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Abstract. We introduce the notion of reset left regular decomposition
of an ideal regular language and we prove that there is a one-to-one cor-
respondence between these decompositions and strongly connected syn-
chronizing automata. We show that each ideal regular language has at
least a reset left regular decomposition. As a consequence each ideal regu-
lar language is the set of synchronizing words of some strongly connected
synchronizing automaton. Furthermore, this one-to-one correspondence
allows us to formulate Černý’s conjecture in a pure language theoretic
framework.

1 Introduction

Since, in the context of this paper, we are not interested in automata as languages
recognizer but just on the action of its transition function δ on the set of statesQ,
let us consider a deterministic finite automaton (DFA) as a tuple A = 〈Q,Σ, δ〉,
where the initial and final states are deliberately omitted from the definition.
But, because in some point of this work we refer to an automaton as a language
recognizer, we also call a DFA a tuple B = 〈Q′, Σ′, δ′, q0, F 〉 and the language
recognized by B is the set L[B] = {u ∈ Σ∗ : δ′(q0, u) ∈ F}. A DFA A =
〈Q,Σ, δ〉 is called synchronizing if there exists a word w ∈ Σ∗ “sending” all
the states into a single one, i.e. δ(q, w) = δ(q′, w) for all q, q′ ∈ Q. Any such
word is said to be synchronizing (or reset) for the DFA A . This notion has
been widely studied since the work of Černý in 1964 [11] and his well known
conjecture regarding the length of the shortest reset word. For more information
on synchronizing automata we refer the reader to the survey by Volkov [12].
In what follows, when there is no ambiguity on the choice of the action δ of
the automaton, we use the notation q · u instead of δ(q, u). We extend this
action to a subset H ⊆ Q in the obvious way H · u = {q · u : q ∈ H} with
the convention ∅ · u = ∅, and for a language L ⊆ Σ∗ we use the notation
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H · L = {q · u : q ∈ H,u ∈ L}. We say that A is strongly connected whenever
for any q, q′ ∈ Q there is a word u ∈ Σ∗ such that q · u = q′. In the realm of
synchronizing automata this notion is crucial since it is well known that Černý’s
conjecture is true if and only if it is true for the class of strongly connected
synchronizing automata.

In this paper we study the relationship between ideal regular languages and
synchronizing automata. A language I ⊆ Σ∗ is called a two-sided ideal (or simply
an ideal) if Σ∗IΣ∗ ⊆ I. In this work we will consider only ideal languages which
are regular. Denote by IΣ the class of ideal languages on an alphabet Σ. For
a given synchronizing automaton A , Syn(A ) denotes the language of all the
words synchronizing A . It is a well known fact that Syn(A ) = Σ∗ Syn(A )Σ∗ is
a regular language which is also an ideal. This ideal is generated by the set of
minimal synchronizing words G = Syn(A )\(Σ+ Syn(A )∪Syn(A )Σ+). This set
can also be obtained considering the operators introduced in [6,8]. In case the set
of generators G is finite, I is called finitely generated ideal and the synchronizing
automata whose set of synchronizing words is finitely generated are called finitely
generated synchronizing automata (see [5,7,9]). It is observed in [3] that the
minimal deterministic automaton AI = 〈Q′, Σ, δ′, q0, {s}〉 recognizing an ideal
language I is synchronizing with a unique final state s which is fixed by all the
elements of Σ. We will refer to such state as the sink state for AI . Furthermore
Syn(AI) = I. Thus, each ideal language is endowed with at least a synchronizing
automaton having I as the set of reset words. Therefore, for each ideal I there is
a non-empty set SA(I) of all the synchronizing automata B with Syn(B) = I.
In [3] the author introduces the notion of reset complexity of an ideal I as the
number of states of the smallest automata in SA(I). In the same paper it is shown
that the reset complexity can be exponentially smaller than the state complexity
of the language. In [1] it is considered the special case of finitely generated
synchronizing automata with the set of the reset words which is a principal ideal
P = Σ∗wΣ∗ generated by a word w ∈ Σ∗, and it is presented an algorithm to
generate a strongly connected synchronizing automaton Bw with Syn(Bw) = P
with the same number of states of AP . Therefore, for an ideal language I the first
natural question that arises is wheather or not SA(I) always contains a strongly
connected automaton or not. In Section 3 we answer affirmatively to this question
for non-unary ideal languages. However, to study and characterize languages
which are the reset words of strongly connected synchronizing automata we need
to introduce the following provisional class of strongly connected ideal language:

Definition 1. An ideal language I is called strongly connected whenever I =
Syn(A ) for some strongly connected synchronizing automaton A .

The paper is organized as follows. In Section 2 we introduce the notion of a (re-
set) left regular decomposition of an ideal, and we prove that strongly connected
ideal languages are exactly the ideals having a reset left regular decomposition.
We also exhibit a bijection that associates to each strongly connected ideal lan-
guage I a strongly connected synchronizing automaton A with Syn(A ) = I.
In Section 3 we prove that each ideal language is a strongly connected ideal
language. Thus, we can introduce the concept of reset regular decomposition
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complexity of an ideal and give an equivalent formulation of Černý’s conjecture
using this notion. Finally we state some open problems and direction of future
research.

2 Strongly Connected Ideal Languages

We denote the class of strongly connected ideals on some finite alphabet Σ by
SCIΣ and the class of strongly connected synchronizing automata by SCSAΣ .
Here, we characterize the class SCIΣ using the concept of reset left regular
decomposition of an ideal I. For L ⊆ Σ∗ and u ∈ Σ∗, let Lu = {xu : x ∈ L},
uL = {ux : x ∈ L}. The reverse operator ·R is such that given a word u =
u1u2 . . . uk, u

R = uk . . . u2u1. This operator extends naturaly to languages.

Definition 2. A left regular decomposition is a collection {Ii}i∈F of disjoint left
ideals Ii of Σ

∗ for some finite set F such that:

i) For any a ∈ Σ and i ∈ F , there is a j ∈ F such that Iia ⊆ Ij.

The decomposition {Ii}i∈F is called a reset left regular decomposition if it also
satisfies the following extra condition:

ii) Let I = �i∈F Ii. For any u ∈ Σ∗ if there is an i ∈ F such that Iu ⊆ Ii, then
u ∈ I.

Note that if {Ii}i∈F is a reset left regular decomposition, then the condition
Iu ⊆ Ii implies u ∈ Ii. Since u ∈ I, then u ∈ Ij for some j ∈ F , hence Iu ⊆ Ij . If
j 	= i we have both Iu ⊆ Ii and Iu ⊆ Ij and thus Ii ∩ Ij 	= ∅, which is a contra-
diction. We say that an ideal I has a (reset) left regular decomposition if there
is a (reset) left regular decomposition {Ii}i∈F such that I = �i∈F Ii. The order
of {Ii}i∈F is |F |. The notion of right regular decomposition is symmetric: ex-
change left ideals with right ideals and Iia, Iu with aIi, uI, respectively. Denote
by RLDΣ (RRDΣ) the class of the reset left (right) regular decompositions.
Note that for a given left regular decomposition (reset left regular decomposi-
tion) {Ii}i∈F , then {IRi }i∈F is a right regular decomposition (reset right regular
decomposition). Thus ·R is a bijection between RLDΣ → RRDΣ . We have the
following characterization.

Theorem 3. An ideal language I is strongly connected if and only if it has a
reset left regular decomposition.

Proof. Let A = 〈Q,Σ, δ〉 be a strongly connected synchronizing automata with
Syn(A ) = I. For each q ∈ Q, let:

Iq = {u ∈ I : Q · u = q}

We claim that {Iq}q∈Q is a reset left regular decomposition for I. It is obvious
that Iq are left ideals since for any u ∈ Iq and v ∈ Σ∗, we get Q·vu ⊆ Q·u = {q},
i.e. Q · vu = {q}. Let q, q′ ∈ Q with q 	= q′ and assume Iq ∩ Iq′ 	= ∅ and let
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u ∈ Iq ∩ Iq′ . By definition, we have q = Qu = q′, which is a contradiction. Hence
Iq ∩ Iq′ = ∅. Clearly �q∈QIq ⊆ I. Conversely if u ∈ I, since it is a reset word,
then Qu = q′ for some q′ ∈ Q, i.e. u ∈ Iq′ and so we have the decomposition
�q∈QIq = I. Moreover for any a ∈ Σ, if u ∈ Iq, then Q ·ua = q ·a, thus Iqa ⊆ Iq·a
and so condition i) of the Definition 2 is fulfilled. Thus it remains to prove that
condition ii) is also satisfied. Suppose that Iw ⊆ Iq for some q ∈ Q. Take any
q ∈ Q, we claim that qw = q and so w ∈ Syn(A ) = I. Take any u′ ∈ I, thus
Q · u′ = q′ for some q′ ∈ Q. Since A is strongly connected, there is u′′ ∈ Σ∗

such that q′ · u′′ = q. Thus u = u′u′′ ∈ I satisfies Q · u = q. Since Iw ⊆ Iq we
get q = Q · (uw) = q · w, i.e. q · w = q.

Conversely suppose that I has a reset left regular decomposition {Ii}i∈F . We
associate a DFA A ({Ii}i∈F ) = 〈{Ii}i∈F , Σ, η〉 in the following way. By condition
i) of Definition 2 for any Ii and a ∈ Σ there is a j ∈ F with Ii · a ⊆ Ij . Thus
we define η(Ii, a) = Ij . This function is well defined. Let j, k ∈ F with j 	= i,
such that Ii · a ⊆ Ij , Ik, then Ii · a ⊆ Ij ∩ Ik, hence Ij ∩ Ik 	= ∅, which is a
contradiction. Hence A ({Ii}i∈F ) is a well defined DFA. It is straightforward
to check that η(Ii, u) = Ik for u ∈ Σ∗ if and only if Iiu ⊆ Ik. We prove that
A ({Ii}i∈F ) is strongly connected. Indeed take any i, j ∈ F and let w ∈ Ij . Since
Ij is a left ideal, then Iiw ⊆ Ij . Hence Iiw ⊆ Ij implies η(Ii, w) = Ij and so
A ({Ii}i∈F ) is strongly connected. We need to prove that I ⊆ Syn(A ({Ii}i∈F )).
Let u ∈ I, since {Ii}i∈F is a decomposition, u ∈ Ij for some j ∈ F . Since Ij is
a left ideal, we get Iiu ⊆ Ij for any i ∈ F . Hence η(Ii, u) = Ij for all i ∈ F , i.e.
u ∈ Syn(A ({Ii}i∈F )). Conversely, let u ∈ Syn(A ({Ii}i∈F )). By the definition
η(Ii, u) = Ij for some j ∈ F and for all i ∈ F . Therefore Iiu ⊆ Ij which implies
Iu ⊆ Ij and so by ii) of Definition 2 we get u ∈ I. �


It is straightforward to check that the correspondence given in the proof of
Theorem 3 is a bijection between the classes RLDΣ and SCSAΣ . We state this
fact in the following theorem.

Theorem 4. The map A : RLDΣ → SCSAΣ defined by

A : {Ii}i∈F �→ A ({Ii}i∈F ) = 〈{Ii}i∈F , Σ, η〉

with η(Ii, a) = Ij for a ∈ Σ if and only if Iia ⊆ Ij is a bijection with inverse
given by I : SCSAΣ → RLDΣ defined by

I : B = 〈Q,Σ, δ〉 �→ {Iq}q∈Q = {{u ∈ Σ∗ : δ(Q, u) = q}}q∈Q

The following corollary characterizes the case of ideals on a unary alphabet.

Corollary 1. Let I be an ideal over a unary alphabet Σ = {a}. Then I is
strongly connected if and only if I = Σ∗.

Proof. Since the alphabet is unary we have I = a∗ama∗ for some m ≥ 0.
Suppose that I is strongly connected, then by Theorem 3 there is a reset left
regular decomposition {Ii}i∈F of I. Assume am ∈ Ij for some j ∈ F . We
claim |F | = 1. Indeed, since Ij is a left ideal we have a∗am ⊆ Ij , hence
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I = a∗ama∗ = a∗am ⊆ Ij , i.e. I = Ij . Therefore, by Theorem 4 the only
strongly connected synchronizing automaton having I as set of reset words is
the automaton with one state and a loop labelled by a. Hence I = a∗. On the
other hand, if I = a∗ then I is the set of reset words of the synchronizing au-
tomaton with one state and a loop labelled by a, which is strongly connected,
i.e. I is strongly connected. �


From this Corollary we can assume henceforth that the ideals considered are
taken over an non-unary alphabet Σ. Given a strongly connected ideal lan-
guage I with Syn(B) = I for some strongly connected synchronizing automaton
B = 〈Q,Σ, δ〉, there is an obvious way to calculate the associated reset left
regular decomposition I(B). It is well known that I is recognized by the power
automaton of B defined by P(B) = 〈2Q, Σ, δ,Q, {{q} : q ∈ Q}〉, where 2Q de-
notes the set of subsets of Q, the initial state is the set Q and the final set of
states is formed by all the singletons. Thus, for each q ∈ Q we can associate
the DFA P(B)q = 〈2Q, Σ, δ,Q, {q}〉 and so we can calculate the associated reset
left regular decomposition by I(B) = {L[P(B)q]}q∈Q. A first and quite natural
issue is to calculate the reset left regular decompositions of the reset words of the
Černý’s series Cn = 〈{1, . . . , n}, {a, b}, δn〉, where a acts like a ciclic permutation
δn(i, a) = i+ 1 for i = 1, . . . , n− 1 and δn(n, a) = 1, while b fixes all the states
except the last one: δn(i, b) = i for i = 1, . . . , n− 1 and δn(n, b) = 1 (see Fig. 1).

n− 1

n 1

2

· · ·

b a

a, b

b

a
b

aa

Fig. 1. The Černý’s automaton Cn

For example, in the case of C4 the associated reset left regular decomposition
is the one given by

L[P(C)1] = (((a∗b)(b+ ab+ a4)∗(a3b+ (a2b(b+ a2)∗ab)))((b + ab∗a3) +
+((ab∗ab)(b + a2)∗)ab))∗(ab∗a2b)(b+ ((ab∗ab∗)(a(a+ b))))∗

L[P(C)2] = L[P(C)1]ab
∗

L[P(C)3] = L[P(C)1]ab
∗ab∗

L[P(C)4] = L[P(C)1]ab
∗ab∗a.

In general, for Cn it is not difficult to see that |δn({1, . . . , n}, ux)| = 1 and
|δn({1, . . . , n}, u)| > 1 for some word u ∈ {a, b}∗ and a letter x ∈ {a, b} if and
only if δn({1, . . . , n}, u) = {n, 1} and x = b. Thus, if |δn(Q,w)| = 1, then there
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is a prefix w′b of w with δn(Q,w′) = {n, 1}. Therefore, it is straightforward to
check that in this case the decompositions are given by

L[P(C)1] = {w ∈ Σ∗ : δn({1, . . . , n}, w) = {1}}
L[P(C)�] = L[P(C)1](ab

∗)�−1 for � = 2, . . . , n− 1

L[P(C)n] = L[P(C)1](ab
∗)n−2a.

By Theorem 3 if I is strongly connected, we can associate the non-empty set
R(I) of all the reset left regular decompositions of I. We have the following
lemma.

Lemma 1. Let {Ii}i∈F be a reset left regular decompositions of I and let
{Jk}k∈H be a left regular decomposition of an ideal J . If I ⊆ J , then the non-
empty elements of {Ii ∩ Jk}i∈F,k∈H form a reset left regular decomposition of I.

Proof. Let T ⊆ F × H be the set of all the pairs of indices (i, j) for which
Ii ∩ Jj 	= ∅ and rename the set {Ii ∩ Jk}(i,k)∈T by {Sj}j∈T . It is clear that
each Sj is a left ideal and Sj ∩ St = ∅ for j 	= t. Furthermore �j∈TSj = I.
Condition i) is also verified. Take any Sj and suppose that Sj = Ii∩Jk for some
(i, k) ∈ T , and let a ∈ Σ. Then Iia ⊆ Is, Jka ⊆ Jt for some s ∈ F, t ∈ H .
Hence (Ii ∩ Jk)a = Iia ∩ Jka ⊆ Is ∩ Jt = Sh for some h ∈ T , i.e. Sja ⊆
Sh. Let us prove that reset condition ii) is also fulfilled. Assume Iu ⊆ St for
some t ∈ T and u ∈ Σ∗. Thus St = Ii ∩ Jk, for some i ∈ F, k ∈ H , hence
St ⊆ Ii which implies Iu ⊆ Ii. Hence u ∈ I since {Ii}i∈F is a reset left regular
decompositions of I. �


Given I,J ∈ R(I) with I = {Ii}i∈F and J = {Jk}k∈H by Lemma 1 the
family I ∧J = {Ii ∩ Jk}i∈F,k∈H is still a reset left regular decomposition. Thus
we have the following immediate result.

Corollary 2. The family of the reset left regular decompositions of a strongly
connected ideal I is a ∧-semilattice.

Let ‖I‖ = min{|u| : u ∈ I}. It is a well known fact that Černý’s conjecture
holds if and only if it holds for strongly connected synchronizing automata. The
following proposition place Černý’s conjecture in a purely language theoretic
context.

Proposition 5. Černý’s conjecture is true for strongly connected synchronizing
automata if and only if for any strongly connected ideal I and any reset left
regular decomposition {Ii}i∈F of I we have:

|F | ≥
√
‖I‖+ 1

Proof. Suppose that Černý’s conjecture is true for strongly connected synchro-
nizing automata. Let I be a strongly connected ideal and let {Ii}i∈F be a reset
left regular decomposition of I. Let A({Ii}i∈F ) be the standard synchronizing
automata associated to this decomposition as in Theorem 4. This automaton
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has |F | states, hence there is a synchronizing word u ∈ Syn(A({I}∈F )) = I
with |u| ≤ (|F | − 1)2. Thus |F | ≥

√
|u|+ 1 ≥

√
‖I‖+ 1.

Conversely, take any strongly connected synchronizing automata A =
〈Q,Σ, δ〉 with n states and let {Iq}q∈Q be the associated reset left regular decom-
position of I = Syn(A ) as in Theorem 4. Since the order of this decomposition
is n, then n ≥

√
‖I‖ + 1. Thus we have that there is a u ∈ Syn(A ) with

|u| ≤ (n− 1)2 and so Černý’s conjecture holds for A . �


3 Ideal Languages Are Strongly Connected Ideal
Languages

The notion of strongly connected ideal languages (SCIΣ) has been introduced
in Section 2 to study the relationship between strongly connected synchronizing
automata and ideal languages. In this section we show that SCIΣ = IΣ . This
is done by showing that each ideal language I has at least a reset left regular
decomposition. Equivalently, by Theorem 4, I is the set of the reset words of some
strongly connected synchronizing automata with the same number of states as
the order of this decomposition. However, the construction presented in Theorem
6 provides a reset left regular decomposition for IR which is in general a double
exponential with respect to the state complexity of IR, and this bound does not
seem to be tight. Before we prove the main result of this section we introduce
some notions which are crucial for the sequel. Let C = 〈Q,Σ, δ〉 be an automaton
with n states and a sink state s. Note that for such an automaton |Q · u| = 1
if and only if Q · u = {s}. Fix a word u ∈ Σ∗ and a subset H ⊆ Q. Assume
u = u1 . . . ur for u1, . . . , ur ∈ Σ and r = |u|. For 0 ≤ i < j ≤ r we use the
standard notation u[i, j] to indicate the factor uiui+1 . . . uj if i > 0, otherwise
u[0, j] = u1 . . . uj with the convention that u[0, 0] = ε and u[i, i] = ui if i > 0.

We introduce a function which is fundamental in the sequel. Let m = n2+n
2 + 1

and let Zm be the ring of the integers modulo m. For an integer t ≥ 1, [2Q]t
denotes the set of subsets of Q of cardinality t. Let Tt = Zm([2Q]t �Σ) be the
free Zm-module on [2Q]t �Σ. Let H ∈ [2Q]t, a ∈ Σ and p ∈ Zm([2Q]t �Σ). We
denote by p(H), p(a) the coefficients in Zm of p with terms H , a, respectively.
Note that p can be decomposed as the sum of the two following terms

p〈Q〉 =
∑

H⊆Q

p(H)H, p〈Σ〉 =
∑

a∈Σ

p(a)a

Fix an element u ∈ Σ∗ with u = u1 . . . ur and H ⊆ Q with |H | > 1. Let j
be the biggest index 1 ≤ j ≤ r such that |H · u[1, j]| > 1 and if j < n, then
|H · u[1, j + 1]| = 1. The set S = H · u[1, j] is called the last set of (H,u). Let
i be the index 1 ≤ i ≤ r such that u[i, j] is the maximal factor of u with |S| =
|H · u[0, k]| for all i ≤ k ≤ j. The tail of (H,u) is the element of Zm([2Q]t �Σ)
with t = |S| ≥ 2 defined by

T (H,u) =

{∑j−1
k=i (H · u[0, k] + u[k + 1, k + 1]) , if u[0, j] = u∑j
k=i (H · u[0, k] + u[k + 1, k + 1]) , otherwise.
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Consider the set T = �n
t=2Tt. For an element T ∈ Tt, the integer t ≥ 2 is called

the index of T and it is denoted by Ind(T ). We give to T a structure of semigroup
by introducing an internal binary operation � defined in the following way. Let
T1 ∈ Ti, T2 ∈ Tj , then

T1 � T2 =

{
Tmin{i,j} if i 	= j
T1 + T2 otherwise

Note that (T, �) has a graded structure with respect to the semilattice ([2, n],
min), i.e. Ti�Tj ⊆ Tmin{i,j}. Let u ∈ Σ∗, the tail map is the function τu : 2Q → T

defined by

τu(H) =

{
T (H,u) if |H | > 1
0n otherwise

where 0n is the zero of Tn. The following lemma is a direct consequence of the
definitions.

Lemma 2. With the above notation for any u, v ∈ Σ∗ we have:

τvu(T ) = τv(T ) � τu(T · v)

We denote by Hom(A,B) the set of the maps f : A → B. We have the
following lemma.

Lemma 3. Consider the map μ : Σ∗ → Hom(2Q,T) defined by μ(u) = τu, then
Ker(μ) is a left congruence on Σ∗.

We are now ready to prove the main theorem of this section.

Theorem 6. Let I ⊆ Σ∗ be an ideal language, then I is a strongly connected
ideal language.

Proof. Put J = IR. Let AJ = 〈Q,Σ, δ, q0, {s}〉 be the minimal DFA recognizing
J and let μ be the map of Lemma 3 defined with respect to AJ . We claim that
the equivalence classes of the relation ∼= (J × J) ∩ Ker(μ) form a reset right
regular decomposition of J . By the definition of the map μ, Ker(μ) has finite
index, thus ∼ has also finite index. Since J = Syn(AJ), for any H ⊆ Q and
u ∈ J we have H ·u = {s}. Hence it is straightforward to check that τu = τuv for
any v ∈ Σ∗. Therefore the ∼-classes are right ideals and form a finite partition
{Ji}i∈F of J . Furthermore, by Lemma 3, Ker(μ) is a left congruences of Σ∗,
and so, since J is an ideal, it is also a congruence on J , hence for any Ji and
a ∈ Σ, we get aJi ⊆ Jj for some j ∈ F . Thus condition i) of Definition 2 is
satisfied and so {Ji}i∈F is a right regular decomposition. We claim that also
condition ii) is satisfied. Assume, contrary to our claim, that there are i ∈ F
and v ∈ Σ∗ \ J such that vJ ⊆ Ji. Write H = Q · v. Since Syn(AJ) = J
we get |H | > 1. Thus let t = min{|H · r| : r ∈ Σ∗ and H · r 	= {s}} and let
S ∈ {H · r : r ∈ Σ∗ and |H · r| = t}. Let x ∈ Σ∗ such that H · x = S and
let u = vx. Note that u ∈ Σ∗ \ J , uJ ⊆ Ji and Q · u = S with |S| = t. Since
Syn(AJ) = J and AJ is a synchronizing automaton with zero, then there is a
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synchronizing word w ∈ J with |w| < n2+n
2 + 1 where n = |Q| (see [10]). Let

T ′ be the last set of (S,w) and let w′ be the maximal prefix of w such that
S · w′ = T ′. Thus, there is a letter a ∈ Σ such that w′a is a prefix of w and
|T ′a| = 1. We consider two mutually exclusive cases.

i) Suppose |T ′ ·b| = 1 for any b ∈ Σ. It is not difficult to check that T (Q, uw) =
T (Q, uw′a). Since |Σ| > 1 consider a letter b ∈ Σ with b 	= a. Since Q ·uw′ =
T ′ and |T ′ · b| = 1, we also have T (Q, uw′bw) = T (Q, uw′b). Since uJ ⊆ Ji
we have uw, uw′bw ∈ Ji (being w′bw ∈ J). Hence we get

T (Q, uw′a) = T (Q, uw) = T (Q, uw′bw) = T (Q, uw′b)

In particular we get T (Q, uw′a)〈Σ〉 = T (Q, uw′b)〈Σ〉, from which it follows
a = b, a contradiction.

ii) Thus, we can assume that there is a letter b ∈ Σ, such that |T ′ · b| > 1. Since
uw, uw′bw ∈ Ji (being w,w′bw ∈ J), we have T (Q, uw′bw) = T (Q, uw).
Hence, by Lemma 2 we have

T (Q, uw) = T (Q, uw′bw) = T (Q, uw′b) � T (T,w)

with T = T ′ · b. Since |T ′| = t is minimal and |T | > 1 we have |T | = |T ′| =
t, hence Ind(T (Q, uw′b)) = Ind(T (T,w)) = t. Therefore, by the previous
equality and the definition of � we get

T (Q, uw) = T (Q, uw′bw) = T (Q, uw′b) + T (T,w)

In particular we have

T (Q, uw)〈Q〉 = T (Q, uw′bw)〈Q〉 = T (Q, uw′b)〈Q〉+ T (T,w)〈Q〉 (1)

Furthermore, T ′ is the last set of (Q, uw′a) and uw′ is the maximal prefix
of uw′a such that T ′ = Q · uw′, since |T ′| = |T | we have that T is the last
set of (Q, uw′b) and uw′b is the maximal prefix of uw′b with T = Q · uw′b.
Thus, by the definition of tail we have T (Q, uw′a)〈Q〉 = T (Q, uw′b)〈Q〉. We
have already observed that T (Q, uw) = T (Q, uw′a), hence by (1)

T (T,w)〈Q〉 = 0 (2)

Let 0 = i1 < i2 < . . . < i� ≤ |w| be the maximal set of indices such that
T = T · w[0, ij ] for all 1 ≤ j ≤ �. Therefore, by the definition of tail and (2)
we have in particular

0 = T (T,w)(T ) = � mod
n2 + n

2
+ 1

Since � ≥ 1 we have that � is a multiple of n2+n
2 + 1. However � ≤ |w| <

n2+n
2 + 1, which is a contradiction.

Therefore v ∈ J and this concludes the proof of the fact that {Ji}i∈F is a reset
right regular decomposition. Hence {JR

i }i∈F is a reset left regular decomposition
and so by Theorem 3 I is a strongly connected ideal language. �
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Corollary 3. Let I be an ideal language on Σ such that IR has state complexity
n. Then there is a strongly connected synchronizing automata B with N states
and Syn(B) = I such that:

N ≤ mk2n

(
n∑

t=2

m(nt)

)2n

where k = |Σ| and m =
(

n2+n
2 + 1

)
.

This corollary shows a double exponential upper bound for the number of
states of the associated strongly connected automaton with respect to the state
complexity of the reverse of the ideal language. It is unknown by the authors
whether this bound is tight or not. In [1], for instance, it is shown an algorithm
that given a principal ideal I = Σ∗wΣ∗ with |w| = n in inputs, it returns
a strongly connected synchronizing automaton with n + 1 states. Therefore in
this case the bound is linear with respect to the state complexity of IR. Even
more recently in this volume [2], it is proven that in case I is finitely generated
there is always a strongly connected synchronizing automaton with a number of
states upper bounded by 2‖I‖, and this bound is tight. Similarly to [3], where the
author has introduced the notion of reset complexity of an ideal I (indicated by
rc(I)) as the number of states of the smallest synchronizing automaton A with
Syn(A ) = I, we can also give a similar notion in the realm of strongly connected
synchronizing automata/reset left regular decomposition. By Theorem 6 for any
ideal languages I, the set R(I) of all the reset left regular decompositions of I
is non-empty. Thus we can define the reset regular decomposition complexity of
I as the integer

rdc(I) = min{|F | : {Ii}i∈F ∈ R(I)}
By the correspondence introduced in Theorem 3, rdc(I) is also the number of
states of the smallest strongly connected synchronizing automaton with the set
of reset words equal to I. Furthermore rc(I) ≤ rdc(I) holds. The importance
of the index rdc(I) can be also understood by the following theorem where we
present a purely language theoretic restatement of Černý’s conjecture.

Theorem 7. Černý’s conjecture holds if and only if for any ideal language I we
have:

rdc(I) ≥
√

‖I‖+ 1

where ‖I‖ = min{|w| : w ∈ I}.
Proof. This a consequence of the fact that Černý’s conjecture holds if and only
if it holds for strongly connected automata and Proposition 5. �


Note that using the well known upper bound (n3 − n)/6 (see [4]) for the
shortest reset word of a synchronizing automaton, we have the bound rdc(I) ≥
3
√
6‖I‖. In general, a natural issue would be the study of bounds for rdc(I)

depending on the state complexity of I or IR. As we have already observed,
Corollary 3 gives an upper bound to rdc(I) with respect to the state complexity
of IR which is not known to be tight.
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Open Problems

We list some open problems originated by the previous results. Fix an ideal
language I.

1. Give a tight upper bound of rdc(I) with respect to the state complexity of
IR or I.

2. In case I is finitely generated is true that rdc(I) ≥ ‖I‖+1? The same problem
in case I is a principal ideal language has been raised in [1]. This would give
a better bound for the shortest synchronizing word for the class of finitely
generated synchronizing automata with respect to the bound obtained in [9].

3. The proof of Theorem 6 uses the minimal DFA recognizing IR. Is there a
proof using another automaton associated to I?

4. Recall that R(I) is the set of all the reset left regular decompositions of I
and the order of a decomposition I ∈ R(I) is just the cardinality |I|. We
denote by Rk(I) the set of reset left regular decompositions of I of order
k ≥ 1.
A quite natural question is whether sup{k ≥ 1 : Rk(I) 	= ∅} = ∞ or not? In
particular, what is the case if we consider I in the class of finitely generated
ideals or in the even smaller class of principal ideals? This last case answers
to the question whether or not, given a principal ideal I, there can there can
be an arbitrarily large strongly connected DFA A with Syn(A ) = I.

5. By Theorem 3, a naive way to calculate Rk(I) can be accomplished by
building all the strongly connected synchronizing automata with k states
and checking if their set of reset words coincides with I. Thus, it is natural
to ask whether there is a more “efficient” way to perform this task without
passing from the construction of all the automata with k states.

Acknowledgments. The authors thank E. Pribavkina for pointing out the
unary case alphabet in Corollary 1.

References

1. Gusev, V., Maslennikova, M., Pribavkina, E.: Principal ideal languages and syn-
chronizing automata. In: Halava, V., Karhumaki, J., Matiyasevich, Y. (eds.) Ru-
FiDimII. TUCS Lecture Notes, vol. 17 (2012)

2. Gusev, V.V., Maslennikova, M.I., Pribavkina, E.V.: Finitely generated ideal lan-
guages and synchronizing automata. In: Karhumäki, J., Lepistö, A., Zamboni, L.
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