SOME RESULTS ON
(SYNCHRONOUS) KLEENE
ALGEBRA WITH TESTS

SABINE BRODA
ANTONIO MACHIAVELO
NELMA MOREIRA
ROGERIO REIS
RICARDO ALMEIDA
SiLVIA CAVADAS

FACULTY OF SCIENCES, UNIVERSITY OF PORTO, PORTUGAL
I COMPUTER SCIENCE DEPARTMENT & CMUP
2 MATHEMATICS DEPARTMENT & CMUP
3 PROJECT-GRANTS (CANTE & AVIACC

KLEENE ALGEBRA WITH

TESTS (KAT)

extends Kleene algebra, the algebra of regu

ar

expressions, by combining it with Boolean a

gebra;

addition of tests allows to express imperative

program constructions;

equational system suitable for propositional

program verification (program equivalence, partial
correctness, subsumes propositional Hoare logic).

KAT expressions

P={p1,...,px} setof program symbols

T=1,...,ti} set of test symbols

BExp: b — O0|1|¢t|-b|b+b|b-b
Exp: e — plblet+ele-ele”

Encoding Programs in KA'T

(a simple while language)

Blie—= 1) primitive symbol p

skip distinguished primitive symbol pgxip
Py Py €1€2

if b then P; else P beq + bes

while b do P, (be1)* b

Encoding Programs in KAT

Pli
while t1 do (pl; while t2 do p2)

PQi
iEf 04 then (pl; while (t1+t2) do (if t2 then p2 else pl 8

e1 = (t1p1(tepa)*—ts) ity
ez = t1p1((t1 + t2)(t2p2 + —top1))* (81 4+ t2) + —t

Equivalent programs/expressions?

Hoare Logic and KAT

Hoare lo

gic uses partial correctness assertions (PCA’s)

to reason aboul program correctness:;

A PCA 1s a triple {b}P{c} meaning, “it b holds before

the execution of P, and 1t P halts, then ¢ will necessarily
hold at the end of the execution of P”;

The propositional fragment of Hoare logic (PHL.) can
be encoded in KAT;

APCA {

hiP{c} 1s encoded as be = bec or equivalently

by bec = 0, where e encodes P

Inference Rules for Hoare lLogic

b—c b — clx/e]

{b} skip {c} btz :=—edél

B e} icjQidt {bAc}P{d} {-bAciC IE

{b} P;{c} Q {d} {c} if b then P else Q {d}

L Pl e GAD
{c} while bdo {i}P {d}

Generating a Set of Assumptions

from a PCA {b}P{c} (in 1]}

B - <y

Il(b P E) s {b P E} Pskip +pe

n(b e; c ey d) = Gen(be; €) UGen(c ey d)

n(b (ce; +cey)d) = Gen(bc ey d)UGen(bc ey d)

bilcie)’c)d) = Gen(icei)U{b=<i ie dl
I’:{blplE:O,..., bmpm%:()}u{cl e s 0

where p1,...,pm € X and b;, c; € Bexp .

A Small Example

Program P Annotated Program P’ | Symbols used
in the encoding
el D1
{y = 0!} t1
y =1 z:=0; p2
2 —0; = to
while =2 = 2 do | while =z = z do t3
1 {
z := z+1; =7k} to
e T 7z = z+1; 3
} e — 7l ta
y ‘= Y XZ; P4
}

{True} P’ {y =

x!}

A Small Example (cont.)

Using the correspondence of KAT primitive symbols and atomic parts

of the annotated program P’, as in the table and additionally encoding True
as tg and y = z! as t5, respectively, the encoding of {True} P’ {y = z!}

in KAT is

top1tipata(tstopstaps)™ts ts =0

The corresponding set of assumptions I' is

I' = {topit1 = 0, t1pate = 0, tatspsts = 0,t4pata = 0,3 < o, tots < t5}

Deciding Equivalence Modulo a Set

of Assumptions

It has been shown (Kozen’00), that for all KAT expressions ri,...,7,, €1, €2
over ¥ = {p1,...,pr} and T = {t1,...,t;}, an implication of the form

ria—=0. N A\ 1 =0 — eri—ies
is a theorem of KAT if and only if

€1 + Uru = €9 + Uru

B

where u = (p1+---+pp) and r=7r1 + ...+ ry,.

For the factorial program this is equivalent to proving
t0p1t1p2t2 (t3t2p3t4p4)*t3t5 + uru = O -+ uru,

where u = (p1 +p2+p3+pa)* and r = top1t1 +t1pate +tstopsts +tapats +tatsts.

WE WERE PARTICULARLY
INTERESTED IN ...

» transferring and extending classical results and
techniques for regular expressions to KAT;

» compact representations of KAl expressions by
(non-)deterministic automata;

» feasible algorithms for checking equivalence of

KAT expressions.

T'he standard language theoretic model of KAT:
Guarded Strings over P and T

At = {5131 G ’ s {ti,fi}, = T}

set of all truth assignments to

GS = (At- P)* - At set of guarded strings over P and T
1P102P2 * * Pn—10n € GS
ol — lray lrac X.ayeY } e

X e

T'he language theoretic model of KAT (cont.)

every e € Exp denotes a set GS(e) C GS

GS(p) = {apB|a,B €At}
GS(b) = {alacAt A a < b}
GS(€1 o 62) - GS(€1) U GS(@Q)
GS(€1 : 62) — GS(el) & GS(@Q)
GS(G’{) = UnzoGS(Bl)n,

where a < b if @ — b is a propositional tautology.

€1 = €9 T GS(e1) = GS(es)

Example:
Consider e = t1p(pq*ts + t39)*

where P = {p,q} and T = {t1,ts,%3},

and

At = {titats, tilats, titals, titats, tilats, titats, titats, titats}

We have for instance,

tlgtg p titats q t1latls € GS(G)

AUTOMATA FOR GUARDED STRINGS

(t37Q)
tl, 17
a@[@ d é% (t2.5), (1,)
0 1 (t2t37Q) t2

.A — <S, S0, O, 5>
0(60) o 07 0(61) o 17 0(62) = 12

0 = {(607 (tlyp)v 61)7 (617 (17p>7 62)7 e }

tlgtg D titats q t1lals € GS(A)

AUTOMATA FOR GUARDED STRINGS
AND KAT EXPRESSION EQUIVALENCE

* 1n [1]| an derivative based algorithm to decide the equivalence
of KAT expressions, as well as an algorithm for deciding
equivalence, modulo a set of assumptions, were presented;

* 1n [2] Mirkin’s construction for regular expressions was adapted
to obtain an Equation automaton for KAT expressions
(avoiding the exponential blow-up on the number of states/
transitions due to the presence of truth-assignments);

» the state complexity of the Equation automaton was shown to
be, on average and asymptotically, a quarter of the size of the
original KAl expression (and halt the size of another
construction - the Glushkov automaton).

AUTOMATA FOR GUARDED STRINGS
AND KAT EXPRESSION EQUIVALENCE

* 1n [3] the classical subset construction for determinizing
nondeterministic finite automata was adapted to KAT;

 generalisation of the Hopcroft & Karp algorithm for
testing deterministic finite automata equivalence to

KAT [3].

» decision procedure for testing KA1 equivalence without
explicitly constructing the automata, by introducing a
new notion of partial dervative [3].

SYNCHRONOUS KLEENE
ALGEBRA (WITH TESTS)
SKA & SKAT

* SKA 15 a decidable framework that combines Kleene
Algebra with a synchrony model of concurrency
(Prisacariu’10);

* elements of SKA can be seen as processes taking place
within a fixed discrete time frame;

* at each time frame they may execute one or more basic
actions or then come to a halt.

» the extension Synchronous Kleene Algebra with Tests

(SKAT) combines SKA with a boolean algebra.

Let Ag be a set of basic actions, then the set of SKA expressions contains 0
plus all terms generated by the following grammar

a—=>1llalatala-a|laxa|a® (a€SKA)

Each SKA expression defines a set of words (regular language) over the al-
phabet

¥ =P(Ag) \ {0}

where the synchronous product of two words * = o1---0,, and y = 71 - - - T,
with n > m, is defined by

By < — o Ui o, T s T

Example: Let Ag = {a,b}, hence ¥ = {{a},{b},{a,b}}. For x = {a}{a,b}{b}
and y = {b}{a}{a,b}{a}{a,b}, we have

x xy={a,b}{a,b}{a,b}{a}{a,b}.

e SKAT 1s the natural extension of KA1 to the

synchronous setting (Prisacariu’10);

» 1ts standard models are sets over guarded
synchronous strings ((GSS);

* Prisacariu defined automata for GSS, built 1n two
layers: one to process a synchronous string and
another to represent the valuations of the booleans.

CONTRIBUTIONS TO SKA(T)

* 1n [4]: definition of a partial derivative automaton

for SKA;

» new decision procedure for SKA terms equivalence;

 definition of a stmple notion of automaton for

SKAT;

* extension of the derivative based methods developed

for SKA to SKAT.

REFERENCES

» Almeida, Broda, Moreira; Deciding KAT and Hoare
Logic with Derivatives, GANDALF 2012.

* Broda, Machiavelo, Moreira, Reis; On the average size of

Glushkov and Equation Automata for KAT expressions,
101 2015,

* Broda, Machiavelo, Moreira, Reis; On the Equivalence of
Automata for KA1 expressions, Cik 2014.

* Broda, CGavadas, Moreira, Deciding Synchronous Kleene

Algebra with Derivatives, FoSSaCGS 2015 (submitted).

THANK YOU!

