilisation loss
does occur when hard-real-time tasks are included;
however, this loss is shown to be small provided that the
utilisation of hard real-time tasks represents a small
fraction of the total.

8. Resource sharing
The previous sections described partitioned, global,

and hybrid scheduling algorithms and analyses for
simple periodic and sporadic task models where the
execution of one task is independent of the others. In
this section, we survey research lifting this assumption
of independence and therefore allowing tasks to share
resources that have to be accessed in mutual exclusion.

We note that as an alternative to mechanisms that
support mutual exclusion, there are non-blocking
solutions to the specific problem of single-writer, single-
reader communication which can support asynchronous
access by tasks on multiprocessors for example,
Simpson’s four-slot mechanism [137], which preserves
independence of execution. This mechanism does
however require memory space for four copies of the
data. For more complex cases with multiple writers, and
access to other types of shared object, e.g. registers in
hardware peripherals, then mutual exclusion is required.

In uniprocessor systems, the Stack Resource Policy
(SRP) [18] and Priority Ceiling Protocol (PCP) [134] are
widely accepted as the most appropriate mechanisms to
use to provide access to mutually exclusive shared
resources. Initial research into suitable policies for
multiprocessor real-time systems built on these
uniprocessor protocols.
8.1. Partitioned scheduling

In 1988 Rajkumar et al [130] introduced a
Multiprocessor variant of the Priority Ceiling Protocol

called MPCP, which is applicable to partitioned systems
using fixed priorities.

Under MPCP the priority ceilings of global shared
resources are set to levels that are strictly higher than
that of any task in the system. At run-time when a task
attempts to access a locked global resource, it is
suspended, and waits in a FIFO queue associated with
the resource. This allows lower priority local tasks to
continue executing. When the resource is unlocked, then
the task at the head of the queue waiting on it is resumed
and executes at the ceiling priority of the resource.

Allowing low priority tasks to execute while a
higher priority task on the same processor is blocked on
a global resource has the important effect of permitting
further priority inversion. The low priority task can
attempt to access another locked global resource with a
higher ceiling and can therefore subsequently execute
ahead of the high priority task even when the original
resource is unlocked. MPCP has the restrictions that
nested access to globally shared resources is not
permitted, and that nesting of local and global critical
sections is not permitted.

MPCP provides a bounded blocking time, with a
sufficient schedulability test based on the utilisation
bound of Liu and Layland. The blocking factor is made
up of five different components, which are summarised
in [91].

In 1994 Chen et al. [68] described a further variant
of PCP called MDPCP, and provided a simple sufficient
test for partitioned EDF using this protocol. This test is
based on computing blocking factors due to four
different types of blocking.

In 2001, Gai et al [90] introduced the MSRP
protocol based on SRP [18]. MSRP is again applicable
to partitioned systems, using either fixed priorities or
EDF. A significant difference between MSRP and
MPCP is that when a task is blocked on a global
resource under MSRP, it busy waits and is not pre-
emptable. This behaviour is referred to as a spin-lock. A
FIFO queue is again used to grant access to tasks
waiting on a global resource when it is unlocked. MSRP
provides both a bounded blocking time, and bounded
increases in task execution times due to the spin locks.
MSRP can also be analysed using a simple sufficient
schedulability test. Under MSRP, task execution on each
processor is perfectly nested and so the tasks can share a
single stack.

In comparison with MPCP, MSRP removes two of
the five contributions to the blocking factor; however,
the spin-locks consume processing time, which could
otherwise be used by other tasks. Further, MSRP has the
advantage that it is significantly simpler to implement
than MPCP.

In 2003, a study performed by Gai et al. [91]
showed that MSRP typically outperforms MPCP when

global critical sections are short and access to local
resources dominates access to global resources.
8.2. Global scheduling

In 2006, Devi et al [81], considered the problem of
accessing mutually exclusive shared resources under
global EDF scheduling. They suggested two simple
approaches for short non-nested accesses to shared data
structures: Spin-based queue locks [125] and lock-free
synchronisation.

With spin-based queue locks, tasks waiting for
access to a resource busy-wait on a “spin variable”
which is exclusive to that task. When a task exits the
resource, it updates the spin variable of the next task in
the queue. In [81], the spin queue grants access to
resources in FIFO order, further access to each resource
is non-pre-emptable; hence the longest time for which a
task can be blocked waiting to access a global shared
resource, with access time e, on an m processor system
is ecm)1),(min(− , where c is the number of tasks that
access the resource.

With lock-free synchronization, operations on
shared resources (data structures) are implemented as
“retry-loops”; thus operations are opportunistically
attempted and if there is contention, then they are retried
until they are successful.

Devi et al. [81] showed how simple schedulability
tests for global EDF can be modified to take account of
the effects of spin-based queue locking and lock-free
synchronisation using retries. The performance
evaluation reported in [81] suggests that the total
overheads of spin-based queue locks are significantly
less than that of lock-free synchronisation.

In 2007, Block et al. [58] introduced the flexible
multiprocessor locking protocol (FMLP). FMLP
operates using a variant of global EDF (or other
algorithms) which ensures that a job can only be blocked
by another non-preemptable job when it is release or
resumed.

FMLP divides resources into two types with long
and short access times. Jobs waiting to access a short
resource do so by becoming non-preemptable and busy
waiting. Jobs waiting to access long resources do so by
blocking on a semaphore queue, in which case the job
currently accessing the resource inherits the priority of
the highest priority job in the queue. FMLP uses a
simple method of avoiding deadlock by grouping
resources that can be nested and ensuring that only a
single job can access the resources in a group at any
given time.

FMLP has the advantage that it can handle nested
resource access without the requirement for tasks
accessing nested resources to be allocated the same
processor, as is the case with MSRP. Further, FMLP
optimises the simple case of non-nested access to short
resources. In [58], Block et al. showed via some simple

experiments that FMLP has better performance than
MSRP. This advantage is at least partly due to the fact
that FMLP removes the restriction on task allocation
required by MSRP.

In 2008, Brandenburg et al. [61] examined the
relative performance of blocking and non-blocking
approaches to accessing shared resources. The blocking
approaches used FMLP and considered both spinning,
i.e. busy-waiting, and suspending. The non-blocking
approaches considered were lock-freedom and wait-
freedom. Brandenburg et al. concluded that non-
blocking approaches are preferable for small and simple
resource objects and that for more complex resource
objects with longer access times wait-free or spin-based
algorithms are generally preferable. Suspension based
algorithms were almost never better than spin-based
variants.

9. Empirical investigations
In this section, we review recent empirical

investigations into the performance of multiprocessor
scheduling algorithms and their associated
schedulability tests.
9.1. Schedulability test performance

As well as producing theoretical results regarding
approximation ratios, utilisation bounds, and speedup
factors, many researchers have also used empirical
methods to investigate the relative performance of
different real-time scheduling algorithms and their
analyses.

The most commonly used metric is the number of
randomly generated tasksets that are deemed
schedulable. This empirical metric is an important one in
real-time systems research. For techniques to be
transferred into industrial practice, it is essential that
they are both simple and efficient, as well as being
highly effective for the majority of realistic cases. While
utilisation / density based tests, and speedup factors are
useful performance indicators, they focus heavily on
specific pathological tasksets. By comparison, more
general schedulability tests that take into account the
parameters of individual tasks have the potential to
provide superior performance in the vast majority of
cases; something that is highlighted by empirical studies.

In empirical studies, parameters such as: the number
of tasks, the number of processors, taskset utilisation,
range of task periods, distribution of task deadlines,
distribution of individual task utilisations, can be varied
to examine the performance of the algorithms and their
schedulability tests over a range of different credible
scenarios.

In 2005, Baker [22] made an empirical comparison
between the best global EDF, and partitioned EDF
scheduling algorithms available at that time. The
empirical performance measure used was the number of

randomly generated tasksets that were schedulable
according to each algorithm. The conclusion of this
study was that although the two approaches are
incomparable, the partitioned approach appeared to
outperform the global approach on this metric by a
significant margin.

In 2007, considering global scheduling algorithms,
in the simulation chapter of his thesis, Bertogna [49]
showed that the iterative response time test for global FP
scheduling (Equation (63)) outperformed all other tests
for global FP and global EDF scheduling and also
similar tests for EDZL (see Section 6.3.4), known at the
time. Since real-time system designers are interested in
provable schedulability, Bertogna argues that global FP
scheduling can reasonably be regarded as one of the best
global scheduling techniques to use as it is simple to
implement and is supported by a demonstrably effective
schedulability test.

In 2009, Bertogna [52] investigated the performance
of the following schedulability tests for global EDF:

o Goossens et al. [94] (GFB) density-based test;
o Baker [20] (BAK);
o Baruah [38] (BAR);
o Baruah and Baker [44], (LOAD) processor load

based test;
o Bertogna et al. [48] (BCL);
o Bertogna and Cirinei [50] (RTA) response time

analysis test;
o Baruah et al. [45] (FF-DBF) speedup optimal

test.
Bertogna showed that of these tests, the RTA test [50]
was the most effective in terms of the number of
randomly generated tasksets deemed to be schedulable,
although the RTA test can only be shown to strictly
dominate the BCL test, and is incomparable with all of
the other tests listed above. Bertogna also sequentially
applied the RTA test, the BAR test and the FF-DBF test
to form a composite test (COMP). This test utilises
intermediate information from the RTA test, when it
fails to show schedulability, to improve the performance
of the BAR test. The COMP test was shown to improve
upon the performance of the RTA test.

In 2009, Davis and Burns [77] showed that, in
global FP scheduling, the number of randomly generated
tasksets deemed schedulable using the schedulability
tests of Bertogna et al. [51] is significantly increased by
using Audsley’s optimal priority assignment policy [15]
[17] rather than Deadline Monotonic priority
assignment. The latter policy, although optimal for
uniprocessor systems, was shown to perform poorly in
the multiprocessor case. Davis and Burns also showed
that “DkC” is a highly effective priority assignment
policy for global FP schedulability tests that are not
compatible with the optimal priority assignment
algorithm. Again, performance was significantly better

than with Deadline Monotonic priority assignment.
Davis and Burns [77] also showed how the UUnifast

method of taskset generation [54], which is the de facto
standard for investigation of schedulability test
performance in uniprocessor systems, could be extended
to the multiprocessor case. The resulting method, called
UUnifast-Discard, generates tasksets with specific
parameter settings, thus facilitating an empirical study of
schedulability test effectiveness without the problem of
confounding variables. We note that the method of
taskset generation used in [50], [52] while valid in
comparing the performance of different schedulability
tests, suffers from a problem of confounding variables:
As taskset utilisation is increased, so the average
cardinality of the tasksets generated increases,
effectively linking these two variables and so obscuring
their individual influences on schedulability test
effectiveness.

While empirical studies of schedulability test
performance, such as those described above, provide
important information about the theoretical effectiveness
of different algorithms and their schedulability tests,
they leave an important question unanswered. How does
this theoretical performance translate in practice, when
the overheads involved in scheduling decisions, context
switches, and migration are considered?
9.2. Measurements

In 2008, Brandenburg et al. [60] measured the
performance of various scheduling algorithms and their
overheads on a LITMUS test-bed using a Sun
UltraSPARC Niagra multicore platform with 32 logical
processors (actually 4 hardware threads on each of 8
CPUs). Brandenburg et al. examined partitioned,
clustered and global approaches using EDF and Pfair
algorithms. They found that the overheads of pure Pfair
meant it had very poor performance, while staggered
Pfair performed much better in practice. Global EDF
scheduling performed poorly due to the overheads
involved in manipulating a lengthy global queue,
accessible to all processors. Partitioned EDF was shown
to work best for hard real time tasksets, except when the
tasks had high individual utilisations, then staggered
Pfair was best.

For soft real-time tasksets, partitioned EDF was
again effective unless the tasks had high individual
utilisations >0.5. Clustered EDF was also highly
effective for soft-real time tasksets.

The key point that can be drawn from this work is
that overheads are a significant issue for multiprocessor
real-time scheduling.
10. Summary, open issues and direction for

future research
Although research into multiprocessor real-time

scheduling and schedulability analysis has advanced
markedly since the seminal paper of Dhall and Liu 1978

[78], there are still significant and fundamental research
challenges that remain.

Global, clustered, and semi-partitioned approaches
to multiprocessor scheduling offer potential solutions for
future, complex high-performance real-times systems;
however, few results can be identified in these areas that
are ready to be transferred into industrial practice.
10.1. Open issues

The following are a selection of key open issues with
existing research into multiprocessor real-time
scheduling identified by this survey:

Limits on processor utilisation: Fixed job-priority
and partitioning algorithms are in the worst-case capable
of utilising only 50% of the available processing
resource. While global dynamic algorithms can in some
cases utilise up to 100%, their overheads are typically
prohibitive. Further research is needed into minimally
dynamic algorithms, and novel approaches to
partitioning task execution that can increase guaranteed
processing capability, without introducing significant
overheads. Recent progress in this area is summarised in
Section 7.

Ineffective schedulability tests: For the sporadic
task model, empirical studies have shown that there is a
large gap that exists between the best sufficient
schedulability tests currently available for global fixed
job priority and fixed task priority scheduling and what
may be possible as indicated by feasibility / infeasibility
tests. Closing this gap is a key area for future research.

Fundamental to this problem is the fact that: “no
finite collection of worst-case job arrival sequences has
been identified for the global scheduling of sporadic task
systems”. Baruah 2007 [38].

Consideration of overheads: Advanced hardware
features, such as cache architectures, have a large impact
on the cost of migration (at the task and job level).
Recent experimental implementations [60] on
multiprocessor platforms show that the overheads of
migration, context switching, and run-queue
manipulation are a key issue for multiprocessor
scheduling. Research into scheduling algorithms and
analysis needs to take appropriate account of such
overheads. Further research is needed into algorithms
that permit only task-level migration, or only permit
migration within a limited cluster of processors.

Limited task models for multiprocessor systems:
The vast majority of existing research into hard real-time
scheduling on multiprocessors addresses simple periodic
or sporadic task models originally developed with
uniprocessor systems in mind. More general task models
are needed that can express both the benefits and
overheads of executing parts of the same task in parallel.

Initial work in this area by Collette et al. [71], [72]
considers the work limited job parallelism of each task
defined by the rate at which it can execute on 1 to m

processors.
Another relevant model is the task model of

Edmonds and Pruhs [82] which considers each task as
being made up of a number of phases each of which has
an amount of computation that must be completed in
that phase and a speedup function indicating how the
rate at which that computation is executed increases with
the degree of parallelism (number of processors
executing the phase).

Work in the area of on-line scheduling methods
covering scalable tasks [112], and the application of
Divisible Load Theory [53], [131], [139], [115] are also
of interest in this respect.

As well as more expressive task models, more
general models of processing supply would provide a
means of abstracting away from specific hardware
platforms, to a virtual platform model, thus enabling
composition. Initial work in this area by Bini et al. [55],
[56] models the parallel supply of a virtual platform as a
set of m supply functions indicating how the minimum
supply of processing capacity on 1 to m processors
varies as a function of time.

Limited policies for access to shared resources:
Unlike uniprocessor systems, where the Stack Resource
Policy [18] is widely accepted as the most effective
protocol to use to control mutually exclusive accesses to
shared resources, there is no such consensus for
multiprocessor scheduling. Research in this area
indicates that spin-based approaches appear to be
preferable to suspension-based methods; however non-
blocking approaches also perform well for simple
resource accesses. It therefore seems unlikely that there
will be a single best solution here. Different forms of
resource sharing and different architectures are likely to
require different forms of support.
10.2. Related areas of research

This survey covers research into hard real-time
scheduling for homogeneous multiprocessor systems.
There are a number of related areas that, while outside
the scope of the survey, are likely to be of interest to
researchers and practitioners developing multiprocessor
real-time systems. These include:

o Worst-case Execution Time (WCET) analysis;
o Network / bus scheduling;
o Memory architectures;
o Uniform and heterogeneous processors;
o Operating Systems;
o Power consumption and dissipation;
o Scheduling tasks with soft real-time

constraints.
o Non-real-time issues such as load balancing.

11. Conclusions
Currently, progress in developing multiprocessor

systems is a long way ahead of research efforts to
determine the best mechanisms, policies and analysis to

use in these systems. At best, this can result in systems
that are heavily over-specified and expensive; at worst,
it can lead to intermittent and unexpected timing faults
that compromise system reliability. Functionality, unit
cost, time-to-market, and a reputation based on product
reliability are key factors for companies developing real-
time embedded systems. All of these factors can be
compromised by building systems using approaches that
lack the necessary theoretical underpinnings. Ultimately,
multiprocessors will be used in high integrity real-time
systems, and consequently, timing failures could affect
safety.

Future advances along the research directions
indicated in this survey should help resolve the key open
issues identified. These advances hold of promise of
providing the effective and efficient mechanisms,
policies, and analyses required for a sound engineering-
based approach to the development of complex
commercial multiprocessor real-time systems.
11.1. Acknowledgements

The authors would like to thanks Sanjoy Baruah for
his comments and suggestions on an earlier draft.

This work has been funded in part by the EU FP7
projects eMuCo and Jeopard, the EU FP7 ArtistDesign
network of excellence, and the EPSRC project Tempo.

References
[1] J. Anderson, S. Ramamurthy, K. Jeffay, Real-Time
Computing with Lock-Free Shared Objects ACM Transactions on
Computer Systems, Volume 15, Number 2, pp. 134-165, May
1997.
[2] J. Anderson, A. Srinivasan. Early-release fair scheduling. In
Proceedings Euromicro Conference on Real-Time Systems, June
2000.
[3] J. Anderson, A. Srinivasan. “Pfair scheduling: Beyond
periodic task systems”. In Proceedings of the 7th International
Workshop on Real-Time Computing Systems and Applications,
December 2000.
[4] J. Anderson, A. Srinivasan. “Mixed pfair/erfair scheduling of
asynchronous periodic tasks”. In Proceedings of the 13th
Euromicro Conference on Real-Time Systems, June 2001.
[5] J.H. Anderson, A. Srinivasan, “Mixed Pfair/ERfair
scheduling of asynchronous periodic tasks”, Proceedings of the
EuroMicro Conference on Real-Time Systems (Delft, The
Netherlands), IEEE Computer Society Press, June 2001.
[6] B. Andersson, J. Jonsson, “Fixed-priority preemptive
multiprocessor scheduling: to partition or not to partition”,
Proceedings of the International Conference on Real-Time
Computing Systems and Applications, Cheju Island, Korea 2000.
[7] B. Andersson, J. Jonsson, “Some insights on fixed-priority
pre-emptive non-partitioned multiprocessor scheduling”. In
Proceedings Real-Time Systems Symposium– Work-in-Progress
Session, Nov. 2000.
[8] B. Andersson, S. Baruah, J. Jonsson. Static-priority
scheduling on multiprocessors. In Proc. 22nd IEEE Real-Time
Systems Symposium, pages 193–202, London, UK, Dec. 2001.

[9] B. Andersson, "Static-priority scheduling on
multiprocessors",Ph.D. thesis. Chalmers University of
Technology, 2003.
[10] B. Andersson, J. Jonsson, "The Utilization Bounds of
Partitioned and Pfair Static-Priority Scheduling on
Multiprocessors are 50%," In proceedings of the 15th Euromicro
Conference on Real-Time Systems (ECRTS), 2003.
[11] B. Andersson, E. Tovar, “Multiprocessor Scheduling with
Few Preemptions”. In Proceedings International Conference on
Embedded and Real-Time Computing Systems and Applications
(RTCSA) August, 2006.
[12] B. Andersson, K. Bletsas, S.K. Baruah, “Scheduling arbitrary
deadline sporadic task systems on multiprocessors”. In
proceedings Real-Time Systems Symposium pages 384-393, 2008.
[13] B. Andersson, K. Bletsas, "Sporadic Multiprocessor
Scheduling with Few Preemptions,", Euromicro Conference on
Real-Time Systems (ECRTS), pp. 243-252, 2008.
[14] B. Andersson, “Global static-priority preemptive
multiprocessor scheduling with utilization bound 38%.” In
proceedings of 12th International Conference on Principles of
Distributed Systems, 2008.
[15] N.C. Audsley, "Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times", Technical Report
YCS 164, Dept. Computer Science, University of York, UK,
December 1991.
[16] N.C. Audsley, A. Burns, R.I. Davis, K. W. Tindell, A. J.
Wellings, “Fixed Priority scheduling an Historical perspective”,
Real-Time Systems 8(3). pp. 173-198. 1995.
[17] N.C. Audsley, “On priority assignment in fixed priority
scheduling”, Information Processing Letters, 79(1): 39-44, May
2001.
[18] T.P. Baker, “Stack-based Scheduling of Real-Time
Processes.” Real-Time Systems Journal (3)1, pp. 67-100, 1991.
[19] T.P. Baker, “Multiprocessor EDF and deadline monotonic
schedulability analysis”. In Proc. 24th IEEE Real-Time Systems
Symposium, pp. 120–129, Cancun, Mexico, 2003.
[20] T.P. Baker, “An analysis of EDF scheduling on a
multiprocessor”. IEEE Trans. on Parallel and Distributed Systems,
15(8):760–768, Aug. 2005.
[21] T.P. Baker, “An analysis of fixed-priority scheduling on a
multiprocessor”. Real Time Systems, 32(1-2), 49-71, 2006.
[22] T.P. Baker, “A comparison of global and partitioned EDF
schedulability tests for multiprocessors”. In Proceedings of the
International Conference on Real-Time and Network Systems
(RTSN). 119—130, 2006.
[23] T.P. Baker, M. Cirinei, “A necessary and sometimes
sufficient condition for the feasibility of sets of sporadic hard-
deadline tasks”, Proceedings of the Work-In-Progress (WIP)
session of the 27th IEEE Real-Time Systems Symposium
(RTSS’06) (Rio de Janeiro, Brazil), December 2006.
[24] T.P. Baker, S.K. Baruah, “Schedulability analysis of
multiprocessor sporadic task systems”, Handbook of Real-Time
and Embedded Systems (2007), Edited by I. Lee, Joseph Y.-T.
Leung and S. H. Son. Chapman Hall/CRC Press.
[25] T.P. Baker, S.K. Baruah, “Schedulability Analysis of
Multiprocessor Sporadic Task Systems”. Technical report TR-
060601. March 2007.
[26] T.P.Baker, M. Cirinei, M. Bertogna, “EDZL scheduling
analysis”. Real-Time Systems. 40:3, 264-289, 2008

[27] T.P. Baker, S.K. Baruah, “Schedulability Analysis of global
EDF”, Real-Time Systems, 38: 223-235, 2008.
[28] T.P. Baker, S.K. Baruah. “Sustainable multiprocessor
scheduling of sporadic task systems”. In Proceedings of the
EuroMicro Conference on Real-Time Systems, pp. 141-150, 2009.
[29] S.K. Baruah., A.K. Mok, L.E. Rosier, “Preemptively
Scheduling Hard-Real-Time Sporadic Tasks on One
Processor”. In Proceedings of the IEEE Real-Time System
Symposium, pages182-190, 1990.
[30] S.K. Baruah, L.E. Rosier, R.R Howell, “Algorithms and
Complexity Concerning the Preemptive Scheduling of Periodic
Real-Time Tasks on one Processor”. Real-Time Systems, 2(4),
pages 301-324, 1990.
[31] S.K. Baruah, J. Gehrke, C. G. Plaxton, “Fast scheduling of
periodic tasks on multiple resources”. In Proceedings of The
International Parallel Processing Symposium, April. 1995.
[32] S.K. Baruah, N. Cohen, G. Plaxton, D. Varvel, “Proportionate
progress: A notion of fairness in resource allocation”,
Algorithmica 15, no. 6, pp. 600–625, 1996.
[33] S.K. Baruah, J. Goossens, “Rate-monotonic scheduling on
uniform multiprocessors”. IEEE Transactions on Computers 52(7):
966–970 2003.
[34] S.K. Baruah, J. Carpenter, “Multiprocessor Fixed-Priority
Scheduling with Restricted Interprocessor Migrations” In
Proceedings. ECRTS pp. 195-202, 2003.
[35] S.K. Baruah, N. Fisher, “Partitioned multiprocessor
scheduling of sporadic task systems”. In Proceedings of the. 26th
Real-Time Systems Symposium, Dec. 2005.
[36] S.K. Baruah, N. Fisher, “The partitioned multiprocessor
scheduling of deadline-constrained sporadic task systems”. IEEE
Transactions on Computers, 55(7):918–923, July 2006.
[37] S.K. Baruah., A. Burns, “Sustainable Scheduling
Analysis”. In Proceedings of the IEEE Real-Time Systems
Symposium, pp. 159-168, 2006.
[38] S.K. Baruah, “Techniques for Multiprocessor Global
Schedulability Analysis”. In proceedings of the Real-Time
Systems Symposium, pp. 119-128, 2007.
[39] S.K. Baruah, Fisher, N. W. “The partitioned dynamic-priority
scheduling of sporadic task systems”. Real-Time Systems. 36, 3
(Aug. 2007), 199-226.
[40] S.K. Baruah, N. Fisher, “Non-migratory feasibility and
migratory schedulability analysis of multiprocessor real-time
systems”. Real-Time Systems. 39, 1-3 (Aug. 2008).
[41] S.K. Baruah, N. Fisher. “Global Fixed-Priority Scheduling of
Arbitrary-Deadline Sporadic Task Systems.” Proceedings of the
9th International Conference on Distributed Computing and
Networking, Kolkata, India. January 2008.
[42] S.K. Baruah, J. Goossens. “The EDF scheduling of sporadic
task systems on uniform multiprocessors”. In proceedings of the
Real-Time Systems Symposium, pp. 367-374, 2008.
[43] S.K.Baruah, T.P. Baker, Global EDF schedulability analysis
of arbitrary sporadic task systems. In Proceedings of the
EuroMicro Conference on Real-Time Systems, pp. 3–12, 2008.
[44] S.K. Baruah, T.P. Baker, “An analysis of global EDF
schedulability for arbitrary sporadic task systems. Real-Time
Systems ECRTS special issue, to appear 2009.
[45] S.K. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, S.
Stiller, “Implementation of a speedup-optimal global EDF

schedulability test”. In Proceedings of the EuroMicro Conference
on Real-Time Systems, pp.259-268, 2009.
[46] S.K. Baruah, “Schedulability analysis of global deadline
monotonic scheduling”. Technical report available from
http://www.cs.unc.edu/~baruah/Pubs.shtml.
[47] M. Bertogna, M. Cirinei, G. Lipari, “New schedulability tests
for real-time task sets scheduled by deadline monotonic on
multiprocessors”. In Proceedings of the 9th International
Conference on Principles of Distributed Systems, Pisa, Italy, Dec.
2005.
[48] M. Bertogna, M. Cirinei, G. Lipari, “Improved schedulability
analysis of EDF on multiprocessor platforms”. In Proceedings of
the 17th Euromicro Conference on Real-Time Systems, pp. 209–
218, 2005.
[49] M. Bertogna, “Real-Time Scheduling for Multiprocessor
Platforms”. PhD Thesis, Scuola Superiore Sant’Anna, Pisa, 2007.
[50] M. Bertogna, M. Cirinei, “Response Time Analysis for global
scheduled symmetric multiprocessor platforms”. In proceedings of
the Real-Time Systems Symposium, pp. 149-158, 2007.
[51] M. Bertogna, M. Cirinei, G. Lipari, “Schedulability analysis
of global scheduling algorithms on multiprocessor platforms”.
IEEE Transactions on parallel and distributed system, June 2008.
[52] M. Bertogna, “Evaluation of existing schedulability tests for
global EDF”. First International Workshop on Real-time Systems
on Multicore Platforms: Theory and Practice 2009
[53] V. Bharadwaj, T. G. Robertazzi, D. Ghose. “Scheduling
Divisible Loads in Parallel and Distributed Systems”. IEEE
Computer Society Press, Los Alamitos, CA, 1996.
[54] E. Bini, G.C. Buttazzo. “Measuring the Performance of
Schedulability tests”. Real-Time Systems, 30(1–2):129–154, May
2005.
[55] E. Bini, G.C. Buttazzo, M. Bertogna, “The Multy Supply
Function Abstraction for Multiprocessors”. In proceedings of the
Real-Time Computing Systems and Applications, 2009.
[56] E. Bini, M. Bertogna, S.K. Baruah, “Virtual Multiprocessor
Platforms: Specification and Use”. In proceedings of the Real-
Time Systems Symposium, to appear 2009.
[57] K. Bletsas, B. Andersson, “Notional Processors: An
Approach for Multiprocessor Scheduling”. In proceedings of the
Real-Time Applications Symposium, pp. 3-12, 2009.
[58] A. Block, H. Leontyev, B. Brandenburg, J.H. Anderson, “A
Flexible Real-Time Locking Protocol for Multiprocessors”. In
Proceedings of RTCSA, pp 47-56. 2007.
[59] B.B. Brandenburg, J.H. Anderson, “A Comparison of the M-
PCP, D-PCP, and FMLP on LITMUS” In proceedings of the
International Conference On Principles Of Distributed Systems
2008.
[60] B. Brandenburg, J. Calandrino, J. Anderson, “On the
Scalability of Real-Time Scheduling Algorithms on Multicore
Platforms: A Case Study”. In proceedings of the Real-Time
Systems Symposium, pp. 157-169, 2008.
[61] B.B. Brandenburg, J.M. Calandrino, A. Block, H. Leontyev,
J. Anderson, “Real-Time Sychronization on Multiprocessors: To
Block or Not to Block, to Suspend or Spin”. In Proceedings of the
Real-Time and Embedded Technology and Applications
Symposium, pp. 342-353, 2008.
[62] A. Burchard, J. Liebeherr, Y. Oh, S.H. Son, “New Strategies
for Assigning Real-Time Tasks to Multiprocessor Systems”, IEEE
Transactions on Computers, vol. 44, number 12, Dec. 1995.

http://www.cs.unc.edu/~baruah/Papers/2009-bakerBaruah-ECRTS.pdf�
http://www.cs.unc.edu/~baruah/Papers/2009-bakerBaruah-ECRTS.pdf�
http://retis.sssup.it/~bini/publications/2009BinBerBar.pdf�
http://retis.sssup.it/~bini/publications/2009BinBerBar.pdf�

[63] A. Burns, A. Wellings, “Real-Time Systems and
Programming Languages (Fourth Edition) Ada 2005, Real-Time
Java and C/Real-Time POSIX” Addison Wesley Longmain, ISBN:
0201729881, 2009.
[64] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, “A
constant-approximate feasibility test for multiprocessor real-time
scheduling”. In Proceedings of the European Symposium on
Algorithms, pp. 210–221, 2008.
[65] G. Buttazzo, “Hard Real-Time Computing Systems
Predictable Scheduling Algorithms and Applications”, 2nd
Edition, Springer, ISBN: 978-0-387-23137-2, 2005.
[66] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson,
S.K. Baruah. “A categorization of real-time multiprocessor
scheduling problems and algorithms” In Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, 2004.
[67] Y-H Chao, S-S Lin, K-J Lin, “Schedulability issues for
EDZL scheduling on real-time multiprocessor systems”,
Information Processing Letters, Volume 107, Issue 5, pp. 158-164,
16 August 2008
[68] C-M. Chen, S.K. Tripathi, A. Blackmore, “A Resource
Synchronization Protocol for Multiprocessor Real-Time Systems”
In Proceedings of the International Conference on Parallel
Processing, pp. 159-162, 1994.
[69] H. Cho, B. Ravindran, E.D. Jensen, “An Optimal Real-Time
Scheduling Algorithm for Multiprocessors”. In Proceedings of the
Real-Time Systems Symposium pp. 1001-110, 2006.
[70] M. Cirinei, T. P. Baker. “EDZL scheduling analysis”. In
proceedings of the EuroMicro Conference on Real-Time Systems,
pp. 9–18 , 2007.
[71] S. Collette, L. Cucu, J. Goossens, “Algorithm and complexity
for the global scheduling of sporadic tasks on multiprocessors with
work-limited parallelism”. In proceedings of the International
Conference on Real-Time and Network Systems, pp. 123-128,
2007.
[72] S. Collette, L. Cucu and J. Goossens, ”Integrating Job
Parallelism in Real-Time Scheduling Theory”. Information
Processing Letters, vol. 106(5): 180-187, May 2008.
[73] L. Cucu, J. Goossens, "Feasibility Intervals for Fixed-Priority
Real-Time Scheduling on Uniform Multiprocessors", In
proceedings of the International Conference on Emerging
Technologies and Factory Automation, 2006
[74] L. Cucu, J. Goossens, "Feasibility Intervals for
Multiprocessor Fixed-Priority Scheduling of Arbitrary Deadline
Periodic Systems ", In proceedings of the 10th Design,
Automation and Test in Europe, 2007
[75] L. Cucu, "Optimal priority assignment for periodic tasks on
unrelated processors", In proceedings of the Euromicro
Conference on Real-Time Systems, WIP session, 2008.
[76] S. Davari, S.K. Dhall, “On a Periodic Real Time Task
Allocation Problem”, Annual International Conference on System
Sciences, 1986.
[77] R.I. Davis, A. Burns, “Priority Assignment for Global Fixed
Priority Pre-emptive Scheduling in Multiprocessor Real-Time
Systems” In proceedings of Real-Time Systems Symposium, to
appear, 2009.
[78] S. K. Dhall, C. L. Liu, “On a Real-Time Scheduling
Problem”, Operations Research, vol. 26, number 1, pp. 127-140,
1978.

[79] M.L. Dertouzos, “Control Robotics: The Procedural
Control of Physical Processes”. In Proceedings of the IFIP
congress, pages 807-813, 1974.
[80] M.L. Dertouzos, A.K. Mok, “Multiprocessor scheduling in a
hard real-time environment”. IEEE Transactions on Software
Engineering, 15(12):1497–1506, 1989.
[81] U.C. Devi, H. Leontyev, J. Anderson, “Efficient
synchronization under global EDF scheduling on
multiprocessors”. In proceedings Euromicro conference on Real-
Time Systems, pp. 75-84, 2006.
[82] J. Edmonds, K. Pruhs, “Scalably scheduling processes with
arbitrary speedup curves”. In Proceedings of the Symposium on
Discrete Algorithms, pp.685-692, 2009.
[83] N. Fisher, S. Baruah, T. Baker. “The partitioned scheduling
of sporadic tasks according to static priorities”. In Proceedings of
the EuroMicro Conference on Real-Time Systems, pp. 118–127,
2006.
[84] N. Fisher, S.K. Baruah. “Global Static-Priority Scheduling of
Sporadic Task Systems on Multiprocessor Platforms.” In
Proceedings of the International Conference on Parallel and
Distributed Computing and Systems, 2006.
[85] N. Fisher, S.K. Baruah, “The Global Feasibility and
Schedulability of General Task Models on Multiprocessor
Platforms”. In Proceedings of the Euromicro Conference on Real-
Time Systems, pp51-60, 2007.
[86] N. Fisher, The multiprocessor real-time scheduling of general
task systems, Ph.D. thesis, Department of Computer Science, The
University of North Carolina at Chapel Hill, 2007.
[87] K. Funaoka, S. Kato, N. Yamasaki, “Work-Conserving
Optimal Real-Time Scheduling on Multiprocessors” In
proceedings of the Euromicro Conference on Real-Time Systems
pp. 13-22, July 2008.
[88] S. Funk, J. Goossens, S.K. Baruah. On-line scheduling on
uniform multiprocessors. In IEEE, editor, Proceedings of the IEEE
Real-Time Systems Symposium, pages 183–192, Dec 2001.
[89] S. Funk, V. Nadadur, “LRE-TL: An Optimal Multiprocessor
Algorithm for Sporadic Task Sets”. In proceedings Real-Time
Networks and Systems conference, pp. 159-168, 2009.
[90] P. Gai, G. Lipari, M. Di Natale, “Minimizing memory
utilization of real-time task sets in single and multi-processor
systems-on-a-chip.” In Proceedings of the Real-Time Systems
Symposium, pp. 73-83, 2001.
[91] P. Gai, M.D. Natale, G. Lipari, A. Ferrari, C. Gabellini, P.
Marceca, “A comparison of MPCP and MSRP when sharing
resources in the Janus multiple-processor on a chip platform”. In
Proceedings of the Real-Time and Embedded Technology and
Applications Symposium 2003.
[92] M. Garey, D. Johnson, “Computers and Intractability: a
Guide to the Theory of NP-Completeness”. W. H. Freeman and
company, NY,1979.
[93] R. L. Graham, “Bounds on multiprocessor scheduling
anomalies and related packing problem”. In Proceedings AFIPS
Spring Joint Computer Conference, pp. 205–217, 1972.
[94] J. Goossens, S. Funk, S.K. Baruah. “Priority-driven
scheduling of periodic task systems on multiprocessors”. Real
Time Systems, 25(2–3):187–205, Sept. 2003.
[95] N. Guan, M. Stigge, W.Yi, G. Yu, “New Response Time
Bounds for Fixed Priority Multiprocessor Scheduling”. In

proceedings of the Real-Time Systems Symposium, to appear
2009.
[96] P. Holman, J. H. Anderson, “Adapting Pfair scheduling for
symmetric multiprocessors”. Journal of Embedded Computing
1(4): 543-564 (2005).
[97] K. Hong, J. Leung, “On-line scheduling of real-time tasks”.
In Proceedings of the Real-Time Systems Symposium, pp. 244–
250, 1988.
[98] K.S. Hong, J.Y.-T Leung, “On-line scheduling of real-time
tasks”, IEEE Transactions on Computers 41, pp. 1326–1331, 1992
[99] W.A. Horn, “Some simple scheduling algorithms”, Naval
Research Logistics Quarterly 21 pp.177–185, 1974.
[100] R. Ha, J. W.-S. Liu, “Validating timing constraints in
multiprocessor and distributed real-time systems”. In Proceedings
of the International conference on Distributed Computing
Systems, pp. 162–171, 1994.
[101] B. Kalyanasundaram, K. Pruhs, “Speed is as powerful as
clairvoyance”. In Proceedings of the Symposium on Foundations
of Computer Science, pp. 214-221, 1995.
[102] S. Kato, N. Yamasaki. “Real-Time Scheduling with
Task Splitting on Multiprocessors”. In Proceedings of the
International Conference on Embedded and Real-Time Computing
Systems and Applications, pp. 441-450, 2007.
[103] S. Kato, N. Yamasaki, “Portioned EDF-based
Scheduling on Multiprocessors”, EMSOFT pp. 139-148, 2008.
[104] S. Kato, N. Yamasaki. “Portioned Static-Priority
Scheduling on Multiprocessors”. In Proceedings of the
International Parallel and Distributed Processing Symposium,
2008.
[105] S. Kato, N. Yamasaki. “Semi-Partitioned Fixed-Priority
Scheduling on Multiprocessors”. In Proceedings of the Real-Time
and Embedded Technology and Applications Symposium, pp. 23-
32, 2009.
[106] S. Kato, N. Yamasaki, Y. Ishikawa. “Semi-Partitioned
Scheduling of Sporadic Task Systems on Multiprocessors”. In
Proceedings of the Euromicro Conference on Real-Time Systems
pp. 249-258, 2009.
[107] A. Khemka, R. K. Shyamasundar, “An Optimal
Multiprocessor Real-Time Scheduling Algorithm”. Journal of
Parallel and Distributed Computing 43(1): 37-45 (1997).
[108] K. Lakshmanan, R. Rajkumar, J. Lehoczky, "Partitioned
Fixed-Priority Preemptive Scheduling for Multi-core Processors",
In proceedings of the Euromicro Conference on Real-Time
Systems, pp.239-248, 2009.
[109] D. Lammers, “Intel cancels Tejas, moves to dual-core
designs” EETimes, May 7th 2004.
[110] S. Lauzac, R. Melhem, D. Mosse. “Comparison of
global and partitioning schemes for scheduling rate monotonic
tasks on a multiprocessor”. In Proceedings of the EuroMicro
Workshop on Real-Time Systems, pp. 188–195, 1998.
[111] S.K. Lee, “On-line multiprocessor scheduling algorithms
for real-time tasks”, in IEEE Region 10’s Ninth Annual
International Conference, pp. 607–611, 1994,
[112] W. Y. Lee, S. J. Hong, J. Kim, “On-line scheduling of
scalable real-time tasks on multiprocessor systems”. Journal of
Parallel and Distributed Computing, 63(12):1315–1324, 2003.
[113] J. Lehoczky. “Fixed priority scheduling of periodic task
sets with arbitrary deadlines”. In Proceedings of the Real-Time
Systems Symposium, pp. 201–209, 1990.

[114] H. Leontyev, J.H. Anderson, “Hierarchical
Multiprocessor Bandwidth Reservation Scheme with Timing
Guarantees.” In proceedings of the Euromicro Conference on
Real-Time Systems pp. 191-200, 2008.
[115] X. Lin, Y. Lu, J. Deogun, S. Goddard. “Real-time
divisible load scheduling for cluster computing”. In Proceedings of
the Real-Time and Embedded Technology and Applications
Symposium, pp. 303–314, 2007.
[116] C.L. Liu, “Scheduling algorithms for multiprocessors in
a hard real-time environment”. JPL Space Programs Summary,
vol. 37-60, pp. 28-31, 1969.
[117] C.L. Liu, J.W. Layland, "Scheduling algorithms for
multiprogramming in a hard-real-time environment ", Journal of
the ACM, 20(1): 46-61, Jan. 1973.
[118] J.W.S. Liu, “Real Time Systems” Prentice Hall, ISBN
978-0130996510, 2000.
[119] J. Y.-T. Leung, J. Whitehead, “On the Complexity of
Fixed-Priority Scheduling of Periodic Real-Time Tasks”,
Performance Evaluation, number 2, pp. 237-250, 1982.
[120] J. M. Lopez, M. Garcia, J. Diaz, D. Garcia, “Worst-case
utilization bound for EDF scheduling on real-time multiprocessor
systems”. In Proceedings of the Euromicro Conference on Real-
time Systems, pp. 25–33, 2000.
[121] J. M. Lopez, J. L. Diaz, M. Garcia, D. F. Garcia,
“Utilization bounds for multiprocessor RM scheduling”. Real-
Time Systems, 24(1):5–28, 2003.
[122] J. M. Lopez, J.L. Dıaz, D.F. Garcıa, “Minimum and
Maximum Utilization Bounds for Multiprocessor Rate Monotonic
Scheduling”, IEEE Transactions on Parallel and Distributed
Systems, 15(7), July 2004.
[123] J.M. Lopez, M. Garcıa, J.L. Dıaz, D.F. Garcıa,
“Utilization Bounds for EDF scheduling on Real-Time
Multiprocessor Systems”, Real Time Systems, vol. 28, Issue 1,
Oct. 2004.
[124] L. Lundberg, “Analyzing Fixed-Priority Global
Multiprocessor Scheduling”. In proceedings of the Real-Time and
Embedded Technology and Applications Symposium, 2002.
[125] J. Mellor-Crummey, M. Scott. “Algorithms for scalable
synchronization on shared-memory multiprocessors”. ACM
Transactions on Computer Systems, 9(1):21–65, February 1991.
[126] Y. Oh, S.H. Son, “Tight Performance Bounds of
Heuristics for a Real-Time Scheduling Problem”, Technical
Report CS-93-24. Univ. Of Virginia. Dept. of Computer Science,
May 1993.
[127] Y. Oh, S. H. Son, “Fixed Priority Scheduling of Periodic
Tasks on Multiprocessor Systems”, Tech. Report CS-95-16, Univ.
Of Virginia. Dept. of Computer Science, March 1995.
[128] D. I. Oh, T. P. Baker. “Utilization bounds for N-
processor rate monotone scheduling with stable processor
assignment”. Real Time Systems, 15(2):183–193, Sept. 1998.
[129] C.A. Phillips, C. Stein, E. Torng, J. Wein, “Optimal
time-critical scheduling via resource augmentation”. In
Proceedings of the ACM Symposium on theory of Computing
1997.
[130] R. Rajkumar, L. Sha, J. P. Lehoczky, “Real-time
synchronization protocols for multiprocessors”. In proceedings of
the Real Time Systems Symposium, pp. 259-269, 1988.
[131] T. G. Robertazzi, “Ten reasons to use divisible load
theory” Computer,36(5):63–68, 2003.

[132] T. Rothvoss, “On the computational complexity of
periodic scheduling”. Ph.D. Thesis, Ecole Polytechnique Federale
de Lausanne, 2009.
[133] S. Saez, J. Vila, A. Crespo. “Using exact feasibility tests
for allocating real-time tasks in multiprocessor systems”. In
Proceedings of the Euromicro Workshop on Real-time Systems,
pp. 53– 60, 1998.
[134] L. Sha, R. Rajkumar, J.P. Lehoczky. “Priority
inheritance protocols: An approach to real-time synchronization”.
IEEE Transactions on Computers, 39(9): 1175-1185, 1990.
[135] L. Sha, T. Abdelzaher, K-E. Arzen, A. Cervin, T.P.
Baker, A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, A.K.
Mok, “Real Time Scheduling Theory: A Historical Perspective”,
Real-Time Systems, Vol 28, No 2/3, pp101-155, 2004.
[136] I. Shin, A. Easwaran, I. Lee, “Hierarchical Scheduling
Framework for Virtual Clustering of Multiprocessors”, In
proceedings of the Euromicro Conference on Real-Time Systems
pp. 181-190, 2008.
[137] H.R. Simpson, “Four-Slot Fully Asynchronous
Communication Mechanism”. IEE Proceedings, 137 Part E(1):17–
30, Jan. 1990.
[138] A. Srinivasan, S.K. Baruah, “Deadline-based scheduling
of periodic task systems on multiprocessors”. Information
Processing Letters, 84:93–98, 2002.
[139] B. Veeravalli, D. Ghose, T. G. Robertazzi, “Divisible
load theory: A new paradigm for load scheduling in distributed
systems”. Cluster Computing, 6(1):7–17, 2003.
[140] D. Zhu, D. Mossé, R.G. Melhem, “Multiple-Resource
Periodic Scheduling Problem: how much fairness is necessary?” In
proceedings of the Real Time Systems Symposium, pp. 142-151,
2003.

