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For regular expressions in (strong) star normal form a large set of efficient algorithms
is known, from conversions into finite automata to characterisations of unambiguity. In
this paper we study the average complexity of this class of expressions using analytic
combinatorics. As it is not always feasible to obtain explicit expressions for the gen-
erating functions involved, here we show how to get the required information for the
asymptotic estimates with an indirect use of the existence of Puiseux expansions at sin-
gularities. We study, asymptotically and on average, the alphabetic size, the size of the
ε-follow automaton, and the ratio and the size of these expressions to standard regular
expressions.

Keywords. Regular expressions, star normal form, conversions into finite au-

tomata, analytic combinatorics, asymptotic average case complexity, Puiseux series.

1. Introduction

A regular expression α is in strong star normal form (ssnf) if for any subexpression

of the form β󰂏 or β + ε the language represented by β does not include the empty

word, ε. The broader notion of star normal form was introduced by Brüggemann-

Klein [7] as a step to improve the construction of the position automaton from a

regular expression from cubic to quadratic time. Transforming a regular expression

into this normal form can be achieved in linear time, and moreover the position

automaton resulting from that normal form coincides with the one of the original

expression. In the same paper, the star normal form was also used to characterize

certain types of unambiguous expressions. The position automaton construction [11]

is a basic conversion between regular expressions and ε-free nondeterministic finite

automata (NFA), and several other constructions are known to be its quotients.

This is the case for the partial derivative automaton [1, 9] and the follow automa-

ton [16]. Champarnaud et al. [8] showed that if a regular expression is in star normal

form and is normalized modulo some regular expression equivalences, the partial

derivative automaton is a quotient of the follow automaton. Many other conversions
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from regular expressions to equivalent NFAs consider automata with transitions la-

belled by the empty word (ε-NFA). Although the most used of these conversions

is the Thompson construction (implemented in many UNIX-like string search com-

mands) [22], an older and more thrifty construction in the use of ε-transitions was

presented by Ott and Feinstein in 1961 [19]. An improved version of this construc-

tion was redefined by Ilie and Yu, and called the ε-follow automaton. Gulan, Fernau

and Gruber [14, 12, 13] studied the optimal (worst-case) size for all known construc-

tions from regular expressions to ε-NFAs. It turns out that the optimal construction

corresponds to the conversion of a regular expression in strong star normal form

into an ε-follow automaton.

All this motivated us to study the average-case complexity of regular expres-

sions in strong star normal form, as well as their conversions to NFAs. In previous

work, we studied the asymptotic average complexity for some of the above men-

tioned conversions from regular expressions using the framework of analytic com-

binatorics [2, 4, 5], which relates the enumeration of combinatorial objects to the

algebraic and complex analytic properties of generating functions. In particular,

generating functions can be seen as complex analytic functions, and the study of

their behaviour around their dominant singularities gives access to the asymptotic

form of their coefficients. Starting with an unambiguous grammar for the set of

regular expressions over a given alphabet, and a non-negative measure, the sym-

bolic method allows to obtain a generating function associated with the sequence

of the (finite) number of expressions of measure value n. Multivariate generating

functions can be used to analyse different measures apart from the size of combi-

natorial objects, e.g. the number of states of the automaton resulting from a given

conversion method applied to a regular expression of given size, and thus allow to

obtain estimates for the average values of those measures.

While in previous work we were able to get explicit expressions for the gener-

ating functions involved, here that would be unmanageable. Using the existence of

a Puiseux expansion at a singularity, we show how to get the required information

for the asymptotic estimates from an algebraic equation satisfied by the generating

function, without actually computing that expansion. We note that the technique

here presented allows to find, for the combinatorial classes considered, the form of

the function without knowing beforehand the explicit value of the singularity. This

provides a very useful method, at least for some combinatorial classes, that circum-

vents some of the more cumbersome steps of the Algebraic Coefficient Asymptotics

algorithm presented by Flajolet and Sedgewick [10], pages 504− 505, as well as the

need to know a priori the type of the singularity.

We use this method to derive the asymptotic estimates for the number of regular

expressions in ssnf of a given size, as well as a parametric function of several related

measures, which can give us, in particular, the alphabetic size of the expressions

or the size of the ε-follow automaton, on average. We note that this parametric

function cannot be used to estimate the average size of the position automaton

construction for regular expressions in ssnf, but it is possible to obtain a system of
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equations satisfied by the generating functions associated with this measure.

A preliminary version of this paper was presented in [6]. In the next section,

we review some basics on regular expressions and NFAs. In Section 3, we consider

the transformation into strong star normal form and give some characterisations

of expressions in this form. Section 4 describes a shortcut to obtain asymptotic

estimates of the coefficients of generating functions. This is used in Section 5 to

obtain the estimates mentioned above. Applying the same technique, in Section 6 we

estimate the asymptotic ratio between a general expression and the corresponding

expression in ssnf. Some experiments corroborating those estimates are presented

in Section 7. Conclusions are drawn in Section 8.

2. Regular Expressions and NFAs

We consider the grammar for regular expressions proposed by Gruber and Gulan

in [12, 13], which has the major advantage of avoiding many redundant expressions

built with the symbols ε and ∅. Given an alphabet Σ = {σ1, . . . ,σk} of size k, the

set Rk of regular expressions, α, over Σ is defined by the following grammar,

α := ∅ | ε | β,
β := σ1 | · · · | σk | (β + β) | (β · β) | β󰂏 | β?

(1)

where the operator · (concatenation) is often omitted. The language associated with

α is denoted by L(α) and is defined as usual, with L(β?) = L(β) ∪ {ε}. It is clear

that β? is equivalent to the standard regular expression β + ε.

For the size of a regular expression α, denoted by |α|, we will consider reverse

polish notation length, i.e., the number of symbols in α, not counting parentheses.

The number of letters in α is denoted by |α|Σ, and usually called alphabetic size.

The number of occurrences of each operator c ∈ {+, ·, 󰂏, ?} is denoted by |α|c. One

has

|α| = |α|Σ + |α|+ + |α|· + |α|󰂏 + |α|?.

A nondeterministic finite automaton is a tuple N =〈Q,Σ, δ, q0, F 〉, where Q is a

finite set of states, Σ is the alphabet, δ ⊆ Q×(Σ∪{ε})×Q is the transition relation,

q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. The size of an NFA

N is |N | = |N |Q + |N |δ, where |N |Q = |Q| and |N |δ = |δ|. An NFA that has

transitions labelled with ε is an ε-NFA. The language accepted by an automaton

N is L(N ) = { w ∈ Σ󰂏 | δ(q0, w) ∩ F ∕= ∅ }, where δ is naturally extended to sets

of states and words.

Conversion of a regular expression into an equivalent NFA can be defined

by induction on the structure of the regular expression. Let Nα denote the au-

tomaton corresponding to a regular expression α. In Figure 1 we present the

construction of the ε-follow automaton, Aεf(β) [16]. The size of the Aεf(β) for

the atomic expressions ∅, ε, and σ ∈ Σ is 2, 3 and 3, respectively. For the re-

maining constructions, the size of the resulting automaton equals the sum of the
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Fig. 1. The ε-follow construction, Aεf .

sizes of its constituents plus some constant. For instance, for the operator + one

has |Nβ1+β2
|Q = |Nβ1

|Q + |Nβ2
|Q − 2, |Nβ1+β2

|δ = |Nβ1
|δ + |Nβ2

|δ, and thus

|Nβ1+β2 | = |Nβ1 | + |Nβ2 | − 2. This can be generalized by considering constants

(c∅, cε, cσ, c+, c•, c󰂏, c?) that define functions that can be used to compute several

interesting measures. For example, using (2, 2, 2,−2,−1, 1, 0) one gets the number

of states; the number of transitions are computed using (0, 1, 1, 0, 0, 2, 1), and the

combined size corresponds to (2, 3, 3,−2,−1, 3, 1).

We note that the worst-case complexity for this conversion can be reached for

expressions with only one letter and n−1 stars. For such an expression of size n, the

corresponding Aεf automaton has size 3n. Broda et al. [4] presented an asymptotic

estimate of the average size of Aεf and showed that its limit is 3
4n as k goes to ∞.

The position or Glushkov automaton from a regular expression α, Apos(α), can

also be defined inductively on the structure of α [11, 23, 21]. However, its size can

not be expressed as a sum of the sizes of its constituents plus a fixed constant. We

define the set of positions of α by Pos(α) = {1, . . . , |α|Σ}. Let α denote the marked

expression obtained from α by indexing each letter with its position in α Let the sets

first, last and follow be First(α) = { i | σiw ∈ L(α) }, Last(α) = { i | wσi ∈ L(α) }
and Follow(α, i) = { j | uσiσjv ∈ L(α) }, respectively. The Glushkov automaton for

α is Apos(α) = (Pos(α) ∪ {0},Σ, δpos, 0, F ), with δpos = { (0,σj , j) | j ∈ First(α) } ∪
{ (i,σj , j) | j ∈ Follow(α, i) } and F = Last(α) ∪ {0} if ε ∈ L(α), and F = Last(α),

otherwise. The number of states is the alphabetic size of α plus one and the number

of transitions is the sum of the cardinalities of the sets first and follow. Thus, the

size of Apos(α) can be calculated using inductive definitions of the sets first, last and

follow. In the worst case the size of Apos(α) is quadratic in the size of α. It is known

that asymptotically and on average for an expression α of size n its alphabetic size

is n
2 (thus the number of states of Apos) and |Apos(α)| is O(n) [18, 3].
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3. Strong Star Normal Form

Brüggemann-Klein [7] introduced the notion of star normal form of a regular expres-

sion and defined a function that given a regular expression computes an equivalent

star normal form. Gulan and Gruber simplified that definition and adapted it for

regular expressions with the operator ?. The result ssnf(α) was called the strong

star normal form of α. To define the function ssnf we denote by βε and βε regular

expressions whose language includes ε or not, respectively.

Definition 1. The operator ssnf is inductively defined as follows.

ssnf(∅) = ∅
ssnf(ε) = ε

ssnf(σ) = σ

ssnf(β1 + β2) = ssnf(β1) + ssnf(β2)

ssnf(β1β2) = ssnf(β1) · ssnf(β2)

ssnf(β󰂏) = ss(β)󰂏

ssnf(β?
ε) = ssnf(βε)

ssnf(β?
ε) = ssnf(βε)

?,

where

ss(∅) = ss(ε) = ∅
ss(σ) = σ

ss(β1 + β2) = ss(β1) + ss(β2)

ss(βεβ
′
ε) = ss(βε) + ss(β′

ε)

ss(βεβε) = ssnf(βε) · ssnf(βε)

ss(βεβ) = ssnf(βε) · ssnf(β)
ss(β󰂏) = ss(β)

ss(β?) = ss(β).

An expression α is in strong star normal form if α = ssnf(α).

For a regular expression α, one has L(ssnf(α)) = L(α) and |ssnf(α)| ≤ |α|. The
following theorem characterises the regular expressions in strong star normal form.

Theorem 2. [13] A regular expression α is in strong star normal form, i.e. α =

ssnf(α), if and only if for every subexpression β󰂏 or β? of α, one has ε /∈ L(β).

Using this theorem it is possible to write a context-free grammar for regular

expressions in ssnf, i.e. in which every subexpression of the form β󰂏 or β? satisfies
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ε /∈ L(β). The set Sk of regular expressions in ssnf over Σ is defined by:

α := ε | ∅ | βε | βε

βε := βεβε | βε + βε | βε + βε | βε + βε | β󰂏
ε | β?

ε

βε := σ1 | · · · | σk | βεβε | βεβε | βεβε | βε + βε,

(2)

where βε are regular expressions whose languages include ε, while for βε , ε /∈ L(βε).

In the remaining of the paper we will use β to denote either of these expressions.

The following theorem summarises the results by Gruber and Gulan [12] (see

also Gulan [13]) on the size of Aεf , which show that for expressions in ssnf the

worst-case is about half the size as for general expressions ( 2215 ≃ 3
2 ).

Theorem 3. Let α be in ssnf of size n and alphabetic size m. Then, Aεf(α) has

size at most min( 2215 (n+ 1) + 1, 22
5 m+ 1).

As already stated in the introduction, if a regular expression is in ssnf the posi-

tion automaton can be computed in quadratic time [7, 3]. This is due to a property

of the computation of the follow sets (Lemma 4), which is easily shown using the

grammar for expressions in ssnf given above. We give inductive definitions of the

sets first, last and follow for this kind of expressions. Given a marked expression

following grammar (2), we have

First(ε) = First(∅) = ∅,
First(σi) = {i},

First(β1 + β2) = First(β1) ∪ First(β2),

First(βεβ) = First(βε) ∪ First(β),

First(βεβ) = First(βε),

First(β󰂏
ε ) = First(βε),

First(β?
ε) = First(βε).

The definition of the set Last(α) coincides with the one of First(α) except for con-

catenation, where it is given by:

Last(ββε) = Last(βε) ∪ Last(β),

Last(ββε) = Last(βε).

Finally, for the set follow we have

Follow(ε) = Follow(∅) = Follow(σ) = ∅,
Follow(β1 + β2) = Follow(β1) ∪ Follow(β2),

Follow(β1β2) = Follow(β1) ∪ Follow(β2) ∪ Last(β1)× First(β2),

Follow(β󰂏
ε ) = Follow(βε) ∪ Last(βε)× First(βε),

Follow(β?
ε) = Follow(βε).
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Except for the union in the equation for the 󰂏 operator, it is obvious that all other

unions occurring in these definitions are disjoint. Next, we show that this is also

the case for that equation.

Lemma 4. Follow(βε) ∩ (Last(βε)× First(βε)) = ∅.

Proof. By induction, considering the production rules for βε. Given an expression

βε, let FLF(βε) denote the expression Follow(βε) ∩ Last(βε)× First(βε).

FLF(σi) = ∅
FLF(βεβ

′
ε) = (Follow(βε) ∪ Follow(β′

ε) ∪ Last(βε)× First(β′
ε))

∩ Last(β′
ε)× First(βε) = ∅

FLF(βεβε) = (Follow(βε) ∪ Follow(βε) ∪ Last(βε)× First(βε))

∩ (Last(βε)× First(βε) ∪ Last(βε)× First(βε)) = ∅
FLF(βεβε) = (Follow(βε) ∪ Follow(βε) ∪ Last(βε)× First(βε))

∩ (Last(βε)× First(βε) ∪ Last(βε)× First(βε)) = ∅
FLF(βε + β′

ε) = (Follow(βε) ∪ Follow(β′
ε))

∩ (Last(βε)× First(βε) ∪ Last(βε)× First(β′
ε)

∪ Last(β′
ε)× First(βε)

∪ Last(β′
ε)× First(β′

ε)) = ∅.

Note that, only the last equation uses the induction hypothesis.

Using Lemma 4, it is immediate that Apos can be computed in O(n2), which

provides an alternative proof of this result given by Brüggemann-Klein [7].

4. Asymptotic Average Complexity

Let A(z) =
󰁓

n anz
n be the generating function associated with some combinatorial

class A (cf. [10]). Given some measure of the objects of the class, the coefficient an
represents the sum of the values of this measure for all objects of size n. We will

use the notation [zn]A(z) for an. The generating function A(z) can be seen as

a complex analytic function, and the study of its behaviour around its dominant

singularity ρ (when unique) gives us access to the asymptotic form of its coefficients.

In particular, if A(z) is analytic in some indented disc neighbourhood of ρ, then

one has the following [10, 4]:

(1) if A(z) = a− b
󰁳
1− z/ρ+ o

󰀓󰁳
1− z/ρ

󰀔
, with a, b ∈ R, b ∕= 0, then

[zn]A(z) ∼ b

2
√
π
ρ−nn−3/2; (3)
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(2) if A(z) = c√
1−z/ρ

+ o

󰀕
1√

1−z/ρ

󰀖
, with c ∈ R∗, then

[zn]A(z) ∼ c√
π
ρ−nn−1/2. (4)

Applying this result for the generating function Rk(z), corresponding to the number

of expressions in Rk of size n, the following asymptotic values were obtained in

Broda et al. [4]:

[zn]Rk(z) ∼
4
√
2k

√
ρk

4
√
π

ρ
−(n+1)
k (n+ 1)−3/2, with ρk =

1

2(
√
2k + 1)

. (5)

In the same paper, the average size of the ε-follow automata construction was

studied, and it was shown that, as the alphabet grows, the size of Aεf approaches

0.75n, asymptotically and on average.

Let us now give a generic description of the method used for the combinatorial

classes that show up within the present paper. From a grammar one obtains, by

the symbolic method expounded in [10], a set of polynomial equations involving the

generating function of whose coefficients we want to have an asymptotic estimate.

Computing a Gröbner basis for the ideal generated by those polynomials, one gets

an algebraic equation for that generating function w = w(z), i.e., an equation of

the form

G(z, w) = 0,

where G(z, w) is a polynomial in Z[z][w], of which w(z) is a root.

Since w(z) is the generating function of a combinatorial class, thus a series

with non-negative integer coefficients, which is not a polynomial, it must have, by

Pringsheim’s Theorem (cf. [10], Thm IV.6), a real positive singularity, ρ, smaller

than or equal to 1. In all that follows we will assume that there is no other singularity

with that norm, which is the case of all generating functions dealt with in this paper,

as we will see. At this singularity ρ two cases may occur: either limz→ρ w(z) = a, a

positive real number, or limz→ρ w(z) = +∞.

In the first case, after making the change of variable s = 1 − z/ρ, one knows

that w = w(s) has a Puiseux series expansion at the singularity s = 0, i.e., there

exists a slit neighbourhood of that point in which w(s) has a representation as a

power series with fractional powers (cf. [15], Chap. 12). In particular, w must have

the form

w(s) = a− g(s)sα, (6)

for some a ∈ R, α ∈ Q+, the first positive exponent of that expansion, and g(s)

such that g(s) = b + h(s)sβ , h(0) ∕= 0, β ∈ Q+, and b ∈ R∗. We will show that,

under some generic conditions that happen to be satisfied in all the cases treated

below, one has α = 1
2 or α = − 1

2 . One then needs to find the values of ρ and of

b or c, depending on the case, to use either (3) or (4) to obtain the sought-after

asymptotic estimates of the coefficients of w(z).
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!

a

z

w

Fig. 2. Generic shape of G(z, w) near its dominant singularity.

Using Taylor expansion of G(z, w) at (ρ, a),

G(z, w) =G(ρ, a) +
∂G

∂z
(ρ, a)(z − ρ) +

∂G

∂w
(ρ, a)(w − a)+

+
1

2

∂2G

∂z2
(ρ, a)(z − ρ)2 +

1

2

∂2G

∂w2
(ρ, a)(w − a)2+

+
∂2G

∂z ∂w
(ρ, a)(z − ρ)(w − a) + · · · ,

and noticing that G(z, w(z)) = 0, that G(ρ, a) = 0, and using Equation (6), one

has,

0 =− ∂G

∂z
(ρ, a)ρs− ∂G

∂w
(ρ, a)g(s)sα +

1

2

∂2G

∂z2
(ρ, a)ρ2s2+

+
1

2

∂2G

∂w2
(ρ, a)g(s)2s2α − ∂2G

∂z ∂w
(ρ, a)ρg(s)s1+α +Q(s)s3α,

(7)

for some function Q(s), a Puiseux series with non-negative exponents.

In the case under study, the curve defined by G has a shape similar to the one

depicted in Fig. 2, where

∂G

∂w
(ρ, a) = 0. (8)

This, together with the fact that G(ρ, a) = 0, shows that ρ is a root of the

discriminant polynomial of G with respect to variable w, which is a polynomial

in z (cf. [17] ). In all the cases studied here, this polynomial has only one root in

]0, 1[, a fact that allows to numerically get an approximation for the value of ρ.

The minimum polynomial in Q[z] of ρ can be obtained by analysing the resultant
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polynomials G(z, w) and ∂
∂wG(z, w) with respect to w: resw(G(z, w), ∂

∂wG(z, w)).

We will denote this polynomial by m(z). Using now the resz(G(z, w), ∂
∂wG(z, w))

one can get a polynomial that has a as a root. One can then numerically compute

all the real roots of that polynomial, and then check which one is an approximation

for the value of a by means of a numerical study of the curve G(z, w).

Using (8) in (7), and dividing it through by sα, one gets

0 =− ∂G

∂z
(ρ, a)ρs1−α +

1

2

∂2G

∂z2
(ρ, a)ρ2s2−α

+
1

2

∂2G

∂w2
(ρ, a)g(s)2sα+

+
∂2G

∂z ∂w
(ρ, a)ρg(s)s+Q(s)s2α.

(9)

Now, in all cases studied in this paper, one has

∂G

∂z
(ρ, a) ∕= 0, and

∂2G

∂w2
(ρ, a) ∕= 0. (10)

This was checked by computing

p1(z) = gcdw(G(z, w),
∂

∂z
G(z, w)), p2(z) = gcdw(G(z, w),

∂2

∂w2
G(z, w)),

gcd(p1(z),m(z)) and gcd(p2(z),m(z)), obtaining a constant depending only on k,

that is non-zero for all k ∕= 54 in all cases dealt with in this paper. The case k = 54

was dealt with separately. Using the explicit value for ρ, the validity of (10) for this

value of k was verified.

It now follows from (9), by noticing that the first and third summands have the

smallest degrees in s, that they must have the same degree and cancel each other.

Dividing, then, by sα and letting s → 0, one obtains

α =
1

2
, and b = g(0) =

󰁶
2ρ ∂G

∂z (ρ, a)
∂2G
∂w2 (ρ, a)

.

In conclusion, for the case where limz→ρ w(z) = a, using (3), one has

[zn]w(z) ∼ b

2
√
π
ρ−nn−3/2.

In the second case, the one where limz→ρ w(z) = +∞, making v = 1/w one

concludes as above that v = csα − g(s)sα+β , for some 0 < α < 1, β > 0, and for

some Puiseux series g(s), with non-negative exponents. Denoting by m the degree

of G relative to w, the polynomial satisfied by v is then

H(z, v) = vmG

󰀕
z,

1

v

󰀖
, (11)

which is the reciprocal polynomial of G(z, w) with respect to the variable w. Using

the same procedure as above, one computes ρ, and checking that the corresponding



October 18, 2018 0:1 WSPC/INSTRUCTION FILE flan04

On Average Behaviour of Regular Expressions in Strong Star Normal Form 11

derivatives are non-zero, i.e.

∂H

∂z
(ρ, 0) ∕= 0, and

∂2H

∂w2
(ρ, 0) ∕= 0,

one gets in the same way that

α =
1

2
, and c =

󰁶
2ρ ∂H

∂z (ρ, 0)
∂2H
∂w2 (ρ, 0)

. (12)

Since

w =
1

csα − g(s)sα+β
=

1

c
s−α 1

1− g(s)
c sβ

=
1

c
s−α

󰀕
1 +

g(s)

c
sβ +

g(s)2

c2
s2β + · · ·

󰀖
,

one sees, using (4), that

[zn]w(z) ∼ 1

c
√
π
ρ−nn−1/2. (13)

5. Average Complexity of Regular Expressions in Strong Normal

Form

Let Bk(z) and B̄k(z) be the generating functions for βε and βε, as in (2), respec-

tively. They satisfy the following equations

Bk(z) = 2zBk(z)
2 + 2zBk(z)B̄k(z) + 2zB̄k(z) (14)

B̄k(z) = kz + 2zBk(z)B̄k(z) + 2zB̄k(z)
2. (15)

From (14) one gets

B̄k(z) =
Bk(z)(1− 2zBk(z))

2z(Bk(z) + 1)
,

and then substituting B̄k(z) in (15) one obtains, after clearing up denominators,

4z2Bk(z)
3 − (2kz2 + 4z)Bk(z)

2 − (4kz2 − 1)Bk(z)− 2kz2 = 0,

i.e., Bk(z) is an algebraic function that is a root of

4z2w3 − (2kz2 + 4z)w2 − (4kz2 − 1)w − 2kz2.

Using now (15) to get Bk(z) as a function of B̄k(z), and then substituting that

into (14), one easily sees that B̄k(z) is a root of

4zw3 + 2kzw2 − kw + k2z.

Using the technique described in the previous section, one sees that Bk(z) and

B̄k(z) have the same singularity, namely the only root (by using Sturm’s Theorem),

ηk, in the interval ]0, 1[ of the polynomial,

mk(z) = z3 +
9z2

2k + 27
− z

8k + 108
− 1

k(2k + 27)
. (16)
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To show that mk(z) has no roots in the circle |z| = ηk, assume the contrary. Then,

denoting by ζ one of the non-real roots, it would follow that η3k = ηkζζ̄ = 1
2k2+27k .

Using this in mk(ηk) = 0, one gets ηk = 1
36 , which does not hold for largely enough

k (one can easily check that this never occurs!).

Also one gets that α = 1
2 , and that the values of aBk

= Bk(η) and of aB̄k
= B̄k(η)

are roots of the polynomials 8z3 − kz2 +2kz− k, and 8z3 +2kz2 − k2, respectively.

With all this, and writing Sk(z) = Bk(z) + B̄k(z) one then gets that

[zn]Sk(z) ∼
bk

2
√
π
η−n
k n−3/2, (17)

where,

bk =
1

2

󰁶
4a2k(1− 2akηk) + k(1 + 4ηk − 4akηk)

1− 3akηk
,

and

ak = aBk
+ aB̄k

.

Using these results and the one mentioned in (5), the ratio of regular expressions

in ssnf, rk,n = [zn]Sk(n)
[zn]Rk(n)

, can now be computed for any k and n. Using a technique

that is beyond the scope of this paper, and that will be presented in a forthcoming

article, it can be proved that

ηk ∼ 1√
8k

, bk ∼
√
k, (18)

where uk ∼ vk means that the limit of the ratio of the two sequences (uk)k and

(vk)k goes to 1, as k goes to infinity. We can, then, conclude that the ratio between

the number of ssnf expressions and the number of general expressions, rk,n, satisfies

lim
k→∞

rk,n = 1, for all n.

Since ρk is not a root of mk(z), we know that ρk ∕= ηk. And, as Sk(z) counts a

subclass of regular expressions, it must follow that ρk < ηk, for all k. Thus,

lim
n→∞

rk,n = 0, for all k,

implying that for any given alphabet of k letters, the number of ssnf expressions

is exponentially smaller than the number of all the all the expression, of the same

size.

5.1. Counting Letters

To obtain the asymptotic average value of several measures for regular expressions

of a given size, we consider bivariate generating functions parametrized by weights

of the form co, with o ∈ {∅, ε,σ,+, ·, 󰂏, ?}, associated to each regular expression

element. Considering the grammar in (2), let Bk(u, z) and B̄k(u, z) be the bivariate
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generating functions associated to βε and βε, respectively, and where u represents

some given weight. Then

Bk(u, z) = (uc• + uc+)zBk(u, z)
2 + 2uc+zBk(u, z)B̄k(u, z) + (uc? + uc󰂏)zB̄k(u, z),

B̄k(u, z) = kucσz + (uc• + uc+)zB̄k(u, z)
2 + 2uc•zBk(u, z)B̄k(u, z).

Note that A and B depend on the parameters (c∅, cε, cσ, c+, c•, c󰂏, c?), but for sake

of simplicity we choose to omit them. For computing the average number of letters

those parameters are (0, 0, 1, 0, 0, 0, 0), and analogously for each operator.

The generating function Lk(z) for the number of letters is given by

Lk(z) =
∂

∂u

󰀏󰀏󰀏󰀏
u=1

󰀃
Bk(u, z) + B̄k(u, z)

󰀄
.

Setting B = Bk(1, z), B̄ = B̄k(1, z), B1 = ∂
∂u

󰀏󰀏󰀏󰀏
u=1

Bk(u, z), B̄1 = ∂
∂u

󰀏󰀏󰀏󰀏
u=1

B̄k(u, z),

one has:

B = 2B2z + 2BB̄z + 2B̄z,

B̄ = 2BB̄z + 2B̄2z + kz,

B1 = 4BB1z + 2BB̄1z + 2B̄B1z + 2B̄1z,

B̄1 = 2BB̄1z + 2B̄B1z + 4B̄B̄1z + kz,

Lk = B1 + B̄1.

Using Gröbner bases, as mentioned above, one gets the following polynomial for

w = Lk:

󰀃󰀃
8 k2 + 108 k

󰀄
z3 + 36 kz2 − kz − 4

󰀄
w3+

+
󰀃󰀃
k3 + 12 k2

󰀄
z3 + 4 k2z2 + kz

󰀄
w − 2 k2z3 − k2z2.

It turns out that, from this, one can deduce that the singularity for this algebraic

function w has the same minimal polynomial as in (16), and so it is the same as

for the number of regular expressions there considered. One then finds that, in this

case, α = − 1
2 , and that

[zn]Lk(z) ∼
1

ck
√
π
η−n
k n−1/2, (19)

where, ηk is the same as in (17), and

ck =
2√
k

󰁶
8
√
2 k5/2 + 112k2 + 36

√
2 k3/2 − 420k + 243

√
2
√
k − 81

2
√
2 k5/2 + 26k2 + 11

√
2 k3/2 − 73k + 36

√
2
√
k − 12

.

Using the estimations (17) and (19), the density of letters in expressions of size

n, [zn]Lk(n)
n[zn]Sk(n)

, for any given k, is approximated by

ℓk =
2

bkck
.

Using that ck ∼ 4√
k
and (18), one concludes that lim

k→∞
ℓk = 1

2 .
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5.2. Size of ε-Follow Automata

Considering the parameters (2, 3, 3,−2,−1, 3, 1), as defined in Section 2, the gener-

ating function Fk(z) for the size of the Aεf automaton is given by

Fk(z) =
∂

∂u

󰀏󰀏󰀏󰀏
u=1

󰀃
Bk(u, z) + B̄k(u, z)

󰀄
.

Using the same abbreviations as above, one has:

B = 2B2z + 2BB̄z + 2B̄z

B̄ = 2BB̄z + 2B̄2z + kz

B1 = −3B2z − 4BB̄z + 4BB1z + 2BB̄1z + 2B̄B1z + 4B̄z + 2B̄1z

B̄1 = −2BB̄z + 2BB̄1z − 3B̄2z + 2B̄B1z + 4B̄B̄1z + 3kz

Fk = B1 + B̄1.

G(z, w) = ((128 k2 + 1728 k)z5 + 576 kz4 − 16 kz3 − 64 z2)w3+

+ ((32 k3 + 432 k2)z5 + (−16 k2 − 2160 k)z4 + (−4 k2 − 720 k)z3+

+ 4 kz2 + 80 z)w2 + ((436 k3 + 5400 k2)z5 + (−24 k3 + 1620 k2)z4+

+ (−110 k2 + 900 k)z3 + (3 k2 + 30 k)z2 + 6 kz − 25)w + (81 k4+

+ 350 k3 − 13500 k2)z5 + (210 k3 − 5850 k2)z4 + (−9 k3 − 645 k2)z3+

+ (−18 k2 + 250 k)z2 + 75 kz

From this one can again deduce that the singularity for this algebraic function w

still has exactly the same minimal polynomial as in(16).

Proceeding as above, one can verify that the singularity for Fk(z) still has the

same minimal polynomial as in (16), that α = − 1
2 , and that

[zn]Fk(z) ∼
1

dk
√
π
η−n
k n−1/2, (20)

where, ηk is still the same as in (17), and

dk =
4

√
k

󰁹󰁸󰁸󰁷 16
√

2k7/2 + 192k3 − 192
√

2k5/2 − 1288k2 + 2174
√

2k3/2 − 2566k + 675
√

2
√

k − 135

36
√

2k7/2 + 876k3 − 364
√

2k5/2 − 30444k2 + 31865
√

2k3/2 − 29089k + 6750
√

2
√

k − 1350
.

The average ratio, [zn]Fk(n)
n[zn]Sk(n)

, between the size of the Aεf and the size of the

respective regular expression is approximated, using (17) and (20), one has

fk =
2

bkdk
.

In a previous work [4], we were able to get an explicit expression, depending

on k, for the asymptotic size of Aεf , which allow us to conclude that its average

complexity, in the case of general regular expressions, tends to 3
4 of the size of

the original expression, as k grows. In the present case, we had to use a different

technique which allow us to obtain the above expression for dk, from which it is
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easy to conclude that dk ∼ 8
3
√
k
. From this it follows that the limit of fk is 3

4 , as k

goes to infinity. Thus the average size is only slightly more than half the worst-case

size.

5.3. Size of Glushkov Automata

The number of states of the Glushkov automaton is the number of letters in the

corresponding regular expression, whose average size was already computed in Sub-

section 5.1 and coincides with the one obtained for generic regular expressions. To

estimate the average number of transitions of Glushkov automaton for regular ex-

pressions in strong star normal form, we consider the counting functions g and e

given below, where g corresponds to the size of both first and last, and e corresponds

to the size of follow.

g(ε) = g(∅) = 0

g(σ) = 1

g(β1 + β2) = g(β1) + g(β2)

g(βεβ) = g(βε) + g(β)

g(βεβ) = g(βε)

g(β󰂏
ε ) = g(βε)

g(β?
ε) = g(βε)

e(ε) = e(∅) = e(σ) = 0;

e(β1 + β2) = e(β1) + e(β2)

e(β1β2) = e(β1) + e(β2) + g(β1)× g(β2)

e(β󰂏
ε ) = e(βε) + g(βε)× g(βε)

e(β?
ε) = e(βε)

To obtain the generating functions associated to these measures for expressions

β, instead considering bivariate functions, we consider the cost generating functions

Gk(z) =
󰁓

β g(β)z
|β| and Ek(z) =

󰁓
β e(β)z

|β|. For example, one has

Gk(z) =
󰁛

β

g(β)z|β|

=
󰁛

σ

g(σ)z +
󰁛

βε,β

(g(βε) + g(β))z|βεβ|

+
󰁛

βε,β

g(βε)z
|βεβ| +

󰁛

β1,β2

(g(β1) + g(β2))z
|β1+β2|

+
󰁛

βε

g(βε)z
|β󰂏

ε | +
󰁛

βε

g(βε)z
|β?

ε |.

Considering also the corresponding generating functions restricted to expressions

βε and βε, one gets the following system of equations.

Gk(z) = kz + 3zGk(z)Sk(z) + zGk(z)Sk,ε(z) + 2zGk,ε(z)

Gk,ε(z) = kz + 2zGk,ε(z)Sk(z) + zGk(z)Sk,ε(z)

Ek(z) = 4zEk(z)Sk(z) + zGk(z)
2 + 2zEk,ε(z) + zGk,ε(z)

2

Ek,ε(z) = 2zEk(z)Sk,ε(z) + 2zEk,ε(z)Sk(z) + 2zGk,ε(z)Gk(z)− zGk,ε(z)
2,

where Sk,ε = Bk and Sk,ε = B̄k.
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This is a rather more complicated system of equations than the ones dealt with

above, yielding that w = Gk(z) satisfies

kpk(z)w
3 − k2z(1 + 2z)(5 + 2kz)w2 + 2k2zqk(z)w − 4k3z2(1 + 2z) = 0,

while w = Ek(z) satisfies

kzpk(z)rk(z)
2w3 + k2zpk(z)sk(z)w

2 + k2tk(z)w + 2k4z3uk(z) = 0,

where pk(z) = 4k(2k + 27)mk(z) and mk(z) is the same as in (16), qk = 2k2z2 +

22kz2+7kz+2, rk(z) = 18k2z3+250kz3+85kz2− 2kz− 9, and sk(z), tk(z), uk(z)

have degrees 5, 10, 7, respectively. An analysis similar to the one conducted in the

previous two sections allow us to conclude that

[zn]Gk(z) ∼
µk

2
√
π
η−n
k n− 3

2 and [zz]Ek(z) ∼
1

νk
√
π
η−n
k n− 1

2 ,

for some positive µk and νk, with νk ∼ 1√
k
. From this, and using (17), it follows that

the average number of transitions per symbol of the original ssnf-regular expression,
[zn](Gk(z)+Ek(z))

n [zn]Sk(z)
∼ 2, with k, and for any given n.

6. Average Size of ssnf(α)

Given a general regular expression α ∈ Rk we now estimate the average size of the

corresponding expression in strong star normal form, i.e. the size of ssnf(α). First

we rewrite the grammar in (1) considering explicitly the rules for βε and βε in this

general case:

α := ∅ | ε | β,
β := βε | βε,

βε := βεβε | βε + β | βε + βε | β󰂏 | β?,

βε := σ | βεβ | βεβε | βε + βε.

(21)

From this we recall that the generating functions of β, βε and βε, respectively

Rk, Rk,ε, and Rk,ε satisfy the following equations [4]:

Rk(z) = kz + 2zRk(z)
2 + 2zRk(z)

Rk,ε(z) = 2zRk,ε(z)
2 + 2zRk,ε(z)Rk,ε(z) + 2zRk,ε(z) + 2zRk,ε(z)

Rk,ε(z) = kz + 2zRk,ε(z)
2 + 2zRk,ε(z)Rk,ε(z)

Now using Definition 1, we obtain the cost functions c and m associated with the

size of the expressions resulting from applying ssnf() and ss(), respectively.
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c(∅) = c(ε) = c(σ) = 1

c(β1 + β2) = c(β1) + c(β2) + 1

c(β1β2) = c(β1) + c(β2) + 1

c(β󰂏) = m(β) + 1

c(β?
ε) = c(βε)

c(β?
ε) = c(βε) + 1

m(∅) = m(ε) = m(σ) = 1

m(β1 + β2) = m(β1) +m(β2) + 1

m(βεβ
′
ε) = m(βε) +m(β′

ε) + 1

m(βεβε) = c(βε) + c(βε) + 1

m(βεβ) = c(βε) + c(β) + 1

m(β󰂏) = m(β)

m(β?) = m(β)

Let Ck =
󰁓

β c(β)z
|β| and Mk =

󰁓
β m(β)z|β| be the cost generating functions

associated with these measures and Xk,ε and Xk,ε the respective functions when

restricted to expressions βε and βε, respectively and X ∈ {C,M}. We can omit the

values for ∅ and ε as they do not contribute to the asymptotic estimates. As before,

we have, for instance,

Ck(z) =
󰁛

β

c(β)z|β|

=
󰁛

σ

c(σ)z +
󰁛

β1,β2

(c(β1) + c(β2) + 1)z|β1+β2|

+
󰁛

β1,β2

(c(β1) + c(β2) + 1)z|β1β2|

+
󰁛

β

(m(β) + 1)z|β
󰂏| +

󰁛

βε

c(βε)z
|β?

ε | +
󰁛

βε

(c(βε) + 1)z|β
?
ε |.

From the above, the following system of equations is obtained:

Ck(z) = kz + 4zCk(z)Rk(z) + 2zRk(z)
2 + zCk(z) + zMk(z) + zRk(z) + zRk,ε(z),

Mk(z) = kz + 2zMk(z)R(z) + 2zRk(z)
2 + 2zMk(z) + 2zMk,ε(z)Rk,ε(z) +

2zCk,ε(z)Rk,ε + 2zCk(z)Rk,ε(z),

Ck,ε(z) = kz + 2zCk,ε(z)Rk(z) + 2zCk(z)Rk,ε(z) + 2zRk,ε(z)Rk(z),

Ck,ε(z) = 2zCk(z)Rk,ε(z) + 2zCk,ε(z)Rk(z) + 2zRk(z)Rk,ε(z) +

zCk(z) + zMk(z) + zRk(z) + zRk,ε(z),

Mk,ε(z) = 2zMk(z) + 2zMk(z)Rk,ε(z) + 2zMk,ε(z)Rk(z) + 2zRk,ε(z)Rk(z).

Using Gröbner bases technique one obtains the following polynomial equation sat-

isfied by C = Ck(z):

2z(1 + kz)pqC2 + prC − kzs = 0, (22)
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where p, q, r, s ∈ Z[z] are given by

p = 1− 4z + 4z2 − 8kz2,

q = 1− 4z + 3z2 − 9kz2 − 3kz3 − 2k2z3,

r = 1 + (−5 + k)z + (8− 13k)z2 + (−4 + 12k − 11k2)z3

+ k(6 + k − 2k2)z4 + 4k2z5,

s = 1 + (−5 + k)z + (4− 13k)z2 + (16 + 10k − 11k2)z3

+ (−32 + 40k + k2 − 2k3)z4 + 16(1− 3k + k2)z5 − 16k2z6.

Solving (22) in order to C one sees, after some simplifications, that the gener-

ating function C is given by the root of this equation that has a definite value at

z = 0, i.e.,

C =
−r

√
p+ |t|

4z(1 + kz)q
√
p
,

where

t = 1 + (−7 + k)z − 3(−6 + 5k)z2 + (−20 + 42k − 11k2)z3

+ (8− 46k + 23k2 − 2k3)z4 + 2k(6− 27k + 2k2)z5 − 8k2(1 + 2k)z6.

This can be further simplified yielding

C =
2kzs

√
p (|t|+ r

√
p)

.

From this we see that the dominant singularity of Ck(z) is either the positive root

of p(z), or the smallest positive root of |t| + r
√
p. The latter possibility can be

discarded as follows. Let ρk be the positive root of p. Using Sturm’s theorem, one

ensures that each of the polynomials q, r and t has exactly one root in the interval

[0, ρk]. Let ξ be the root of r in that interval. Using the first five terms of the

appropriate Puiseux’s expansion to approximate the root of r, one gets a vaule

ζk =

󰀃
1
k

󰀄2/3
3
√
2

− 3

2k
+

19
󰀃
1
k

󰀄4/3

6 22/3
− 4

3
22/3

󰀕
1

k

󰀖5/3

+
17

12k2
,

for which r(ζk) > 0, while s(ζk) < 0 and q(ζk) < 0, for a sufficiently large k.

Therefore, for values in [0, ξk], |t| + r
√
p is always positive. In the interval [ξk, ρk],

since

t2 − r2p = 8kz2(1 + kz)sq,

and r is negative, one sees that |t|+ r
√
p is also positive.

Applying, once again, the technique described at the end of the Section 4 one

obtains

[zn]C(z) ∼ 1

c
√
π
ρ−nn−1/2. (23)
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where ρ = ρk is, thus, the same as the one given in (5), and

c = ck = 2

󰁶
(2k − 1)(2u

√
k + v

√
2)

k3/2(u′ + 2v′
√
2k)

,

with

u = 8k5 − 12k4 − 10k3 + 15k2 + 4k + 12,

v = 8k5 − 12k4 + 22k3 − 17k2 − 20k − 4,

u′ = 32k6 − 112k5 + 112k4 + 56k3 + 66k2 + 57k + 8,

v′ = 16k5 − 32k4 + 24k3 − 64k2 − 7k − 14.

From (23), dividing it by the accumulated size of all regular expressions (us-

ing (5)) one can obtain the limit for the average reduction on the size of a regular

expression rewritten as an ssnf expression

γk = lim
n→∞

[zn]Ck(z)

n [zn]Rk(z)
=

4
√
ρk

ck
4
√
2k

. (24)

One can easily check that this ratio goes to 1 when k → ∞.

7. Experimental Results

We ran some experiments, using the FAdo package [20], to obtain average sizes of the

measures studied above for small values of k and n. For the results to be statistically

significant, regular expressions were uniformly random generated using a version of

the grammar for Sk in reverse polish notation. For each size n ∈ {200, 500, 1000},
and alphabet size k ∈ {2, 10, 50}, samples of 10000 expressions were generated.

This is sufficient to ensure a 95% confidence level within a 1% error margin. Table 1

presents the obtained average values of several measures for regular expressions in

ssnf together with the asymptotic average values calculated, in Section 5, for the

alphabetic size (ℓk) and the size of Aεf (fk), respectively. The last column, labeled

wcεf , presents the worst case size of Aεf as given in Theorem 3, for expressions of

size n. Table 2 shows results of the conversion of general expressions to ssnf and the

asymptotic limit of the ratio calculated in the previous section (γk).

8. Conclusions

The average complexity results obtained for expressions in ssnf are slightly smaller

than the ones obtained for general regular expressions, but the asymptotic limits

as the alphabetic size goes to infinity are the same. Both the ratios, between the

number of ssnf expressions and the number of general expressions, of a certain size,

and between the size of ssnf expressions and the size of general expressions, tend to

onea.

aIn the previous version of this paper, this limit was wrongly conjectured.
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Table 1. Results for regular expressions in ssnf

k |α| |α|Σ |δpos| |δpos|
|α| |δεf | |Qεf | |εf| |α|Σ

|α| ℓk
|εf|
|α| fk wcεf

2

200 83.86 348.69 1.74 112.20 52.86 165.06 0.42 0.42 0.83 0.98 1.479

500 208.99 981.81 1.96 279.97 129.74 409.71 0.42 0.82 1.472

1000 417.70 2048.25 2.05 559.04 257.85 816.89 0.42 0.82 1.469

2000 834.90 4219.23 2.11 1117.90 513.83 1631.73 0.42 0.82 1.469

10

200 89.13 299.91 1.50 111.98 51.80 163.78 0.45 0.44 0.82 0.90 1.479

500 222.09 823.34 1.65 279.11 126.91 406.02 0.44 0.81 1.472

1000 443.77 1708.1 1.71 557.72 252.30 810.02 0.44 0.81 1.469

2000 887.10 3490.5 1.75 1115.00 502.64 1617.64 0.44 0.81 1.469

50

200 93.63 254.89 1.27 108.53 51.29 159.82 0.47 0.47 0.80 0.84 1.479

500 233.34 686.42 1.37 270.66 125.80 396.46 0.47 0.79 1.472

1000 466.20 1412.69 1.41 540.84 249.94 790.78 0.47 0.79 1.469

2000 931.97 2870.7 1.44 1081.10 498.14 1579.2 0.47 0.79 1.468

Table 2. Results of conversion to ssnf

k |α| |α|Σ |ssnf(α)| |ssnf(α)|
|α| γk

2
200 67.1 175.20 0.88 0.79

500 167.1 437.7 0.88

1000 333.8 875.4 0.88

10
200 82.2 191.3 0.96 0.93

500 204.7 478.2 0.96

1000 409.1 956.4 0.96

50
200 91.36 197.68 0.99 0.98

500 227.8 494.2 0.99

1000 455.0 988.3 0.99

2000 909.6 1976.8 0.99
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