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Abstract

Nowadays, we live surrounded by sensing devices, which collect and store data over time,
measuring different and dependent variables. In univariate settings, time series analysis is
already a well-established and mature field. However, in multivariate contexts, it still presents
many limitations, due to their serial and cross dependencies and high-dimensionality. Recently,
network science has been emerging as a promising approach to tackle these issues. These
methods involve transforming an initial time series data set into one or more complex networks,
which can then be analyzed in depth to provide insight into the original time series, but the
majority of the existing work focuses on the univariate setting.

The overall goal of this thesis is precisely to advance time series analysis via network science,
and in particular to find new and useful methods to study and understand complex temporal
data using multidimensional network structures and their topological characteristics. Our
first major contribution is comprehensive overview of the existing methodologies both on the
univariate and multivariate setting, identifying their main characteristics and their differences
and giving insight into their advantages and limitations in a unified notation and language. Our
second major contribution is a proposal of two novel mapping methods that convert multivariate
time series data into multilayer networks: the multilayer horizontal visibility graph, based on a new
concept of cross visibility, and the multilayer quantile graph, based on the concept of transitions.

Being able to capture the properties of a time series with a feature vector is a crucial task.
Here we propose to use features based on topological measures of the mapped networks.
We first introduce the NetF for the univariate case, which we then extend to the multivariate
case with MNetF. Both of these feature sets incorporate representative metrics from different
mappings, and we provide an extensive exploratory study, giving insight and interpretability
into what properties are being captured from the underlying time series. Furthermore, we apply
the proposed features for clustering both synthetic and real data with very promising results,
showcasing its general applicability. Our final contribution is tsmnet, a framework with parallel
computation capabilities written in C++ that makes available all of the developed methods to
any practitioner.

Keywords: Time Series, Complex Networks, Nonparametric Methods, Time Series Features
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Resumo

Nos dias de hoje, vivemos rodeados de dispositivos móveis e sensores, que recolhem e armazenam
dados ao longo do tempo, medindo variáveis diferentes e dependentes. Em contextos univaria-
dos, a análise de séries temporais é uma área bem estabelecida e sólida. No entanto, em contextos
multivariados, ainda apresenta muitas limitações, devido às dependências seriais e cruzadas e à
alta dimensionalidade dos dados. Recentemente, a ciência de redes tem emergido como uma
abordagem promissora para lidar com essas questões. Os métodos envolvem a transformação
de um conjunto de dados inicial de séries temporais em uma ou mais redes complexas, que
podem ser analisadas a fundo para fornecer informações sobre as séries temporais originais,
mas a maioria dos trabalhos existentes foca-se nos contextos univariados.

O objetivo geral desta tese é precisamente avançar na análise de séries temporais via ciência
de redes e, em particular, encontrar métodos novos e úteis para estudar e compreender dados
temporais complexos usando estruturas de redes multidimensionais e suas características
topológicas. A nossa primeira grande contribuição é uma visão abrangente das metodologias
existentes tanto no contexto univariado quanto no multivariado, identificando as suas principais
características e diferenças e dando uma visão das suas vantagens e limitações em uma notação
e linguagem unificadas. A nossa segunda maior contribuição é a proposta de dois novos
métodos de mapeamento que transformam dados de séries temporais multivariadas em redes
de múltiplas camadas: o multilayer horizontal visibility graph, que tem por base um novo conceito
de visibilidade cruzada, e o multilayer quantile graph, que tem por base o conceito de transição.

Ser capaz de capturar as propriedades de uma série temporal com um vetor de características
é uma tarefa crucial. Aqui propomos usar características baseadas em medidas topológicas das
redes mapeadas. Primeiro introduzimos o NetF para o caso univariado, que então estendemos
para o caso multivariado com o MNetF. Ambos os conjuntos de características incorporam
métricas representativas de diferentes mapeamentos, e fornecemos um extenso estudo explor-
atório, fornecendo informações e interpretabilidade sobre quais propriedades são capturadas
das séries temporais subjacentes. Além disso, aplicamos as características propostas para
agrupar dados sintéticos e dados reais com resultados muito promissores, mostrando a sua
aplicabilidade geral. A nossa contribuição final é o tsmnet, uma framework com capacidades de
computação paralela escrito em C++ que disponibiliza todos os métodos desenvolvidos para
qualquer profissional.
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Chapter | 1
Introduction

Everything is theoretically impossible
until it is done.

Robert A. Heinlein

Multidimensional data has become, in recent years, predominant in various fields of research.
Technological developments have led to the generation and collection of huge volumes of data
associated with various real world systems, e.g., through the most diverse and advanced sensing
technologies. These datasets typically exhibit an inherent temporal dimension that is crucial to
their understanding and cannot be overlooked. The analysis of a single collection of observations
indexed in time in a univariate setting is a mature and solid field, usually referred to as time
series analysis (Shumway and Stoffer, 2017). There are several approaches to analyse time series,
such as those stemming from statistics or from dynamic systems (Bradley and Kantz, 2015; Douc
et al., 2014; Shumway and Stoffer, 2017), often tailored to data from specific areas and under
several assumptions. Therefore, the analysis of univariate time series in many contexts (e.g.
high frequency signals, non-stationarity) present, to this day and age, limitations. The data that
are currently gathered, e.g., from large number of sensors which measure different variables
and are positioned at different locations, are time indexed and high dimensional and leads
to multivariate, spatio-temporal and panels of time series. The methods available to analyse
these data sets are limited and have often been developed for specific areas and under several
assumptions that hinder their wide application (Wei, 2019).

Given the multidisciplinary of multidimensional time series data and the growing interest
from other research communities in analyzing these data, alternative approaches have emerged.
This thesis focuses on a network-based approach for analyzing time series. The idea is to map
the time series into a complex network, leveraging the large body of research in network analysis
and providing new insights and novel angles on which to understand the structure of time
series (Silva et al., 2021; Zou et al., 2019). Univariate time series are mapped into single-layer
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networks based on concepts of visibility, transition, and proximity. Multivariate time series may
be mapped into a single-layer network or a network of multiple layers. So far, the literature has
been focused on mappings that result in single-layer network structures which imply significant
losses of information from the original time series data. This thesis aims at bridging this gap in
the literature. Three main challenges in analyzing time series via complex networks are covered
in this thesis.

• Represent multidimensional time indexed data as a complex network capturing both serial
and cross dimensional dependencies.

• Develop new tools for extracting features from univariate and multivariate time series.

• Develop a computational framework that implements time series analysis methods via
complex networks.

1.1 Thesis Motivation

We can think of time series data as collections of observations indexed by time, which are
ubiquitous in all domains from climate studies or health monitoring to financial data analysis.
The main characteristic of a time series is the serial dependence between the observations,
however, this restricts the applicability of many conventional statistical models and methods
developed under the assumption of independent and identically distributed observations. Time
series analysis seeks to develop a set of procedures and mathematical models, capable of
systematically solving the statistical problems posed by the serial correlations and providing
plausible descriptions of data characteristics with a view to forecasting and simulation (Box
et al., 2015).

Multivariate time series present not only serial dependence within each variable but also
interdependence between the different variables. Although the theory of univariate time series
extends in a natural way to the multivariate case, new concepts inevitably arise (Wei, 2019).
The analysis of multivariate time series requires tools, methods, and models for processing
information contained in multiple variables that have both temporal and cross-sectional de-
pendence which must be necessarily different from standard statistical theory and methods
based on a random sample. Mathematical models for multivariate time series have often been
developed tailored to model data from specific areas and under several assumptions. In recent
years, procedures to analyze high dimensional time series have been developed but many
issues remain open (see Wei, 2019 for more details). For example, the high dimension leads to
limitations in computational and memory capacities that make the application of many statistics
models difficult and impractical.
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Recently, approaches based on statistics of time series data have gained attention from
researchers in several areas. Such approaches have proved to be an important preliminary task
in many applications of time series analysis (Fulcher and Jones, 2014; Hyndman et al., 2015; Kang
et al., 2020; Montero-Manso et al., 2020) and an advantage for some of the challenges mentioned
above, in particular for dimensionality reduction. Finding a set of features that summarizes the
main characteristics of such data is therefore a crucial task, which usually involves conventional
statistical and nonlinear measures of time series analysis (Montero-Manso et al., 2020). These
methods usually involve parametric assumptions, parameter estimation, non-trivial calculations,
and approximations, as well as preprocessing tasks such as finding time series components,
differencing, and whitening. Computation problems related to the nature of the data, such as the
length of the time series and dimension size, often appear and make such methods impractical.

Over the last decades, several techniques for extracting univariate time series features have
been developed (see Barandas et al. 2020; Christ et al. 2018; Fulcher and Jones 2017; Fulcher
et al. 2013; Hyndman et al. 2020; Lubba et al. 2019; O’Hara-Wild et al. 2021 for more details).
Most of these techniques have in common the definition of a finite set of statistical features, such
as autocorrelation, the existence of unit roots, periodicity, nonlinearity, and volatility among
others, to capture the global nature of the time series. Although extending these techniques
to describe and represent a multivariate time series dataset by means of global features is a
promising plan, it is more complex and less trivial. The discriminatory features cannot just be
about an individual time series, related to the serial dependence of the data, but can be about the
interactions between the different components, related to the cross dependence of the data. The
existing literature focuses mainly on correlation and causality measures between the individual
time series components and more recent approaches focus on extracting features individually
for each time series component, combining them into a single feature vector (Baldán et al.,
2021). This can be done either by concatenating the resulting feature vectors, or calculating the
correlation between the features in order to reduce the redundancy and the number of features.
Although these approaches allow adapting existing features of packages for univariate time
series to multivariate settings, the cross dependencies are not taken into account.

Many efforts in developing innovative methods to respond to the requirements mentioned
earlier are being made in the data mining, machine learning, and network science fields. In
fact, network science has available a vast set of topological features to characterize several
properties of the structure of networks that can be from more trivial features to non-trivial
features (Barabási, 2016; Costa et al., 2007). Furthermore, recent developments have led to the
generation of more complex and high-level graph structures, which allow the modeling of
multidimensional data without losing important properties, such as the different connections
that can be intra and inter-dimension. These more complex structures are called multilayer
networks and are complex structures capable of establishing internal connections (within the
same layer) and also external connections (between different layers). Despite being a recent
branch of network science, well-established methods and methodologies in the area can be
easily extended and adapted to the new concept (Kivelä et al., 2014).
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Univariate time series networks achieved several results, including theoretical results (Luque
et al., 2009) and topological feature sets useful to time series problems (Silva et al., 2021; Zou
et al., 2019). Different mappings methods capture different characteristics, which depend on
the mapping construction. This can be shown in Figure 1.1 which illustrates different network
structures obtained from a toy univariate time series using three different types of mappings
proposed in the literature. Despite the range of existing methods and methodologies for the
study of a univariate time series through networks, understanding the properties captured by
the different mapping methods is not trivial. Furthermore, most works focus on the analysis of
only one type of mapping method, limiting the information extracted from resulting networks
to the chosen method. Research on multivariate time series mappings is still in its infancy,
especially those that result in multilayer networks. Most focus on reducing multivariate time
series into a single-layer network losing a set of data information that is pertinent to the analysis.
Recent works use multiplex networks to analyze multivariate time series. Multiplex networks
are a special type of multilayer network, which only have external connections between the
same node present in different adjacent layers, ignoring possible direct external connections
between different nodes.

Figure 1.1: Schematic diagrams of different networks results from different mappings of
univariate time series.

Although the literature presents a range of methods and methodologies for the study of time
series through networks the focus has been mainly on univariate time series data. Therefore,
studying multidimensional time series through these network methods and interpreting the
characteristics captured by them still presents many gaps and challenges. Some of these
challenges are as follows.
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• Univariate and multivariate time series features. Feature-based approaches involve a set
of procedures to describe the original time series by a set of features (or statistics, as it is
better known in statistical literature) that describe different behaviors and characteristics
of the data. These approaches have proven to be a powerful approach to help respond to
the most diverse problems addressed in time series analysis, becoming more and more
critical. There is a vast set of descriptive features to univariate time series data, including
linear statistics and features based on nonlinear dynamics, symbolic representation, and
other innovative features such as topological features. However, there is a sparse list of
descriptive features in multivariate time series settings. The existing ones in the literature
are adapted statistical measures from the univariate settings, or computed on each time
series variable independently. In terms of global features (which describe the multivariate
data through measures that describe the data as a whole), these kinds of features are very
difficult (or even impossible) to find. Therefore, new features for multivariate time series
need to be created.

• Topological properties of time series networks. In the literature, there is a large body of
research using topological features to analyze time series data. However, few research
works study and analyze the meaning of the resulting transformation, that is, the inter-
pretability of features at the network and time series level. In fact, different topological
features resulting from different mapping methods describe different (topological and
dynamic) properties of the time series. Empirical studies using those mapping methods
are still required to establish which mappings are most appropriate for a particular dataset
or purpose.

• High-dimensionality. A very worrying and relevant issue in time series data is dimension-
ality. Time series data can be high-dimensional in both temporal dimension and variable
dimension. With the advancement of technology, we can increasingly find this type of
data, and statistical methodologies and methods, which normally involve parameter
estimation, are not completely designed for high-dimensional variables. In fact, the
number of parameters can exceed the length of the data. Common issues related to this
topic are related to computation (time and memory), extraction of appropriate information,
and visualization. More efficient versions of mathematical models of time series are
required, which maintain equal (or better) results and reduce the number of parameters, or
innovative methods that find new relationships and knowledge of multivariate datasets.

In this work, we propose two new mapping methods aimed at analyzing multivariate time
series data via multilayer networks. We study high-level topological properties through features
based on resulting multilayer graphs and we study these properties to respond to the above
challenges.
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1.2 Main Contributions

This thesis aims to use graph-based methods to develop new tools for time series analysis, in
particular, new tools for time series feature extraction via mapping the time series (univariate
and multivariate) into complex networks. Thus, this thesis involves two distinct but related
main research fields: time series analysis and network science. Time series analysis consists on the
study of time indexed data via statistical and mathematical methodologies. Network science
is the study of complex systems via graph theory and topological features. Recent advances
in the literature have provided several methods that unite these two areas around a common
goal: to analyze complex data that present time-dependent properties. The overall purpose of
this thesis is to find new useful methods to study and understand such data, with a particular
interest in multidimensional time series data through multidimensional network structures and
their topological features.

For univariate time series we propose a new set of features based on topological measures of
networks obtained from different mappings. For multivariate time series, we extend the concept
of visibility to pairs of time series and extend two univariate mappings to the multivariate context
leading to two new multilayer networks. One, Multilayer Horizontal Visibility Graph (MHVG),
involves a new concept of visibility, cross-horizontal visibility, between pairs of time series and
the other, Multilayer Quantile Graph (MQG), extends the transition probability between patterns
to the transition between patterns of different time series components. Figure 1.2 shows three
different high-level networks obtained from mapping a toy multivariate time series according
to the mapping methods proposed in this work that include cross dimensional connections
between lagged data (timestamps or patterns). Additionally, we introduce a new set of network-
based features for univariate time series, NetF, and propose a set of features for multivariate
time series, MNetF. Both sets of features may be applied in time series mining tasks. To support
and consolidate the proposed methodologies, we develop a flexible framework to implement
the new mapping methods and the underlying mapping methods from the literature and to
implement the various network topological features.

A detailed description of our contributions follows.

Survey The first contribution of this work is a thorough survey of the state of the art of
time series analysis via network science. It provides a high-level conceptual division (at the
level of the dimensionality and concomitant choice of the resulting network structure) of the
existing mapping methods in the literature, as well as a comprehensive overview of these
methods and their algorithms. It gives a quick overview table that highlights the differences
between the strategies of the different methods and introduces a set of figures illustrating the
main mapping methods, using the same dataset, with the purpose of comparing the different
strategies. For each method, the survey describes the characteristics of the data it captures and
its main references and results.
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Figure 1.2: Schematic diagrams of different networks results from different mappings of
multivariate time series. The nodes of different colors correspond to the different time series
components data, the black lines (back edges) represent connections within dimensions and the
gray lines (gray edges) represent connections between dimensions.

Multilayer time series networks The second contribution is the conception of the two new
methods of mapping multivariate time series into a complete multilayer network structure
described below. Conventional approaches mainly involve reducing the temporal dimensions
in sets of nodes in a single-layer network, losing relevant information. And works that use
multidimensional mappings, limit the mapping to only external connections between the same
nodes of adjacent dimensions. To the best of our knowledge, multilayer time series networks
that incorporate inter-layer edges between different entities (i.e., unique nodes) of the network
have not yet been used in the literature.

MHVG: We propose a new mapping method called multilayer horizontal visibility graph. It
is based on an extension of the horizontal visibility concept (Luque et al., 2009), which
involves a new definition of visibility, the cross-horizontal visibility, and based on multiplex
visibility graphs (Lacasa et al., 2015) to better utilize the structural capacity of multilayer
networks,

MQG: The second mapping here proposed is based on a different mapping concept. It is
called multilayer quantile graph and aims to extend the concept of quantile graphs (Campan-
haro et al., 2011) (for the univariate case), introducing edges between layers that capture the
contemporaneous dynamic transitions between the different time series dimensions. MQG
was designed with the main purpose of reducing the dimensionality of time series data
with high dimensionality. The resulting multilayer networks have a smaller dimension, in
comparison with the MHVG networks, and with the multivariate time series itself.
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Topological features for time series networks. The third contribution is the development of
methodological tools for the introduction of novel sets of descriptive features for both univariate
and multivariate time series data. For univariate case, we propose to combine feature vectors
resulting from different concepts of time series networks. Most of the previous works aimed
at studying univariate time series from a single mapping method that captures particular
characteristics underlying the concept of the chosen method, limiting data analysis to these
characteristics. Our method allows the combination of different characteristics, which can
enrich the data analysis. For multivariate settings, we propose a set of topological features for
multilayer networks (described below) related to the substructures that we can extract from the
network. We also combine different features originating from different multivariate mappings.
As far as we know, no other work presents different topological features of different time series
networks and of multilayer networks that take advantage of both intra- and inter-layer edges
to (univariate and multivariate) time series analysis. In particular, we propose the following
feature vectors.

NetF: NetF is new set of network-based univariate time series features targeted at univariate
time series mining tasks. The proposed procedure includes mapping the time series
into (natural and horizontal) visibility graphs and quantile graphs, from which 5 global
topological features are extracted (average weighted degree, average path length, number
of communities, clustering coefficient, and modularity) for each type of graph, thus
forming a set of 15 features, the NetF. NetF is always computable, which is not always
possible using classic time series features.

MNetF: MNetF is an extention of NetF for multivariate time series. We propose a new
topological feature ratio degree that relates intra-layer and inter-layer connections of the
nodes in the network, and we use extended versions of the common topological features
(degree, path length, number of communities, and modularity) to the substructures of
the multilayer networks, that is, topological features computed on both intra-layer and
inter-layer edges, which we named intra-layer features, inter-layer features, all-layer features,
and relational features. These topological features are computed from different multivariate
time series mapping methods (the MHVG and MQG proposed in this work), forming the
MNetF.

• We carry out a detailed exploratory and empirical analysis of the proposed mapping methods
and topological feature sets on particular sets of univariate and multivariate time series
models. The results show that different topological features capture different properties of the
data complementing each other. In the multivariate case, we verified that the inter-layer edges
between different nodes of different dimensions better capture the different properties of the
series (intra-layer and inter-layer edges), when compared to the features on the individual
layers (intra-layer edges). We observed that despite the dimensionality reduction, MQG
mapping preserves the dynamic characteristics of the time series and between series during
the mapping process. We compare the proposed methodologies with other benchmark feature
sets on real (univariate and multivariate) time series clustering problems. Overall, the results
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(for both NetF and MNetF, respectively) were balanced when compared to other features
sets of benchmark, and when we combine NetF (or MNetF) with the respective benchmark
features the results improve in some of the datasets.

tsmnet The fourth contribution of this thesis is the development of a computational framework
that implements the mappings methods and the topological features proposed in this work and
supports all the results obtained. The tsmnet is a framework in C++ designed and thought for
the analysis of multidimensional time series via multilayer networks. It is capable of extracting
(multilayer) time series networks resulting from univariate and multivariate mappings and
allows extracting topological feature sets directed to perform classification and clustering tasks,
for example. We make tsmnet available to practitioners.

1.3 Thesis Organization

This thesis is structured into eight major chapters described next.

Chapter 1 The present chapter presents the main context of this thesis, introducing the time
series data problems, networks, and the mapping methods of time series analysis through
networks. This chapter also describes the main motivations of our research, presenting the main
challenges and our main contributions, which will be detailed in the following chapters. Finally,
it presents an overview of the thesis contents and a bibliographic note.

Chapter 2 This chapter details the background knowledge necessary for this thesis. Introduces
the common terminology in the time series analysis and network science literature that is used
throughout the thesis, focusing on four relevant concepts for this thesis: univariate time series,
multivariate time series, graphs, and multilayer networks. It also provides a brief description of
time series statistical methods and time series data mining problems. A brief description of the
topological features that serve as the basis for this work is also provided.

Chapter 3 This chapter corresponds to the published content of a paper in the form of a survey
of the state of the art in which this thesis is inserted, plus the incorporation of more recent
published works (Silva et al., 2021). It gives a detailed and structured depiction of the state-of-
the-art methods for mapping time series in networks, complete with overview tables and figures
illustrating the algorithms of the main mapping strategies. It also reviews the existing mapping
approaches to convert (univariate or multivariate) time series data in (single-layer or multiple
layers) network structure, describes their similarities and differences, the data characteristics
captured, and the main results.
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Chapter 4 Introduces the novel mapping methods for mapping multivariate time series data
in a multilayer network, giving the motivation behind it. Explains and gives pseudo-code for the
associated methods, namely the transformation of multivariate data into multilayer structures
and their inter-layer edges. It is divided into two parts, each describing the two novel methods
proposed in this work. Parts of this chapter correspond to part of the work published in Silva
et al. (2023).

Chapter 5 Introduces NetF, a set of global topological features, as a novel set of features for
univariate time series analysis, which is based on several concepts of univariate mappings.
An empirical analysis of time series properties that are captured by each feature of NetF is
carried out, by analyzing the feature space. Additionally, performs cluster analysis of univariate
time series, highlighting the advantage of combining different mapping methods. This chapter
corresponds to part of the work in Silva et al. (2022).

Chapter 6 Introduces the set of global topological features of multilayer networks proposed
in this work, namely: intra-layer topological features, inter-layer topological features, all-layer
topological features, and relational topological features. Presents a new topological feature
aimed at representing intra and inter-layer relationships. The topological features of empirical
analysis of the set of topological features on the new mapping method based on the concept
of cross-visibility. And finally, similarly to NetF, the multivariate version is introduced, that is,
MNetF, as a new set of features for multivariate time series analysis. An empirical analysis of
this feature set is also performed.

Chapter 7 Performs an exhaustive empirical analysis of proposed NetF and of MNetF feature
vectors. Respectively, we perform a clustering analysis of a large set of synthetic multivariate
and univariate time series models, as well as a clustering analysis of a large set of real-world and
benchmark univariate and multivariate time series datasets, respectively. A comparison of the
proposed approaches with two standard approaches to time series analysis using a feature vector
of conventional statistics is presented. Parts of this chapter correspond to the experimental part
of the works published in Silva et al. (2022) and in Silva et al. (2023).

Chapter 8 This chapter introduces the tsmnet, a framework in C++ developed in the course
of this work. Presents the main data structures implemented and used for the development of
this work, also presents the module corresponding to the implemented mapping algorithms
(the new mappings proposed in this work and the existing base mappings in the literature), the
module corresponding to the computation of topological features of multilayer networks, and
the modules of utility functions and data reading and data writing of time series and networks.

Chapter 9 Summarizes the work and the contributions, discusses obtained results and points
to future research directions.

10



1.4. BIBLIOGRAPHIC NOTE

1.4 Bibliographic Note

In this section, we summarize the publications associated with the content of this thesis.

Journal Papers

• Vanessa Freitas Silva, Maria Eduarda Silva, Pedro Ribeiro, and Fernando Silva.
MHVG2MTS: Multilayer Horizontal Visibility Graphs for Multivariate Time Series Analysis.
Submitted to Transactions on Knowledge Discovery from Data, December 2022. A first
version is available at arXiv https://arxiv.org/abs/2301.02333.

• Vanessa Freitas Silva, Maria Eduarda Silva, Pedro Ribeiro, and Fernando Silva. Novel
features for time series analysis: a complex networks approach. Data Mining and Knowledge
Discovery, March 2022.

• Vanessa Freitas Silva, Maria Eduarda Silva, Pedro Ribeiro, and Fernando Silva. Time series
analysis via network science: Concepts and algorithms. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, e1404, Wiley, March 2021.

Talks

• Vanessa Freitas Silva, Maria Eduarda Silva, Pedro Ribeiro, and Fernando Silva. Are
multilayer networks useful for mining multivariate time series?. In JOCLAD2023 - Book of
Abstracts - Viana do Castelo, 20-22 April, April 2023.

• Vanessa Freitas Silva, Maria Eduarda Silva, Pedro Ribeiro, and Fernando Silva. Multivariate
Time Series Feature Extraction via Multilayer Networks. In IFCS 2022 - Book of Abstracts -
Porto, 19-23 July, July 2022.

• Vanessa Freitas Silva, Maria Eduarda Silva, and Pedro Ribeiro. Time series analysis via
complex networks: a first approach. In JOCLAD2019 - Book of Abstracts - Viseu, 11-13 April,
April 2019.

11

https://arxiv.org/abs/2301.02333




Chapter | 2
Background

The purpose of this chapter is to introduce the reader to the background concepts and termino-
logy necessary for understanding the remaining content of this thesis. This chapter consists of
three parts. The first two present the reader with basic (univariate and multivariate) time series
concepts and time series mining tasks. The third part introduces the reader to basic network
science concepts emphasizing multilayer network structures and topological features.

2.1 Time Series Analysis

Time series analysis is the research area that studies observations indexed in time. In this section,
we will present the basic concepts of univariate and multivariate time series analysis that are
the basis for understanding this work.

2.1.1 Univariate Time Series

Formally, a Univariate Time Series (UTS) is a finite realization of a stochastic process which is a
sequence of random variables indexed by time t, usually denoted by {Yt}T

t=1. A time series is
discrete if t ∈ Z+ and is continuous if the time observations are taken continuously through
time, that is, t ∈ R+. In this work, we consider that the observations are taken at discrete
and equidistant time instants, that is, t = 0,±1,±2, . . .. The main characteristic of a time
series is the serial dependence between the observations that restricts the applicability of many
conventional statistical methods developed under the assumption of independent and identically
distributed (i.i.d.) observations. Time series analysis refers to the collection of procedures
developed to systematically solve the statistical problems posed by the serial correlation. Thus,
its main purpose is to develop mathematical models that provide plausible descriptions of data
characteristics with a view to forecasting and simulation (Box et al., 2015).
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The main statistical tools in time series analysis are the following measures of dependence.
The mean function is defined as µt = E(Yt). The autocovariance function is defined as the covariance
between the variables at times t and s:

γ(s, t) = cov(Ys, Yt) = E[(Ys − µs)(Yt − µt)], (2.1)

for all t and s. We should note that γ(s, t) = γ(t, s) for all-time points s and t and γ(t, t) =

E[(Yt − µt)2] = var(Yt). The autocovariance measures the linear dependence between variables
at different times. The autocorrelation function (ACF), which measures the linear predictability of
the series at time t using only the variable at time s, Ys, is defined as:

ρ(s, t) = corr(Yt, Ys) =
γ(s, t)√

γ(s, s)γ(t, t)
, (2.2)

−1 ≤ ρ(s, t) ≤ 1 with ρ(s, t) = 1 indicating a perfect positive correlation and ρ(s, t) = −1 a
perfect negative correlation. Hence, the ACF provides a rough measure of the ability to forecast
the series at time t from the value at time s (Shumway and Stoffer, 2017).

The statistical analysis of a time series relies on the concept of stationarity. Technically,
we may distinguish strict (strong) stationarity from weak (wide or second-order) stationarity.
A time series is said to be strictly stationary if the probabilistic behavior of every collection
of variables {Y1, Y2, . . . , YT} is identical to that of the time-shifted set {Y1+h, Y2+h, . . . , YT+h}.
However, this condition is too strong for most applications and difficult to assess for a single
dataset. Instead of imposing conditions on all possible distributions of a time series, weak
stationarity only conditions the first two moments of the series. Thus, a time series is said
to be weakly stationary if it is a finite variance process with a constant mean function, that
does not depend on time, E(Yt) = µ, and its autocovariance function depends only on the lag,
h = s− t, γ(s, t) = γ(s− t, 0) = γ(h). In short, a time series is stationary when its statistical
characteristics (mean and variance) are constant over time. That is, data fluctuate around
a constant mean, with the variance of the fluctuations remaining essentially the same over
time. An illustrative example of these characteristics for toy random time series is presented in
Figure 2.1. Moreover, stationarity implies that the correlation between observations depends
only on the time lag between them. Stationarity is essential in time series analysis since it enables
the meaningful computation of statistics such as the mean, variance, and ACF from the data.

A simple time series process is the white noise (or purely random) process, henceforth
denoted by ϵt. It is a sequence of i.i.d. random variables with mean 0 and constant variance σ2

ϵ .
A particular case is the Gaussian white noise, where ϵt are independent normal random variables.
White noise is essential for time series analysis procedures.
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(a) Stationary mean and variance (b) Non-stationary mean (c) Non-stationary variance

Figure 2.1: A illustration of a stationary toy time series in (a), and two non-stationary toy time
series with non-constant mean and constant variance in (b) and constant mean and non-constant
variance in (c).

Time series are seldom stationary presenting characteristics such as trend, seasonality and
other cycles. In recent years several authors have proposed a feature based approach for
time series analysis which has the advantage of reducing the dimensionality. Examples of
statistical features include trend, seasonality, periodicity, autocorrelation, skewness, kurtosis,
and heteroscedasticity (Wang et al., 2006). Furthermore, concepts such as self-similarity, nonlin-
earity structure, and chaos, derived from nonlinear science, are also used to characterize time
series (Bradley and Kantz, 2015).

There is a plethora of (linear and nonlinear) statistical models in the literature adequate to
describe the behavior of UTS (Shumway and Stoffer, 2017). Linear time series models are models
for which the conditional mean is a linear function of past values of the time series. The most
popular class is the AutoRegressive Moving Average (ARMA) model. Particular cases of ARMA
models are white noise (WN), which is a sequence of i.i.d. observations, the AutoRegression (AR)
models, which specify a linear regression between the current and past values, and the Moving
Average (MA) models, which define a linear regression between the current value of the series
and the past stochastic terms. ARMA models have been extended to incorporate non-stationarity
(unit root) ARIMA models and long memory characteristics, ARFIMA models. However, many
real-world time series data exhibit characteristics that cannot be described by linear models,
examples include volatility, asymmetry, different regimes, and clustering effects. To model
these effects, nonlinear specifications for the conditional mean and the conditional variance
lead to classes of nonlinear time series models. The most common examples are Generalized
AutoRegressive Conditional Heteroskedastic (GARCH) models, which are characterized by
conditional variance and developed mainly for financial time series, the threshold and hidden
Markov-based models, which allow modeling data from different regimes, and INAR models,
which describe integer-valued data. Appendix B.1 presents additional details about these linear
and nonlinear models, describing the models used in this work.
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2.1.2 Multivariate Time Series

Often at each time t we can obtain a vector of m observations, Y t = [Y1,t, Y2,t, . . . , Ym,t]′, where
′ represents the transpose of the vector. Then the dataset Y = {Y t}T

t=1 is called a Multivariate
Time Series (MTS). Henceforward, the UTS components of the MTS Y are denoted by Yα =

[Yα,1, Yα,2, . . . , Yα,T], α = 1, . . . , m and thus we can denote the MTS by its components, Y =

{Yα}m
α=1. MTS data present not only serial correlation within each component, Yα, but also

correlation between the different UTS, Yα and Y β with α ̸= β, both contemporaneous and lagged
correlation. Thus, analyzing MTS depends on key dependence measures such as the ACF,
which measures the linear predictability of a UTS, and the cross-correlation function (CCF), which
measures the correlation between any two components of the MTS, α and β, say, at times s and t,

ρα,β(s, t) = corr(Yα,s, Yβ,t). (2.3)

Figure 2.2 shows, as an example, a bivariate autoregressive process and the respective plots
of the ACF and CCF values for up to a lag of 15. We can see that the MTS is strongly correlated
both serially and crosswise.

Figure 2.2: A bivariate autoregressive process and the corresponding ACF and CCF plots.

A m-dimensional time series process is stationary if each of its component time series is a
univariate stationary process and the covariance matrix function depends only on the lag. Thus,
E (Y t) = µ is a vector of size m× 1 of constants {µα}m

α=1, and the autocovariance function is a
matrix function defined for lag h as the matrix of size m×m:

Γ(h) = cov(Y t, Y t+h) = E
[
(Y t − µ) (Y t+h − µ)

′]
, (2.4)

with matrix elements γα,β(h) = cov(Yα,t, Yβ,t+h). Note that Γ(h) = Γ
′
(−h) and the element

(α, β) of matrix Γ(0) is the contemporaneous correlation between Yα and Y β (see Wei, 2019 for
more details). Similarly, we can define the correlation matrix at lag h with elements ρα,β(h) =
corr(Yα,t, Yβ,t+h).

The simplest example of a m-dimensional vector process is the vector white noise process, {ϵt},
with mean vector 0 and covariance matrix function Σ, where Σ is a symmetric positive definite
matrix of size m×m. The white noise components are serially uncorrelated, corr(ϵα,t, ϵα,s) = 0,
for t ̸= s but can be contemporaneously correlated, corr(ϵα,t, ϵβ,t) ̸= 0. The most common vector
white noise process is the Gaussian white noise process, for which ϵt follows a multivariate
normal distribution (Wei, 2019).
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Several measures and statistical methods from UTS analysis can naturally extend to MTS
analysis. Linear and nonlinear models can be extended to MTS in vector form. We can highlight
the Vector AutoRegressive Moving Average (VARMA) model, which is a combined formulation
of Vector AutoRegressive (VAR) and Vector Moving Average (VMA) models. The VAR model
represents each variable as a linear regression of the past values of itself and the past values of all
the other variables. The VMA model defines a linear regression of the past stochastic terms of the
variable and the stochastic terms of all other variables. Like the UTS models, the VARMA model
can also be extended to incorporate non-stationarity models (ARIMA model) and long memory
models (VARFIMA model). To study the volatility problem in nonlinear multivariate settings,
the GARCH processes characterized by their conditional heteroscedasticity are extended to the
vector GARCH (VGARCH) models following the principles similar to VARMA models. We
present in Appendix C.1 additional details about the linear and nonlinear models used in this
work.

Although the theory of UTS extends naturally to the multivariate case, such as the mean,
covariance, correlation functions, and linear and nonlinear models, new concepts arise. MTS
analysis requires tools, methods, and models for mining information from multiple dependent
variables - i.e., variables with both temporal and cross-sectional correlations. Such a property
implies methods necessarily different from the standard statistical theory and methodologies
based on random samples that assume independence (Wei, 2019). As mentioned above,
numerous studies have already resulted in measures and methods that try to solve these
questions. Examples include introducing variance-covariance and correlation matrix functions,
measuring causality between UTS components, and extending linear and nonlinear models to
vector time series models that incorporate matrix dependency functions (Wei, 2019). However,
such models are often designed tailor to model data from specific areas and under several
assumptions. Vector time series models require high computational effort due to the number of
parameters that must be estimated, the most suitable model for each dataset also needs to be
identified, and the need for data preprocessing to resolve non-stationarity. All these problems
increase with the increasing high dimension of multivariate time series.

2.2 Time Series Data Mining

Time series data is ubiquitous in all domains from climate studies or health monitoring to
financial data analysis. Although technological advances have facilitated the availability of time-
indexed data, they have also led to the dimensionality problems we mentioned above that are
often designated as the curse of dimensionality. All these factors have led to a growing interest
in this type of data from fields other than time series analysis. The data mining field is one of
them and consists of a set of procedures for automatically extracting knowledge from large
amounts of datasets using techniques such as data warehousing, visualization, machine learning,
pattern recognition, and statistics. In recent years, several methodologies have been developed
especially for mining time-indexed datasets (Esling and Agon, 2012), where adding a time
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dimension to the usual databases introduces new challenges. Several of these methodologies
are for answering the fundamental tasks of time series analysis such as classification (Fulcher
and Jones, 2014), clustering (Wang et al., 2006), forecasting (Montero-Manso et al., 2020; Talagala
et al., 2018), pattern detection (Geurts, 2001), motif discovery (Chiu et al., 2003), outlier or
anomalies detection (Hyndman et al., 2015), visualization (Kang et al., 2017), and generation of
new data (Kang et al., 2020), among others.

2.2.1 Time Series Feature Extraction

Broadly speaking, we can divide time series data mining approaches into three main categories.
Shape-based approaches, which consist of methods that explore the raw data of the time series,
more precisely, the shape of the trajectory of the data. The model-based approaches, consist
of selecting a statistical time series model and estimating a set of parameters for this model.
And the feature-based approaches, which consist of extracting a set of statistical characteristics
that describe the time series. Recently, feature-based time series characterization has become a
popular approach among time series data researchers and has proven to be helpful for a wide
range of the temporal data mining tasks (Fulcher, 2018), as well as a promising approach to
battle problems related to the high dimensionality of data (Wang et al., 2006). More specifically,
in feature-based approaches, a time series dataset is formed by a collection of time series samples
and each time series sample is represented by a vector of statistical characteristics. These
characteristics vary from sample to sample and define the dataset. Usually, these characteristics
are called features in the data mining literature and statistics in the statistics literature.

In the context of UTS, there are several software packages available for feature extrac-
tion (Henderson and Fulcher, 2021), the most popular examples are the tsfeatures (Hyndman
et al., 2020) and feasts (O’Hara-Wild et al., 2021), two R software packages with 63 and 42
features, respectively, the tsfresh (Christ et al., 2018), Kats (Science), and TSFEL (Barandas
et al., 2020), Python software packages with 1558, 40, and 390 features available, respectively,
the hctsa (Fulcher and Jones, 2017; Fulcher et al., 2013), a Matlab software package of 7730
features, and the catch22, a package of 22 features (a subset of hctsa package) available in
Matlab, R, Python, and Julia software’s (Lubba et al., 2019). Combined, these packages provide
a rich and very large set of features available for characterizing UTS, they include from basic
statistical measures to linear and nonlinear autocorrelation measures, spectral quantities and
wavelet decompositions, to more specific methodologies, such as measures adapted to seasonal,
autoregressive and heteroskedastic processes, among other. All these packages try to take
advantage of the various methodologies that have been developed for time series analysis and
try to express them in the form of global features that describe the time series dataset. However,
many of these measures are highly redundant within the same package and have overlapping
measures between packages (Henderson and Fulcher, 2021).
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Recent approaches aim to reuse the existing univariate time series feature extracting meth-
odologies for multivariate time series feature extracting. Those consist of extracting features
individually for each UTS component and combining the resulting feature vectors into a single
feature vector (Baldán et al., 2021). This approach adapts the existing literature features for UTS
mentioned above to the multivariate problems.

2.2.2 Clustering and Classification

Time series classification problems are one of the main topics currently addressed in temporal
data analysis work, given their wide applicability. Real-world examples might include clas-
sifying healthy and unhealthy patients, predicting behaviors, categorization of photos, fake
detection, and sentiment analysis, to name a few. A classification problem aims to build a
predictive model that receives as input a set of data samples and a set of descriptive attributes
for each of the data samples and returns a class label for each of the input samples. The predictive
model is learned through a set of data samples and respective example attributes where the
labels are known, this process is called supervised learning. In the context of UTS classification,
predictive models receive a set of UTS and a set of attributes from each UTS and return the
labels assigned to each UTS. While in the context of MTS classification, the input is a set of MTS
and a set of attributes for each MTS and the return is the learned classes for each MTS (Ruiz
et al., 2021). There is a wide range of methods available for UTS classification (see Bagnall et al.
(2017) for a review), whereas for MTS data current approaches are essentially combinations
of univariate models over each individual component of the MTS (see Ruiz et al. (2021) for a
review of more recent works).

Another important time series mining task is the clustering problem, which, in a general
sense, has a similar purpose to the classification problem, that is, it aims to group/classify a set of
data samples. However, clustering methods do not receive a training subset to learn the model
and are therefore known as unsupervised learning. Clustering methods aim to group similar data
samples into the same group, called a cluster, and different data samples into different clusters,
classifying all samples in an input dataset. The definition of similarity between samples is
dictated by the used clustering methods that can be based on the distance between data samples
and respective clusters, on the density in space of the data samples, and on intervals or statistical
distributions of the data. We can say that the time series clustering problem is less explored
in literature when compared to the classification problem. However, it is equally important in
terms of application and does not require a training dataset, so recently research interest in this
problem has increased (Maharaj et al., 2019). Several research fields can use clustering methods
to respond to real-world problems, some examples include pattern recognition, information
retrieval, bioinformatics, data analysis and understanding, and more recently data privacy.
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Generally, we can have three categories of clustering time series (Aghabozorgi et al., 2015).
Whole time series clustering, where the set of input data samples is the set of UTS and clustering is
performed by calculating the similarity between the UTS, the sub-sequence time series clustering,
where the set of samples are sub-sequences of contiguous observations from a UTS of way to
group similar patterns, and the time point clustering, where the samples are the observations of a
UTS joining observations similar in value and temporal distance.

2.3 Network Science

Many real-world systems can be seen as complex systems with a set of elements that interact
with each other and which exhibit emergent collective properties (Costa et al., 2011). Graphs
provide a powerful and general abstraction for this kind of scenario, in which the elements are
represented by nodes and the interactions by edges. Such graphs are often described as complex
networks, since they typically exhibit non-trivial topological properties, due to the characteristics
of the underlying complex system, which are neither random nor purely regular (Albert and
Barabási, 2002).

Network science is the research area that studies complex networks and has origins in
discrete mathematics and graph theory. In the last decades, graph theory has become one of the
most important tools in the analysis of networks. This approach allows representing complex
systems in a unified mathematical form, making it possible to find common characteristics and
properties. We use graph and network terms interchangeably in this document. In this section,
we initially present the basic concepts of graph theory used in this thesis and then the more
general concept of complex networks, the multilayer networks, ending with the presentation of
topological features of networks explored in the course of this work.

2.3.1 Graph Terminology and Concepts

A graph (or network), G, is an ordered pair (V, E), where V represents the set of nodes (or vertices)
and E the set of edges (or links, , or arcs) between pairs of elements of V. The number of nodes,
also known as the size of the graph, is written as N = |V| and the number of edges simply as |E|.
Two nodes vi and vj are called neighbors (or adjacent) if they are linked/connected by an edge
(vi, vj) ∈ E. We can distinguish between directed edges, which connect a source node to a target
node, and undirected edges, when there is no such concept of orientation. In the first case the
graph is called directed or digraph. A graph is termed weighted if there is a weight (or cost), wi,j,
associated the edge (vi, vj). It is classified as simple if it does not contain multiple edges (two
or more edges connecting the same pair of nodes) and it does not contain self-loops (an edge
connecting a node to itself). In the context of this thesis, all nodes are labeled with consecutive
integer numbers starting from 1 to N. Figure 2.3 illustrates the concepts here defined and depicts
a simple directed graph and a simple undirected weighted graph, respectively.
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(a) Directed graph (b) Undirected weighted graph

(c) Non-symmetric binary adja-
cency matrix

(d) Symmetric non-binary adja-
cency matrix

Figure 2.3: A representation of (a) a simple directed graph and (b) a simple undirected weighted
graph. And the corresponding adjacency matrices in (c) and (d).

A graph G is usually represented mathematically as an adjacency matrix denoted as A, and
Ai,j is 1 (or wi,j) when (vi, vj) ∈ E and is 0 otherwise. The corresponding adjacency matrices of
the example graphs displayed in Figure 2.3 are illustrated in Figure 2.3. Note that undirected
graphs result in symmetric matrices, while digraphs result in asymmetric matrices.

Most topological features are related to the concepts of paths and graph connectivity. A path is
a sequence of nodes in which each consecutive pair of nodes in the sequence is connected by
an edge. It may also be useful to think of the path as the sequence of edges that connect those
nodes. Two nodes are connected if there is a path between them and are disconnected if no such
path exists. A set of nodes is called a connected component if all its node pairs are connected.

The analysis of complex networks has made enormous progress in the last decade, leading to
the development of statistical properties of certain types of complex systems that are related and
codified in their topology (Albert and Barabási, 2002; Newman, 2003). There exists, therefore,
a vast set of topological features that can characterize a network, each reflecting some specific
property of the system under analysis. A more detailed list of the most important topological
features can be found in the literature (Albert and Barabási, 2002; Barabási, 2016; Costa et al.,
2007).
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2.3.2 Multilayer Networks

Most real-world systems are not isolated and interact with other systems. Furthermore, a single
entity may belong to several subsystems, establishing both internal (in the same system) and
external (with other systems) interactions. The latter type of connectivity can be interpreted as
an interaction between levels (or layers), leading to the concept of multilayer networks. In recent
years, depending on the type of connections established between systems, several definitions
and nomenclatures of multilayer networks had been proposed, until a universal mathematical
definition is proposed in Kivelä et al. (2014) (see Kivelä et al. (2014) also for a more detailed
review).

A Multilayer Network (MNet), also called multiple layer network, is defined as a quadruplet
M = (VM, EM, V,L) where L = {La}d

a=1 are sets of elementary layers (there is one set of
elementary layers La for each aspect a 1), V is a set of entities of M, and VM and EM represent the
global sets of nodes and edges, respectively. The VM ⊆ V × L1 × . . .× Ld is a set of node-layer
combinations in which a node is present in the corresponding layer. A node-layer specifies the
role that an entity has on a specific layer, defining its occurrence on that layer. Therefore, we can
have multiple nodes specifying the same entity in an MNet. The EM ⊆ VM ×VM is the set of
edges that contains the pairs of possible combinations of nodes and elementary layers (Kivelä
et al., 2014). A general simple representation of a multilayer network of two aspects can be seen
in Figure 2.4a. In this work, we focus on single-aspect multilayer networks (d = 1) and, we
denominate as intra-layer edges, the connections between nodes of the same layer Lα, (vα

i , vα
j ),

and inter-layer edges the connections between nodes of different layers Lα and Lβ, (vα
i , vβ

j ) with
α ̸= β.

Two particular cases of multilayer networks are the monoplex network when d = 0 and,
consequently, m = 1 and the M reduces to a single-layer graph, G, and the multiplex network,
when M is a sequence of m graphs, {Gα}m

α=1 = {(Vα, Eα)}m
α=1, usually with a node set common

to all elementary layers, and inter-layer edges connecting only the counterpart nodes across the
layers, that is connecting (vα

i , vβ
i ), α ̸= β (Boccaletti et al., 2014). Figure 2.4b represents a simple

multiplex network.

A node-aligned2 MNet has an associated adjacency tensor of order 2(d + 1), AAA, where
the tensor element Ai,j,α,β is 1 (or wα,β

i,j for weighted MNet’s) when (vα
i , vβ

j ) ∈ EM and is 0
otherwise (Kivelä et al., 2014). If the MNet is not node-aligned, we can consider empty nodes
to complete the tensor structure. Another representation is obtained by flattening AAA into a
supra-adjacency matrix, A, where intra-layer edges are associated with diagonal element blocks
and inter-layer edges with off-diagonal element blocks. Figure 2.5 represents this concept,
displaying the supra-adjacency matrices of the networks illustrated in Figure 2.4. From these
element blocks we can infer three types of subgraphs:

1We can generate a set of layers in a multilayer network by combining all elementary layers using the Cartesian
product over the sequence of sets of elementary layers, L1 × . . .× Ld (Kivelä et al., 2014).

2A multilayer network is node-aligned if all elementary layers contain all entities, that is, VM = V × L1 × . . .× Ls.
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(a) Multilayer Network (d = 2) (b) Multiplex Network (d = 1)

Figure 2.4: (a) A toy example of the most general type of multilayer network. The network has
five entities V = {1, 2, 3, 4, 5} and two aspects, which have the corresponding elementary-
layers sets L1 = {A, B} and L2 = {X, Z}. There are thus a total of four different layers:
(A, X), (A, Z), (B, X) and (B, Z). (b) An example of a toy multiplex network with five entities
V = {1, 2, 3, 4, 5} and one aspect. In both figures, solid lines represent intra-layer edges, and
dashed lines represent inter-layer edges.

• intra-layer graphs, Gα, represented by the square matrices of order |Vα| formed by the
diagonal element blocks (intra-layer edges, Aα

i,j), ie.,
[

Aα 0
0 0

]
,

• inter-layer graphs, Gα,β, represented by the square matrices of order |Vα|+ |Vβ| constructed
from off-diagonal element blocks (inter-layer edges, Aα,β

i,j and Aβ,α
j,i , and no intra-layer

edges, Aα
i,j = 0 and Aβ

i,j = 0) 3, ie.,
[

0 Aα,β

Aβ,α 0

]
, and

• all-layer graphs, Gα,β
all , represented by the square matrices of size |Vα|+ |Vβ| constructed by

both on and off-diagonal element blocks (intra-layer edges, Aα
i,j and Aβ

i,j, and inter-layer

edges, Aα,β
i,j and Aβ,α

j,i ), ie.,
[

Aα Aα,β

Aβ,α Aβ

]
.

The definition of MNet presented above is the most general definition, where the concept of
aspects allows the modeling of real-world systems that can represent relations among various
types. An illustrative example is the social networks, composed of Facebook, Instagram, and
LinkedIn, where we can analyze different interactions between the networks, namely interactions
between users through text messages, family interactions, and professional interactions between
the users of the network. In this work, we will focus on single-aspect MNets.

3Note also that the inter-layer graphs have the characteristics of a bipartite graph. Where a bipartite graph is a
graph Gα,β whose node set Vα,β can be divided into two disjoint and independent sets Vα and Vβ (Vα,β = Vα ∪Vβ

and Vα ∩Vβ = ∅) and every edge connects a node in Vα to a node in Vβ.
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(a) Multilayer Network (b) Multiplex Network

Figure 2.5: An illustrative example of two supra-adjacency matrices. (a) a supra-adjacency matrix
of a toy multilayer network with two aspects (two layers in each) and (b) a supra-adjacency
matrix of a toy multiplex network with a single aspect. Colored blocks represent the intra-layer
edges and gray blocks represent the inter-layer edges.

Network science has been a very useful tool to answer the most diverse problems in several
scientific fields (Vespignani, 2018), applying the vast arsenal of methodologies and topological
features (Barabási, 2016; Peach et al., 2021) to data that are mapped directly or indirectly into
networks. The topological features used in monoplex contexts can be extended to MNets.
Most of the common features can be extended straightforwardly to intra-layer features by just
computing them over the intra-layer edges. These features can also be extended to the whole
MNet, computing them over both intra-layer and inter-layer edges, by transformation from
flattening to supra-adjacency matrix (Huang et al., 2021a; Kivelä et al., 2014). Other approaches
rely on measurements and properties in the tensor analysis literature (Kivelä et al., 2014). The
analysis of multilayer networks is still a recent and not very mature topic, with most of the
research being applied to networks with a single aspect (i.e., d = 1), and in the context of
multiplex networks (Kivelä et al., 2014; Porter, 2018).

2.3.3 Network Topological Features

As mentioned above, a large number of topological, statistical, spectral, and combinatorial prop-
erties features that extract information from networks are available in the literature (Barabási,
2016; Peach et al., 2021; Silva et al., 2022). We can group these topological features into global,
local, and "intermediate" features. The first group quantifies properties involving all network
elements, the second properties over a given node or edge, and the last properties that involve
subsets of the network, such as subgraphs. More common examples include features of node
centrality (Oldham et al., 2019), graph distances (Li et al., 2021), clustering and community
detection (Malliaros and Vazirgiannis, 2013), among others. Centrality features aim to quantify
the importance of nodes and edges in the network depending on their connection topology.
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Path-based features refer to sequences of edges that connect pairs of nodes, depend on the
overall network structure, and are useful for measuring network efficiency and information
propagation capability. Communities and node connectivity are also very relevant features of
networks, which measure how and which groups of nodes are better connected, measuring the
clustering and resilience of the network.

In this work, we are particularly interested in the following features frequently used in the
network literature, which will serve as a base reference for the rest of the document thesis.

Degree The degree ki of a node vi is a quite important local feature of a graph, it represents
the number of edges that the node vi shares with other nodes vj. In digraphs, we distinguish
between in-degree, kin

i , the number of edges that point to node vi, and out-degree, kout
i , the number

of edges that point from node vi to other nodes. And the total degree is given by the sum of
the two, ki = kin

i + kout
i . For weighted graphs, we can compute the weighted degree (or also called

strength) by adding the edge weights instead of the number of edges, that is,

ki =
N

∑
j=1

Ai,j. (2.5)

Degree shows the intensity of connectivity in the node neighbourhood. In many networks, there
are some nodes that have a fairly high degree compared to others, these nodes are called hubs.

The average degree, k̄, is a global feature related to node degree, and is obtained by calculating
the arithmetic mean of the degrees of all nodes in the graph:

k̄ =
1
N

N

∑
i=1

ki. (2.6)

Path Length A path is a sequence of nodes in which each consecutive pair of nodes in the
sequence is connected by an edge. In digraphs, the path follows the direction of from the source
node to the target node. Paths can contain repeated nodes or not and paths without repeated
nodes are called simple paths. The path length is defined by the number of edges in the path or
the sum of the edge weights if the graph is weighted. Average path length, d̄, is the arithmetic
mean of the shortest paths, di,j, among all pairs of nodes in the graph:

d̄ =
1

N(N − 1)

|V|

∑
i,j=1
i ̸=j

di,j. (2.7)

It is a good global feature of the efficiency of information flow on a network.

Clustering Coefficient The global clustering coefficient, C, also known as transitivity, is a feature
that captures the degree to which the nodes of a graph tend to cluster, that is, the probability
that two nodes connected to a given node are also connected. We can measure this property
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through the total number of closed triangles in the graph. Then, C is given by the ratio of the
number of closed triangles (N△) to the number of possible triangles (N3):

C =
3N△
N3

. (2.8)

The constant factor 3 explains the fact that each triangle can be seen to consist of three different
triangles, one with each of the nodes as the central node, guaranteeing 0 ≤ C ≤ 1. In this work,
we will call C simply as clustering coefficient.

Communities In this work, we refer to the set of communities in the network, C, as the
grouping of nodes (potentially overlapping) that are densely connected internally and that can
also be considered as a group of nodes that share common or similar characteristics. The number
of communities is the amount of these groups on the network, S = |C|.

The modularity, Q, measures how good a specific division of the graph is into communities,
that is, how different are the different nodes belonging to different communities. A high
modularity value Q indicates a graph with a dense internal community structure, that is, with
many edges between nodes within communities, and sparse connections between nodes of
different communities. If a particular network is split into C = {Ci}S

i=0 communities, Q can be
calculated from as follows:

Q =
1

2|E|∑i,j

[
Ai,j −

kik j

2|E|

]
δ
(
Ci, Cj

)
, (2.9)

where δ
(
Ci, Cj

)
= 1 if vi and vj belong to the same community (i.e., Ci = Cj) and δ

(
Ci, Cj

)
= 0

otherwise.

These features can naturally be extended to a MNet structure and to its subgraphs mentioned
in the above section. In the literature we can find the following approaches (Kivelä et al., 2014):

• Flattening approaches: as previously mentioned, it consists of translating the topological
information of an MNet into a monoplex network defined by the supra-adjacency matrix.
Traditional topological features can be calculated from this matrix. The main disadvantages
pointed out are the potential loss of information related to the aspects, when it comes to
the analysis of MNets with multiple aspects.

• Aggregation approaches: consists of creating a weighted monoplex network formed by
the entity set of MNet. The inter-layer edges are ignored and the amount (or weights) of
intra-layer edges between the same pair of entities in all layers is summed, forming the
set of weighted edges of the aggregated network. From this structure, it is possible to
calculate all common topological features. However, information encoded by inter-layer
relationships is inevitably lost.

• Direct approaches: can be seen as reformulations and adaptations of topological features
directed to the structure of the multilayer network, giving rise to new topological features
of networks. In these approaches methodologies from the theory of tensor can be used.
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Time Series Analysis via Network
Science: Concepts and Algorithms

What is research but a blind date with
knowledge?

Will Harvey

The analysis of UTS is a mature and solid field (Shumway and Stoffer, 2017), which mostly
involves statistical linear analysis. However, many observed datasets exhibit non-Gaussian
and nonlinear characteristics and therefore several statistical non-Gaussian and nonlinear
models have been proposed in the literature (Douc et al., 2014). As already mentioned in
Section 2.1, these models have often been developed tailored to model data from specific areas
and under several assumptions that hinder their wide application (Wei, 2019). In fact, in many
settings both univariate (e.g. high-frequency signals, non-stationarity) and high dimensional
(e.g. multivariate, spatio-temporal, panels of time series) time series analysis still presents many
limitations. An alternative approach to time series data analysis has been developed under the
framework of dynamical systems theory. This approach, denominated nonlinear time-series
analysis (Bradley and Kantz, 2015), can be overly effective when the data model is based on
deterministic dynamics in some state space.

In the last decade, several approaches for time series analysis based on network science
methodologies were proposed, leveraging the large body of research in network analysis and
providing new insight and novel angles on which to understand the structure of time series (Zou
et al., 2019). This new framework for time series analysis inevitably involves mapping the time
series into networks. In this chapter, we analyze the state-of-the-art of existing mapping methods
for this purpose. Our main contribution is to produce a general and structured review of existing
mapping algorithms, highlighting their similarities and differences, the data characteristics they
capture, and the main references and results. We propose here a conceptual division of the
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methods at the level of the time series dimensionality and concomitant choice of the resulting
network structure. From our point of view, this high-level conceptual division encompasses all
existing methods in the literature, for both univariate and multivariate frameworks.

The proposed high-level conceptual division is depicted in the diagram of Figure 3.1, and
corresponds to the organization of this chapter. We first divide the mappings into two large
groups, depending on the source dataset is a univariate or a multivariate time series. The
first group results in single-layer networks, while multivariate series can be mapped both in
single-layer and multiple layer networks (such as multiplex networks).

Figure 3.1: Overview of mapping methods. Taxonomy of algorithms for mapping time series
into complex networks based on the dimensionality of time series, resulting network structure,
mapping concept, and main mapping methods.

The set of univariate series mappings proposed in the literature may be divided into
three main types depending on the underlying concept: visibility, transition, and proximity.
Visibility mapping concepts establish connections (edges) between the timestamps of the
series (as nodes) using visibility lines (with or without restrictions) between observations.
For transition mappings, the methods are based on the transition probabilities between states (or
partitions) defined by dividing the time-space in a set of temporal states (or dividing the series
support/observations into partitions) that will be the nodes of the network. Finally, proximity
mappings establish connections using measures of distance or similarity between time points
(or states) to become network nodes. Regarding multivariate time series, there are methods
leading to a single-layer network, where each series (or patterns based on observations from
multivariate series) is represented by a node in the network and the connections are established
based on relationships between the series (or patterns). We can also find mappings leading to
multiple layer network structures, where each layer represents a time series and, in fact, each
layer can be mapped based on one of the univariate time series mapping methods, separately.
Research on multivariate mappings is however still in its infancy.
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3.1 Univariate Time Series Mappings

In this section, we review the state of the art of mapping univariate time series into the network
domain. As previously represented in Figure 3.1, from a high-level perspective, and as in
previous papers (Donner et al., 2011b; Zou et al., 2019), we divide the existing approaches into
three different main classes, according to the underlying mapping concept. An overview of
the main characteristics of the methods here described is given in Table 3.1. In the following
sections, we will give an in-depth description of how these approaches emerged, how they work,
what variants exist, and what are the core results.

3.1.1 Visibility Networks

Lacasa and co-authors (Lacasa et al., 2008) proposed visibility mappings from (univariate)
time series to complex networks, based on traditional visibility algorithms from computational
geometry (Ghosh, 2007). The visibility networks have a geometric criterion associated with
the natural ordering of the time series. Given its ease of interpretation and implementation,
this mapping quickly attracted the research community and several results as well as variants
of these methods began to emerge. Visibility-based algorithms incorporate, as we shall see,
global and local topological characteristics of the time series in the graph characteristics, are
easy to implement, computationally fast, and, except for the limited and parametric versions,
are parameter-free.

Throughout this section, we present the different types of visibility algorithms proposed
in the literature, which are essentially based on the natural visibility (Lacasa et al., 2008) and
horizontal visibility (Luque et al., 2009) algorithms.

3.1.1.1 Natural Visibility Graphs

Lacasa and co-authors (Lacasa et al., 2008) proposed the first method based on the concept
of visibility, the natural visibility graph (NVG), or simply visibility graph (VG). This method
is based on the idea that each observation of the time series is seen as a vertical bar with a
height equal to the numerical value of the observation and that these vertical bars are laid in
a landscape, the top of a bar is visible from the tops of other bars. Each node in the graph
corresponds to a time stamp t of the time series, so the nodes are serially ordered. Two nodes
are connected if there is a line of visibility between the corresponding data bars that are not
intercepted. This idea is illustrated in Figure 3.2.

Formally, the set of nodes {vi} of a NVG are numbered sequentially in time and two nodes vi

and vj are connected (have visibility) if any other observation (tk, Yk) with ti < tk < tj satisfies:

Yk < Yj + (Yi −Yj)
(tj − tk)

(tj − ti)
. (3.1)
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Natural Visibility Network t NV ✗ ✗ ✓ ✗(Lacasa et al., 2008)

Horizontal Visibility Network t HV ✗ ✗ ✓ ✗(Luque et al., 2009)

Direct Horizontal Visibility Network t HV ✓ ✗ ✓ ✗(Lacasa et al., 2012)

Limited Penetrable Natural Visibility Network t NV ✗ ✗ ✗ ✗(Zhou et al., 2012)

Parametric Natural Visibility Network t NV ✓ ✓ ✗ ✗(Bezsudnov and Snarskii, 2014)

Weighted Visibility Network t NV ✓ ✓ ✓ ✗(Bezsudnov and Snarskii, 2014)

Difference Visibility Network t V ✗ ✗ ✓ ✗(Zhu et al., 2014a)

Absolute Visibility Graph t NV ✗ ✗ ✓ ✗(Yan and van Tuyll van Serooskerken, 2015)

Limited Penetrable Horizontal Visibility Network t HV ✗ ✗ ✗ ✗(Gao et al., 2016a)

Dual Perspective Visibility Graph t RNV ✗ ✗ ✓ NV(Zheng et al., 2021)

Tr
an

si
ti

on

Coarse-Grained Phase Space Network z⃗i TP ✓ ✓ ✗ PS(Gao and Jin, 2009)

Quantile Network qi TP ✓ ✓ ✗ DS(Campanharo et al., 2011)

Ordinal Partitions Network
πi TP ✓ ✓ ✗ AR(Small, 2013)

Visibility Graphlets Network Gi TP ✓ ✓ ✓ PS;VG(Mutua et al., 2015)

Pr
ox

im
it

y

Cycle Network ci CM ✗ ✗ ✗ DC(Zhang et al., 2006)

Correlation Network z⃗i CM ✗ ✓ ✗ PS(Yang and Yang, 2008)

κ-Nearest Neighbor Network z⃗i DM ✓ ✗ ✗ PS(Small et al., 2009)

Adaptive Nearest Neighbor Network z⃗i DM ✗ ✗ ✗ PS(Donner et al., 2011b; Small et al., 2009; Xu et al., 2008)

ϵ-Recurrence Network z⃗i DM ✗ ✗ ✗ PS(Donner et al., 2010)

Table 3.1: Comparison of (univariate) time series mappings based on the properties of the
corresponding algorithms and of the resulting networks. Notation: NV - natural visibility,
HV - horizontal visibility, V - natural and horizontal visibility, TP - transition probability, CM
- correlation measures, DM - distance measures, RNV - reflected natural visibility, PS - phase
space reconstruction, DS - division of the support, AR - amplitude rank, VG - directed visibility
graph, DC - division into cycles.

The NVG algorithm is easy to implement and, in terms of computational complexity, has
quadratic complexity (O(T2)) and thus becomes very slow for very long time series. However,
a more efficient algorithm based on the divide and conquer technique proposed in Lan et al.
(2015) has a complexity of O(T log T).
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(a) Toy time series (b) NVG

Figure 3.2: On the left side, we present the plot of a toy time series and, on the right side, the
network generated by the natural visibility algorithm. The purple lines in the time series plot
represent the lines of visibility (and hence the edges of the graph) between data points.

Visibility graphs are always connected because each node vi sees at least its neighbors, vi−1

and vi+1, and are always undirected. However, a direction can be defined considering the
direction of the time axis. The network is also invariant under affine transformations of the
data (Lacasa et al., 2008) because the visibility criterion is invariant under rescheduling of both
the horizontal and vertical axis, as well as in vector translations, that is, each transformation
X = aY + b, for a ∈ R and b ∈ R, leads to the same NVG.

A NVG has, typically, a distinct topology characterized by hubs representing maximum
of the time series, since these have visibility contact with more nodes when compared to
other points (Donner and Donges, 2012). However, this is not always necessarily true since
a process with a concave behavior over a certain period of time, as for example the Conway
series (Lacasa et al., 2008), can lead to highly connected nodes that do not coincide with local
maximum (Donner and Donges, 2012). The presence of hubs that correspond to (local) maxima
of time series typically gives rise to a topological structure represented by communities. These
communities usually reflect the temporal order of the observations. The communities may also
be formed by fragments of the time series, in which case do not reflect the temporal order of the
observations (Yao and Lin, 2017).

Lacasa and co-authors (Lacasa et al., 2008) have shown that NVGs inherit several structural
properties of the time series. In fact, the method maps periodic series 1 on regular graphs,

1Periodic time series are series where the process has a regular seasonal pattern. However, there are many
processes where the data appears highly periodic but does not repeat itself exactly. These processes are called
pseudo-periodic time series.
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random series on random graphs 2 and fractal series on scale-free graphs 3. In particular, for
periodic series, the graphs have a regular structure where the degree distribution presents a
number of peaks related to the period of the series. For white noise processes, the resulting
graph is completely random, producing a degree distribution that is an exponential function.
For fractal time series, the degree distribution is a power law related to the fractality of series.

In Lacasa et al. (2009), the authors used the NVGs to quantify long-range dependence
and fractality in time series. These authors concluded that fractal processes result in scale-free
visibility graphs with a degree distribution that is a power law P(k) ∼ kγ with exponent γ which
is a linear function of the Hurst coefficient. These results were applied to study the fractality
of energy dissipation rates in turbulent flows (Liu et al., 2010), to study turbulent heated jets
behaviors (Charakopoulos et al., 2014), and to diagnose Alzheimer’s disease automatically based
on the data electroencephalography (EEG) (Ahmadlou et al., 2010), among others.

Recently, a new definition of motif 4 in the context of NVG was presented in Iacovacci
and Lacasa (2016b): sequential NVG n-node motifs. According to this definition, motifs are
the set of NVG subgraphs formed by the sequence of nodes {g, g + 1, . . . , g + n− 1}, where
n < T and g ∈ [1, T − n + 1]). This definition differs from traditional network motifs in that
they require nodes to be labeled according to the temporal order of the nodes induced by the
construction of NVG. One advantage of this definition is that the computation of these motifs
is extremely efficient, linear time O(T), using the theory developed in Iacovacci and Lacasa
(2016a). Similarly to traditional motifs networks, we can compare the relative occurrence of each
motif to distinguish different time series processes, see more details in Iacovacci and Lacasa
(2016b).

Donner and Donges (Donner and Donges, 2012) address the problem of missing data in time
series. They assessed the effect that missing data produces in the topological properties of NVGs
associated with Gaussian white noise processes, using two strategies: missing data is simply
ignored in the generation of the NVG; the NVG is fragmented into subgraphs corresponding
to times before and after the missing observations. Donner and Donges (2012) concluded that
ignoring the missing data had a considerable effect mainly on closeness centrality but not on

2Random networks are graphs obtained by a random process or by a probability distribution (Erdős and Rényi,
1960). There are many random graph models, but the Erdős Rényi model (Erdős and Rényi, 1960) is the most
fundamental and widely studied of them (Newman, 2010). This model is mathematically referred by G(n, p) where
n is the number of nodes and p is the probability with that the edges between each distinct pair of nodes are
connected. In this model, the probability that a node has k edges (degree distribution) follows a Poisson distribution
P(k) = eλλk

k! (Barabási and Albert, 1999).
3Scale-free networks have a degree distribution (the probability P(k) that a given node has a degree, i.e., a number

of edges that connects the node to the other nodes, equal to k) that follows the power law P(k) ∼ kγ. This means
that most nodes have few edges in contrast to the existence of some nodes with a high degree (hubs) (Barabási and
Albert, 1999).

4Network motifs (Milo et al., 2002) are small subgraphs (typically with 3 to 5 nodes) originally defined as patterns
that occur more often than expected, that is, whose frequency is higher than in randomized networks; nowadays the
term motif is also used to refer to all such small patterns, regardless of its overrepresentation, and their frequencies
can serve as a rich network fingerprint (Milo et al., 2004).
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degree distribution and local clustering coefficient, as well. When the missing data is taken into
account and the NVG becomes a set of subgraphs, path-based metrics are the most impacted.
As expected the impacts become stronger as the missing data increases. Interestingly, those
authors also found out that the effects of node-level metrics are slightly reduced for missing
data occurring in runs rather than randomly.

Given the potential demonstrated, the method was applied in the study of energy dissipation
rates in three-dimensional turbulence (Liu et al., 2010), financial time series (Long, 2013; Qian
et al., 2010; Yang et al., 2009; Zhuang et al., 2014), heart rate variability (Hou et al., 2016; Shao,
2010), classification of sleep stages (Zhu et al., 2014a), classification of time series (Li et al., 2018),
hurricane occurrence in the United States (Elsner et al., 2009), to perform forecasting (Huang
et al., 2021b; Zhang et al., 2017b, 2018b), and more recently to preserve data privacy (Xiu et al.,
2022).

Note that NVGs are not able to distinguish time series with certain properties. As an
example, consider a time series with a deterministic increasing trend. Its NVG and the NVG of
its symmetric time series which presents a deterministic decreasing trend are similar graphs
with the same properties. This disadvantage may be overcome by defining NVGs with directed
edges.

3.1.1.2 Horizontal Visibility Graphs

In order to reduce the computational complexity associated with NVGs, Luque et al. (2009)
proposed a simplified NVG method called the horizontal visibility graph, HVG, which inherits
all NVG graph characteristics mentioned above. The construction of HVGs differs from that of
NVGs in that the visibility lines are only horizontal. Figure 3.3 gives a simple illustration of this
algorithm, with a toy time series and the resulting network.

Formally, two nodes vi and vj are connected, if for all (tk, Yk) such that ti < tk < tj the
following condition is met:

Yi, Yj > Yk. (3.2)

In terms of computational complexity, the generation of HVGs has a time complexity of
the construction O(T log T) (Zhu et al., 2014b) and, in the case of noisy (stochastic or chaotic)
processes, the algorithm has an average-case time complexity O(T) (Luque et al., 2009).

The HVG is always a subgraph of the NVG for a particular time series. This is well illustrated
in Figures 3.2 and 3.3 where we can easily verify that all the edges present in the HVG are
present in NVG, but the converse is not true, e.g. edges (6, 8) and (12, 15). HVG nodes will
always have a degree less than or equal to that of the corresponding NVG nodes. Therefore,
there is some loss of quantitative information in HVGs in comparison with NVGs (Luque et al.,
2009) which may be crucial in the analysis of certain time series. However, it has no impact on
the qualitative characteristics of the graphs, since the graphs preserve some part of the data
information, namely the local information (the closest timestamps). Another characteristic of
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(a) Toy time series (b) HVG

Figure 3.3: On the left side, we present the plot of a toy time series and, on the right side,
the network generated by the horizontal visibility algorithm. The green lines represent the
horizontal lines of visibility between the data points and the purple lines the natural visibility,
for comparison.

HVGs is that it is always an outerplanar graph 5 and has a Hamilton path, that is, a path that
passes through all the nodes of a graph only once. In fact, Gutin et al. (2011) have shown that
this is a necessary and sufficient condition for a graph to be an HVG.

Luque and co-authors (Luque et al., 2009) have formally established several relationships
between properties of HVGs and characteristics of the underlying time series.

The first such property states that uncorrelated random series is mapped into an HVG with
an exponential degree distribution given by:

P(k) =
1
3

(
2
3

)k−2

, for k ≥ 2. (3.3)

This result holds for all probability distributions. It follows that, for uncorrelated random series,
the associated average degree is (Nuñez et al., 2012a):

k̄ = ∑ kP(k) =
∞

∑
k=2

k
3

(
2
3

)k−2

= 4. (3.4)

Additionally, Lacasa and Toral (2010) suggested that the degree distribution follows the
exponential law, P(k) ∼ exp(−λk), where the value of λ depends on the type of process
generating the time series: λ < ln 3

2 for chaotic processes, λ > ln 3
2 for stochastic processes and

λ = ln 3
2 for uncorrelated processes. However, note that Ravetti et al. (2014) found that for the

Rössler system 6 the rule is not valid, and Zhang et al. (2017c) found results in which negatively

5An outerplanar graph is a planar graph, (i.e., it can be drawn on the plane so that no edges cross each other),
where all nodes are incident to the infinite face, that is, no node is totally surrounded by edges.

6The Rössler system is a complex system of three ordinary differential equations (Rössler, 1976), which define
a continuous-time process that exhibits chaotic behavior, where the predictability of the behavior decreases
exponentially with lead time.
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correlated processes lead to lower λ values than the critical value. These results show that
there are exceptions to the rule and that using λ to distinguish chaotic from stochastic processes
requires further investigation.

A second property obtained by Luque et al. (2009) refers to the relationship between the hubs
of the graph and the extreme values of the data. This equivalence was obtained numerically.
Furthermore, based on geometric arguments, Luque et al. (2009) obtained the following relation
between the clustering coefficient, a measure to capture the degree to which the nodes of a graph
tend to cluster, and the degree in an HVG:

Ci =
ki − 1(

ki

2

) =
2
ki

, (3.5)

where
(

ki

2

)
denotes the number of possible triangles and ki − 1 is the number of visible nodes

that are also visible from vi. This relation allows also to deduce the local clustering coefficient
distribution (Nuñez et al., 2012b), substituting ki by Ci in Equation (3.3).

The HVG associated with an infinite periodic series of period P is a representation of a
concatenation of a motif. Nuñez and co-authors (Nuñez et al., 2012a) proved that the average
degree of the resulting HVG is given by:

k̄ = 4
(

1− 1
2P

)
. (3.6)

This result implies that time series are mapped on HVGs with 2 ≤ k̄ ≤ 4. The lower bound is
reached for constant series (HVG is a chain graph and so each node is only connected to its two
closest neighbors) and the upper bound for aperiodic series (random and chaotic process).

Nuñez and co-authors (Nuñez et al., 2012a) proposed a method for calculating the hidden
periodicity in a periodic noisy signal, a very common problem in real world data analysis and
difficult to solve with traditional periodicity detection algorithms, such as spectral analysis. The
method involves the construction of a modified HVG, called the filtered HVG (f-HVG), where
two nodes vi and vj are connected if the following condition is met:

Yi, Yj > Yk + f , (3.7)

for all ti < tk < tj and f ∈ [min(Yt), max(Yt)] is a real-valued scalar that acts as a filter. To filter
the noise of a time series, its f-HVG is generated for increasing values of f , and at each step,
the average degree is calculated. The result is a decrease of the average degree, with initial
value 4 (for f = 0), an asymptotic value of 2 (lower bound of k̄) and the plateau obtained for
the distribution allows to obtain the period through Equation (3.6). This method delivered very
promising results including, specific cases where autocorrelation analysis yields misleading
results.
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The definition of sequential motif presented for NVGs in Iacovacci and Lacasa (2016b) also
applies similarly to HVGs. The definition of sequential HVG n-node motifs is the same way as that
for an NVG. The frequency of sequential HVG motifs is also useful for discriminating different
dynamic processes.

HVGs were used to analyze seismic signals (Telesca and Lovallo, 2012), evaluate the complex
dynamics of tourism systems (Baggio and Sainaghi, 2016), construct the so-called Feigenbaum
graphs in order to study unimodal maps and their spectral properties (Flanagan et al., 2019),
study the volatility behavior of returns for financial time series (Zhang et al., 2015), analyze
heartbeat rates of healthy subjects, congestive heart failure subjects, and atrial fibrillation
subjects (Xie et al., 2019) and predicting catastrophes (Zhang et al., 2018a).

In recent work, Li et al. (2018) show that the topological properties of the NVGs and HVGs
are useful features for constructing accurate classification models using generic classifiers for
the classification of real-time series, since combining both graphs allows capturing global (in the
case of NVGs) and local (in the case of HVGs because they are more sensitive to local variations)
features. This approach allows to increase the classification accuracy of a vast set of time series
of different domains and it turns out to be better when compared to the traditional approaches,
such as time series features obtained from common statistical measures.

Several variants of NVGs and HVGs have been proposed in the literature. The most relevant
ones are presented in the following sections.

3.1.1.3 Directed Visibility Graphs

Given that time has a natural direction, Lacasa et al. (2012) introduced directed horizontal
visibility graphs, DHVG, by defining an HVG with edges (vi, vj), i < j. The adjacency matrix is
no longer a symmetric matrix. An example of the representation of this algorithm is illustrated
in Figure 3.4. This variant is extended straightforwardly to the NVGs.

DHVG was proposed as a simple and well-defined tool for measuring time series irreversibil-
ity 7 notoriously difficult to assess with traditional algorithms, like algorithms that involve time
series symbolization, which normally involve the choice of extra parameters and the results may
depend on that choice. The degree of irreversibility of a time series is calculated as the Kullback-
Leibler distance between the in- and out-degree distributions, P(kin) and P(kout) (Lacasa et al.,
2012). These authors proved that for a bi-infinite sequence of i.i.d. random variables, both the in
and out-degree distributions of the corresponding DHVGs are equal and given by:

P(kin) = P(kout) =

(
1
2

)k

, k = 1, 2, 3, . . . . (3.8)

7A stationary time series is reversible if {Y1, . . . , YT} and {YT , . . . , Y1} have the same joint probability distributions.
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(a) Toy time series (b) DHVG

Figure 3.4: Illustrative example of directed horizontal visibility algorithm and corresponding
out-degree (kout

i ), in-degree (kin
i ) and total-degree (ki). On the left side, we present the plot of a

toy time series and, on the right side, the network generated by the directed horizontal visibility
algorithm. The green directed lines represent the directed horizontal lines of visibility between
data points.

In the same line of research, Donges et al. (2013) followed a similar approach. Donges and
co-authors proposed a set of rigorous statistical tests for time series irreversibility based on both
visibility algorithms (NVG and HVG). The authors compare the degree and local clustering
coefficient distributions taking into account the past (P(kr) and P(Cr)) and the future (P(ka) and
P(Ca)) separately. It is conjectured that if a time series is reversible the distributions P(kr) and
P(ka) (or P(Cr) and P(Ca)) should be similar, while for irreversible time series we should find
statistically significant deviations between the distributions.

3.1.1.4 Limited Penetrable Visibility Graphs

The limited penetrable visibility graph, LPVG, was first proposed by Zhou et al. (2012) to
improve the NVG and HVG mappings. Similarly to the NVG method, the nodes are numbered
sequentially in time but now have a limit l of visibility, and the nodes vi and vj are connected if:

Yi+l < Yj + (Yi −Yj)
tj − (ti + tl)

(tj − ti)
, l < j− i, (3.9)

where l is a limited penetrable distance established to reduce the effect of noise intrinsic to data.
So, the nodes vi and vj have mutual visibility through l intermediate bars (data) in the time
series. The presence of noise in the data causes the connections on NVGs to break easily, while
the nodes should, in principle, have more connections to other nodes, except for the maxima
data (Pei et al., 2014). A small illustration of this method for l = 1 is represented in Figure 3.5a.
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(a) LPVG algorithm (b) PNVG vs. DNVG algorithm

Figure 3.5: (a) Illustrative example of limited penetrable visibility graph algorithm where the
limit l = 1. The purple lines show the edges between points that have direct visibility (as in
NVG, l = 0) and the blue dashed lines are the extra edges imposed by the LPVG algorithm,
where two points can be seen with only one higher intermediate point. (b) Illustrative example
of parametric natural visibility graph algorithm with a comparison with NVG algorithm.

A limited penetrable version for HVG was developed by Gao et al. (2016a) and called limited
penetrable horizontal visibility graph (LPHVG). The graphs are constructed using the above
algorithm, except that the visibility condition is horizontal visibility. Note that when l = 0,
the LPVG (LPHVG) is reduced to NVG (HVG). Other versions of this method exist, namely, a
directed version, the directed limited penetrable horizontal visibility graph (DLPHVG), and an
image version, the image limited penetrable horizontal visibility graph (ILPHVG) (Wang et al.,
2018b).

LPVGs are very promising: as the NVGs they inherit several properties of the time series and
are able to detect differences between random and chaotic series, detect the location of inverse
bifurcations in chaotic dynamical systems and, in addition, as an advantage over NVGs, they
show good tolerance to noise interference (Wang et al., 2016a). However, it is necessary to pay
attention to the choice of parameter l so that not too much information is incorporated into the
graphs. The idea of limited natural visibility was applied to analyze abnormalities of EEG signals
from Alzheimer’s disease (Wang et al., 2016a), EEG signals under manual acupuncture (Pei et al.,
2014), and signals from an electromechanical system in the process industry (Wang et al., 2016b).

Ren and Jin (Ren and Jin, 2020) applied the idea of sequential motifs (see Section 3.1.1.1)
to LPVGs and introduced a measure of motif entropy to estimate the complexity of network
structure, rather than looking at the motif occurrence frequency. They obtained better robustness
and the ability to distinguish different processes when compared to visibility-graph motif
entropy.
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Wang et al. (2018a) presents some exact results (similar to those obtained for the HVGs
presented in Section 3.1.1.2) on the topological properties of the LPHVG associated with bi-
infinite time series of i.i.d. random variables with a probability density f (x). The degree
distribution of the associated LPHVG with the limited penetrable distance l is given by:

P(k) =
1

2l + 3

(
2l + 2
2l + 3

)k−2(l+1)

, (3.10)

where l = 0, 1, 2, . . . , and k is the degree of a node. From Equation (3.10) we obtain the average
degree k̄:

k̄ = ∑ kP(k) = 4(l + 1). (3.11)

And based on the Equation (3.10) we can deduce the minimum and maximum local clustering
coefficient of the LPHVG associated with i.i.d. random series as (see Wang et al. 2018a for more
details):

Cmin(k) =
2
k
+

2l(k− 2)
k(k− 1)

, l = 0, 1, 2, . . . ; k ≥ 2(l + 1) (3.12)

Cmax(k) =
2
k
+

4l(k− 3)
k(k− 1)

, l = 0, 1, 2, . . . ; k ≥ 2(2l + 1). (3.13)

For an infinite periodic series of period, P, the average degree depends on the period P:

k̄ = 4(l + 1)
(

1− 2l + 1
2P

)
, l ≪ P. (3.14)

LPHVG was employed in the analysis of EEG signals and biphasic-flow signals where they
characterize the behaviors underlying the systems (Gao et al., 2016a), in the analysis of chaotic
series and energy and oil price series (Wang et al., 2018a), and to distinguish between random,
periodic and chaotic signals using motifs (Wang et al., 2018b).

3.1.1.5 Weighted Visibility Graphs

The method proposed by Supriya and co-authors (Supriya et al., 2016) is a fairly simple
modification to the traditional NVG algorithm, it considers the NVG edges as directed and
weighted. For a given time series the corresponding weighted visibility graph, WVG, (or
weighted directed visibility graph, WDVG), is constructed as follows: a directed NVG is
constructed as described in Section 3.1.1.3, and weight wi,j equal to the view angle between
the observations (ti, Yi) and (tj, Yj) in time series is assigned to the edge that connects the
corresponding nodes. The angle is given by:

αi,j = tan−1

(
Yj −Yi

tj − ti

)
, i < j. (3.15)
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We should note that Equation (3.15) allows the attribution of not only positive weights
but also negative weights to the edges of the WVG. However, the analysis of networks with
negative weights is more complex, standard methods and techniques do not apply straightfor-
wardly (Kaur and Singh, 2016), and therefore is less common. For this reason, Supriya et al.
(2016) consider the absolute value of the view angle, |αi,j|, between the observations of the time
series. We can see that the sign of the angle between the observations is an indicator of an
increase (positive angle) or decrease (negative angle) of the values of the underlying process,
thus providing information about changes in trends throughout the series.

We can consider a parametric version of WVGs, called parametric natural visibility graph,
PNVG or PNVG(α), proposed by Bezsudnov and Snarskii (Bezsudnov and Snarskii, 2014).
This algorithm adds a restriction to the edge assignment in WVG determined by a threshold
parameter α associated with the visibility angle. So, the PNVG(α) imposes that a weighted edge
(vi, vj, wi,j) is established from node vi to node vj only if the view angle between those nodes is
less than threshold parameter, that is, {(vi, vj, wi,j) ∈ E | αi,j < α, wi,j = |αi,j|}, as shown in the
Figure 3.5b.

The PNVG(α) is a directed acyclic graph, it is always a subgraph of the underlying NVG
(and WVG) and, consequently, invariant under affine transformations of the time series; and it
can be a connected or disconnected graph.

PNVG and WVG were designed to try to overcome the loss of quantitative information of
the NVG’s binary matrix. Other than arc tangent weights can be associated with the edges of the
graphs. The arc tangent is a direct measure of the concept of visibility and a direction for future
work may be to analyze its properties. However, the characteristics of the resulting network will
always be dependent on this weight.

Specific topological features were defined for this mapping, namely, relative average degree,
relative average length of edge and relative number of clusters, which aim to compare the average
degree, the average length of edges and number of clusters with the corresponding features in
the underlying NVG (i.e., when α = π). The authors in Bezsudnov and Snarskii (2014) showed
that these features are useful for distinguishing, identifying, and describing various time series.
They performed tests in different synthetic time series and in real heart rate data to distinguish
different series associated with people with different health conditions, where they obtained
good results. However, PNVG is not a parameter-free method and it always involves choosing
the parameter α that conditions the final results.

In Supriya et al. (2016) the authors applied this approach to EEG reference data associated
with epileptic activity and showed that the metrics such as modularity (that measures how
good a division of the graph is in specific communities) and weighted average degree of WVG
constructed for this data help to distinguish convulsion signals from normal signals, detecting
the sudden fluctuations in signals. The accuracy of the results surpassed many other methods.
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Note that other strategies for assigning weights to the edges of (natural or horizontal)
visibility graphs, that are different from those of the visibility angles, can be considered.
Examples include weights based on Euclidean distance (Bianchi et al., 2017) and weights based
on the VG own degree distribution (Song and Xiao, 2022; Xu et al., 2018) leading to undirected
and weighted horizontal and natural visibility graphs.

3.1.1.6 Difference Visibility Graphs

A variant of the NVG and HVG consists of the creation of difference visibility graphs, DVG (Zhu
et al., 2014a). This algorithm subtracts the HVG edge set from the NVG edge set. Thus, the
degree ki of a node vi of the DVG is: ki = ki,NVG − ki,HVG, since the HVG is always a subgraph
of the NVG. For the average degree we have k̄ = k̄NVG − k̄HVG. DVGs will very possibly be
disconnected and may have isolated nodes (which have no connections). The DVGs were used
together with HVGs in An et al. (2019); Zhu et al. (2014a) to extract graph metrics, such as
average degree, degree distribution, and degree sequence, to classify automatically real EEG
data in order to detect different sleep stages. DVGs obtained intermediate precision values
when compared to other strategies (An et al., 2019).

3.1.1.7 Absolute Invisibility Graph

Based on the NVG concept, Yan and van Tuyll van Serooskerken (2015) extend the concept to
a new algorithm that builds the so-called absolute invisibility graph (AIG), whose definition
is the opposite of NVG, that is, two nodes vi and vj are connected if there is no natural line of
visibility between corresponding data values (ti, Yi) and (tj, Yj):

Yk > Yj + (Yi −Yj)
(tj − tk)

(tj − ti)
, for all tk, ti < tk < tj. (3.16)

This algorithm was conceived with finance time series in mind, namely stock prices, in order to
understand and measure the magnitude of the super-exponential growth of these data. More
specifically, the authors take advantage of the topological features of NVG degree and AIG
degree to predict the peaks (high values) and troughs (low values) in the financial market
prices (Chen et al., 2019; Liu and Chen, 2020; Yan and van Tuyll van Serooskerken, 2015).

3.1.1.8 Dual Perspective Visibility Graph

The dual perspective visibility graph, DPVG (Zheng et al., 2021), is a proposed method that
combines the concept of the natural view of NVGs with the concept of reflected view. It is
projected to culminate the limitation of VGs to distinguish positive and negative intensity
changes from time series data.
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To build a DPVG from a time series {Yt}T
t=1 we need first map the time data into a NVG

following the Equation 3.1, which is described by the adjacency matrix A, and when we calculate
the reflected perspective of the NVG. This is made by inverting the time series across the time
axis, that is, for each Yi we compute the inverted time series values: Xi = −Yi. The second to
last step is to map the inverted time series {Xt}T

t=1 into corresponding NVGs, generating the
reflected perspective NVG described by the adjacency matrix B. Finally, we combine the NVG
and the reflected perspective NVG by the following criteria,

Ai,j = max
(

Ai,j, Bi,j

)
, (3.17)

where the adjacency matrix A now defines the adjacency matrix of the DPVG. This new mapping
method can be extended to the horizontal visibility concept and to the directed and weighted
versions.

Note that if the interest is not in data changes below a given baseline or if the time series
does not present negative values, we do not need to generate the DPVG.

The authors in (Zheng et al., 2021) also propose a community detection method in VG,
which is based on calculating the shortest path between nodes in the VG, preserving temporal
information, and using it to characterize biological time series.

3.1.2 Transition Networks

Transition networks are a type of network that is constructed from time series based on the
concept of transition between symbols that are assigned to represent the series. In general,
the construction of transition networks involves two fundamental steps: assigning a symbol
encoding to the time series data; mapping the symbols and the transition function between the
symbols into the nodes and the edges, respectively. The first step transforms the time series
into a set of symbols or states by partitioning either the time range, reconstructing the time
series in a new phase space 8, or the support of the time series. The first partition strategy
leads to coarse-graining phase space graphs, to ordinal partition transition networks, and to
visibility graphlets networks, while the second leads to quantile graphs. In the second step of
the transition network construction process, the edges are established by transition probabilities
between the symbols obtained in the first step, computed as the relative frequency of symbol
sequences si, sj, leading to directed and weighted edges. The resulting transition network is
a directed and weighted graph whose adjacency matrix is a Markov matrix. An unweighted
representation can be obtained by omitting the information on the probability/quantity of
transitions between different states, or a less dense graph can be obtained considering a limit for
the probability of transitions between states in order to exclude rare transitions (for example,
due to noise in deterministic dynamical systems) (Zou et al., 2019).

8The reconstruction of phase space (or state space) is the basis of the analysis of nonlinear processes, mostly
adopted in areas such as physics. It allows reconstructing the complete dynamics of a system from a single time
series (Bradley and Kantz, 2015). It consists of embedding (Y1, . . . , Yt) into a w-dimensional space with a time delay
of embedding τ with states {⃗z1, z⃗2, . . . , z⃗T−(w−1)τ}, where z⃗i = (Yi, Yi+τ , . . . , Yi+(w−1)τ) (Takens, 1981).
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3.1.2.1 Quantile Graphs

Quantile graphs (QG) were introduced by Campanharo and co-authors (Campanharo et al.,
2011) based on the idea of assigning the time series observations to bins (Shirazi et al., 2009).
In the construction of quantile graphs, the bins are defined by η quantiles, q1, q2, ..., qη . Each
quantile, qi, is associated to a node vi of the graph so the graph has as many nodes as the number
of quantiles. Two nodes vi and vj are connected by a weighted directed edge (vi, vj, wi,j), where
the weight wi,j represents the transition probability between quantile ranges. The adjacency
matrix becomes a Markov transition matrix, where ∑

η
j=1 wi,j = 1, for each i = 1, . . . , η. This

mapping is illustrated in Figure 3.6.

(a) Toy time series (b) QG

Figure 3.6: Illustrative example of the quantile graph algorithm for η = 4. On the left panel, we
present the plot of a toy time series, and on the right panel the network generated by the quantile
graph algorithm. The different colors in the time series plot represent the regions corresponding
to the different quantiles. In the network, edges with larger weights represented by thicker lines
correspond to the repeated transitions between quantiles.

Later, Campanharo and Ramos (2016) extended the QG method to a more general version
that not only allows representing the transition between quantiles corresponding to consecutive
timestamps but also allows the construction of the QG that represents the transition between
quantiles corresponding to lagged timestamps. That is, two nodes vi and vj are connected by
a weighted directed edge (vi, vj, wi,j,h), whenever two timestamp values Yt and Tt+h belong
respectively to quantiles qi and qj, with t = 1, . . . , T and the lagged h = 1, . . . , hmax < T. The
weight wi,j,h represents the probability of transiting from the quantile qi at time t to the quantile
qj at time t + h. If h = 1, QG reduces to the original definition.

The number of quantiles is usually much less than the length of the time series (η ≪ T)
and the resulting networks are weighted, directed, and contain self-loops. If the number of
quantiles is too large the resulting graph may not be connected. On the other hand, QGs present
a significant loss of information, represented by large weights assigned to self-loops, when η is
small. Shirazi et al. (2009) proposed a method based on the chi-squared statistic to obtain the
optimal number of bins (quantiles). Some works define the number of quantiles based on the
following relationship with the time series length: η ≈ 2T1/3 (Campanharo et al., 2018). The
connectivity of QGs represents the causal relationships contained in the dynamics of the process.
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Campanharo and co-authors (Campanharo et al., 2011) reconstructed a time series from a
QG using only the information contained in the adjacency matrix and without prior knowledge
about the original series. These authors have shown that the resulting series presents statistical
properties namely, autocorrelation, power spectrum, and marginal distributions equivalent to
those of the original series.

Recently, Campanharo and Ramos (2016) developed a variation of the QGs method in order
to estimate the Hurst exponent of fractional noise. This variation involves the introduction
of a parameter ϕ such that two nodes vi and vj are connected by an edge with weight wϕ

i,j

whenever two observations Yt and Yt+ϕ belong to the quantiles qi and qj, respectively, where
ϕ = 1, . . . ϕmax < T. If ϕ = 1, the method is reduced to QGs. The Hurst exponent, H, can be
estimated as a function of the mean jump length: ∆(ϕ) ∼ ϕH, where

∆(ϕ) =
1
L

L

∑
l=1

δl,ϕ(i, j), (3.18)

δl,ϕ(i, j) = |i− j|, with i, j = 1, . . . , η, is the jumps of length in a random walk on the graph and
L is the number of jumps.

Shirazi and co-authors (Shirazi et al., 2009) were able to quantify the effect of long-range
correlations and of the marginal distributions, using distance and clustering measures. They
tested the method on synthetic white noise data and on real data from turbulence and stock
market index series. Liu and Wang (2018) also used this approach to identify behavior patterns
of the processes underlying synthetic and real-world time series data from the visual analysis
as well as the analysis of the communities of the resulting networks. Campanharo and co-
authors (Campanharo et al., 2011) were able to show that time series with different properties
are mapped into networks with different topological properties. In particular, as randomness
increases in time series, the corresponding QG networks become increasingly random as well,
becoming similar to small-world models 9. Later, Campanharo (2016) showed that the QGs are
capable of capturing and quantifying time series derived from long-range correlated processes
and chaotic processes. They also verified that as the time series changes from periodic to chaotic,
the corresponding networks, initially regular, become more and more random with larger values
of the average path length 10 and clustering coefficient. The work developed by Campanharo
et al. (2018) and Pineda et al. (2020) takes advantage of the quantile graphs to classify EEG data.

9Small-world networks are networks characterized by a high clustering coefficient, like a regular graph, and a
low characteristic path length, like a random graph. This means that most nodes have few edges but can be reached
from another node through a small number of edges (Watts and Strogatz, 1998).

10The arithmetic mean of the shortest path lengths among all pairs of nodes in the graph, where the path length is
the number of edges, or the sum of the edge weights if the graph is weighted, in the path.
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3.1.2.2 Ordinal Partition Transition Networks

Ordinal pattern methods are based on the idea of a set of sequential patterns defined for a
sequence of consecutive observations, where each node of the network represents one of the
defined patterns and the edges are weighted according to the transition frequency between two
consecutive patterns.

Formally, to construct a network of ordinal patterns (or ordinal partition transition network,
OPTN) for a univariate time series the time series is embedded in a w-dimensional space using a
time delay τ. For each of these vectors z⃗i, define the corresponding ordinal pattern by assigning
ranks to the data Yt in descending order, πi = (R1, R2, . . . , Rw), where Rj ∈ {1, 2, . . . , w},
Rj ̸= Rk if j ̸= k. If the observations Yj and Yk for time j and k have equal amplitudes we
consider the order of time, and we take the first to occur as smallest (McCullough et al., 2015;
Small, 2013) (see Figure 3.7a). Finally, the set of patterns obtained is mapped to nodes in a
network where the edges are allocated between nodes based on the transition sequence of the
symbols πi. The weight (wi,j) associated with the edge (vi, vj) is the probability of transition
between consecutive symbols.

(a) Toy time series (b) OPTN

Figure 3.7: Illustrative example of ordinal partition transition network algorithm. On the left
side, we illustrate the method of embedding with window size w = 3 and lag τ = 2 and the
method of finding its ordinal pattern, based on the amplitude rank of its elements. On the right
side, we show the resulting networks.
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McCullough and co-authors (McCullough et al., 2015), applied the ordinal partitions method
to the Rössler system and to other chaotic series. They found that both the visual topological
structure of the networks, time series with periodic behavior are mapped in networks with a
ring structure and chaotic time series in networks with the band or tube-like structures, and
the simple topological metrics as average out-degree and variance of out-degrees, convey the
dynamics underlying the processes. In particular, the average out-degree and the variance of
out-degrees allow detecting changes in the dynamic behavior in a similar way to the Lyapunov
exponent 11, distinguishing dynamics of different states and determining points of change. These
networks also proved to be useful for the analysis of real-world time series, such as: series from
the externally driven diode resonator circuit (McCullough et al., 2015), and electrocardiograms
(ECG) series for analysis of dynamical changes, such as human cardiac dynamics (Cao et al.,
2004; McCullough et al., 2017).

A number of studies have begun to emerge around the so-called forbidden patterns, which are
patterns that do not occur in a time series. These studies have shown that features around these
patterns, namely the counting of forbidden patterns, are important to distinguish deterministic
time series with very high levels of noise from random series (Amigó et al., 2007), to detect
determinism in noisy data (McCullough et al., 2016; Sakellariou et al., 2016), and to distinguish
between healthy patients and unhealthy patients with varying heart conditions based in ECG
data (Kulp et al., 2016).

Recently, Pessa and Ribeiro (2019) showed that properties of ordinal networks (namely, the
average weighted shortest path lengths) can be used for estimating the Hurst exponent of time
series with high precision, outperforming the quantile graphs (Campanharo and Ramos, 2016)
and the detrended fluctuations analysis (Shao et al., 2012).

3.1.2.3 Coarse-Grained Phase Space Graphs

Networks based on coarse-graining of phase space consist of the idea of reconstructing (creating
sets of symbol groups) the phase space of a dynamic process, where each of these symbol groups
is mapped into a node of the network and the edges are established between nodes representing
successive partitions in time. A weight representing the amount or probability of transition
between these partitions (nodes) is assigned to the edge.

The algorithm involves the following steps (Gao and Jin, 2009; Wang and Tian, 2016): start
by embedding a time series in a w-dimensional space with a time delay τ, similarly to OPTN
(Section 3.1.2.2); then the vectors (points in the phase space) z⃗t = (Yt, Yt+τ, . . . , Yt+(w−1)τ) are
classified into D = w different symbol groups (Ψj = {ψi}D

i=1), according to intervals predefined
by a set of values that delimit the phase space {α1, . . . , αD−1} (Wang and Tian, 2016; Zou et al.,

11The Lyapunov exponent, λ, (Lyapunov, 1892) measures the speed with which trajectories in phase space approach
(contraction) or move away from (expansion) each other (Kiel and Elliott, 1996). It can be interpreted as a qualitative
measure of the sensitivity to the initial conditions of the chaotic systems and, consequently, instability of a process.
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2019): 
ψ1 if Yt < α1,
ψi if αi−1 ≤ Yt < αi, 1 < i < D− 1
ψD if Yt ≥ αD−1.

(3.19)

Note that this transformation process is similar to the transformation underlying the QG
algorithm (Section 3.1.2.1), but applied separately to each component of the embedding vector.
While in QGs, quantiles delimit the time series support, here the set of values {α1, . . . , αD−1}
delimit the phase space. Finally, each unique vector of symbols Ψj is mapped into a node of the
network. Directed and weighted edges (vi, vj, wi,j) are defined by the transition probabilities
between symbol vectors Ψi and Ψj.

Wang and Tian (2016) have shown, based on the distribution of weighted degree of nodes,
that increasing the dimension w of the phase space leads to enhancing the heterogeneity of the
networks and that the method allows distinguishing and characterizing different series, such as
white noise, chaotic Lorenz systems12, and gasoline price series.

Weng and co-authors (Weng et al., 2017) proposed an extension of this algorithm with the
purpose of characterizing the memory (short or long) of the process. Taking into account that
the temporal information is lost after the coarse-graining transformation and that the transition
probability matrix is an estimate of the process dynamics, Weng and co-authors proposed to
incorporate the temporal information into an additional topological dimension, such as an edge
attribute. In this network, a node vi is connected to the node vj with an attribute t, (vi, vj; t),
when a transition from Ψi to Ψj occurs at time stamp t. This makes it possible to construct a
memory network whose memory effect appears to be able to accurately differentiate various
types of time series, namely, white noise, 1/f noise, AR model, and periodic and chaotic time
series.

3.1.2.4 Visibility Graphlets Networks

Given the ability to incorporate the topological characteristics (global and local) of the time
series in the visibility graphs, visibility graphlets networks were proposed by Mutua et al. (2015)
in order to monitor and, consequently, understand the evolutionary behaviors of a time series.
The method consists of five fundamental steps (Mutua et al., 2015, 2016). First, a time series
is incorporated into a w-dimensional space without time delay (τ = 1), similarly to sliding a
window of length w across the time series; each resulting vector z⃗k = (Yk, Yk+1, . . . , Yk+w−1),
with k = 1, 2, . . . , T − w + 1, is mapped to a directed visibility graph (visibility graphlet) Gk,
following the algorithms described in Sections 3.1.1.1 and 3.1.1.3, representing the k-th state of
the time series; the successive visibility graphs are then connected by a directed edge resulting
in the following state chain network: G1 → G2 → . . .→ GT−w+1. In order to obtain a network
of distinguishable states, each graph Gk is, iteratively, compared to the others across the chain

12Lorenz’s system, as Rössler, is a complex system of three ordinary differential equations (Lorenz, 1963). It defines
a chaotic continuous-time process.
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network and if any two graphs are identical, i.e., the adjacency matrices are the same, the latter
graph is replaced by the former which is the reference state. For example, if A1 = A5, the graph
(state) G5 is replaced by G1. Finally, the visibility graphlets network is defined so that the nodes
represent the unique graphlets, and the directed and weighted edges are established between
pairs of nodes with weight equal to the number of edges between the successive corresponding
graphlets in the chain network.

A visibility graphlets network is a directed and weighted transition network where the time
series states are represented by visibility graphlets and the edges reflect the relative frequency of
states sequences, i.e., the transfer behaviors of the unique states. This network can also be seen as
a temporal network (Holme and Saramäki, 2012) and a network of networks (Kivelä et al., 2014),
where the corresponding network science methodologies can be used (Mutua et al., 2015). This
mapping method is a "mixture" of two underlying concepts, visibility and transition probability,
which can benefit from the characteristics mapped by both, namely, structural features that fully
describe the states of the time series and the dynamic transfers of the underlying processes.
However, like all methods that involve incorporation in the phase space, the selection of the
parameter w is a problem. If w is too small, the number of different graphlets is very limited. On
the other hand, the number of different graphlets increases geometrically with the increase of w
implying that the time series is sufficiently large. See Mutua et al. (2015) for a more detailed
discussion.

In Mutua et al. (2015), the authors studied some properties in a set of synthetic and real-world
time series, namely, the degree of nodes and transmission probability related to edge weights
for short-term prediction, and long-term persistence related to the occurring positions of some
motifs on time series. Mutua et al. (2016) used the method in discrete and continuous chaotic time
series and showed that the generated networks capture the dynamic properties of the systems,
distinguishing chaotic zones that result in networks with a complex structure characterized by
hubs and non-chaotic zones, such as periodic ones that result in regular networks.

3.1.3 Proximity Networks

Mappings based on the concept of proximity use measures of distance or similarity to calculate
the distance between the points of the time series incorporated in the multidimensional phase
space. These methods map states of the time series into nodes of the network and create edges
between those nodes based on some measure of distance or similarity. The ability to connect
different nodes based on proximity measures allows capturing significant information about
the topology of the dynamical systems, enabling to identify, for example, different regimes or
patterns along the series via the similarity of successive states (Donner et al., 2011b).

Proximity networks include cycle networks, correlation networks, and recurrence networks.
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3.1.3.1 Cycle Networks

Cycle networks were proposed by Zhang and co-authors (Zhang et al., 2006; Zhang and Small,
2006) to represent pseudo-periodic time series.

Formally, to construct a cycle network from a pseudo-periodic time series {Yt}T
t=1, first

segment the series into u consecutive cycles {c1, c2, . . . , cu}, not necessarily of the same length,
according to the local minima (or maxima). For each pair of cycles ci = {Yi, . . . , Yli} and
cj = {Yj, . . . , Ylj} (i, j = 1, 2, . . . , u and i ̸= j) compute the correlation index ri,j defined as the
maximum of the cross-correlation between the two cycles (assuming that li ≤ lj without loss of
generality) (Zhang et al., 2006):

ri,j = max
l=0,1,...,lj−li

cov[(Y1, . . . , Yli), (Y1+l , . . . , Ylj+l)]√
var(Y1, . . . , Yli)

√
var(Y1+l , . . . , Ylj+l)

, (3.20)

where cov is the covariance and var is the variance. This means that, if the cycles are not of
the same length, the shortest, ci is shifted relative to the longest, cj by lj − li steps and the
correlation coefficient between ci and the corresponding part of cj, in each step, is calculated.
Finally, the highest value is chosen as the correlation coefficient between ci and cj. The graph G
is constructed by assigning a node vi to each cycle ci and defining an undirected and unweighted
edge between two nodes vi and vj if the correlation index is above a certain threshold ri,j > α.

The definition of the edges may be alternatively based on other distance measures, such as

di,j = min
l=0,1,...,lj−li

1
li

li

∑
k=1
∥Zk − Xk+l∥, (3.21)

for which thresholds must also be set (Zhang and Small, 2006) and where Zk and Xk are the k-th
point of ci and cj in the constructed cycle, respectively.

Zhang and Small (Zhang and Small, 2006) applied cycle networks to the study of the Rössler
system and of electrocardiogram (ECG) signals. The authors studied topological metrics of
the resulting graphs, such as degree distribution, among others, and concluded that noisy
periodic signals are mapped into random networks and chaotic time series into networks that
exhibit small-world and scale-free features. In particular, they observed peaks in the degree
distribution function of the graph that corresponds to the unstable periodic orbits of the system,
the nodes corresponding to these orbits form communities in the network. The metrics studied
also allowed to distinguish between the ECG of healthy volunteers, P(k) varies smoothly, and
those of unhealthy patients, P(k) shows more prominent variations.
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3.1.3.2 Correlation Networks

Correlation networks are essentially constructed based on a correlation measure, such as the
correlation matrix of the time series Yt proposed by Yang and Yang (2008) based on the ideas
of functional networks (Eguiluz et al., 2005), correlation of stock markets (Bonanno et al., 2004)
and the results obtained by cycle networks (Zhang and Small, 2006). The process consists of
first considering individual state vectors z⃗i of time series which are extracted by embedding the
series into a sufficiently large w-dimensional space. Each state vector is mapped into a node vi

of an undirected and weighted network where the set of edges {(vi, vj, wi,j)} are established in
terms of the Pearson correlation coefficient calculated between the corresponding state vectors
(⟨⃗zi, z⃗j⟩). Note that the Pearson correlation takes values between −1 and 1, so a negative weight
may be assigned to the edges. However, as already mentioned, network analysis with negative
weights is unusual and so the weights of correlation networks are usually established as the
absolute value of the correlations, wi,j = |ρi,j|. The correlation matrix [|ρi,j|] is the matrix of the
correlation network, and note that other measures of correlation may be considered.

As with cycle networks, a threshold rc also can be considered and a binary adjacency
matrix can be produced. This threshold must be chosen properly because it determines the
characteristics of the resulting network. If it is extremely small, pairs with weak correlations are
also connected (noise). But if it is too large important information may be lost too (Yang and
Yang, 2008).

Correlation networks were applied to the stock price series (return and amplitude series) res-
ulting in a degree distribution function that follows a perfect Gaussian distribution. Additionally,
the return series point to a random behavior, indicating that the global correlation characteristic
can be modeled by an Erdős-Rényi network (Yang and Yang, 2008). The authors used the degree
distribution to decide the best parameters for the algorithm. In contrast, Feng and He (Feng and
He, 2017), used the cross-correlation as a measure of similarity between two points in phase
space and used the clustering coefficient and efficiency to decide the best parameters for the
model. They analyzed the Lorenz system, white Gaussian noise, and sea clutter time series. The
results show that, for an unknown complex system, dynamic states, i.e., the behavior changes of
the system, can be discovered by studying the community structures of complex networks. In
particular, Feng and He identified changes in behavior from the contractive state to the open
state in the sea clutter time series and the white Gaussian noise did not identify clear community
structures, the behavior changes of white Gaussian noise are completely random and therefore
the resulting networks do not present a topology in communities.

3.1.3.3 Recurrence Networks

Recurrence networks are quite popular in the research community. These networks are based on
recurrence plots, a tool used in the study of dynamical (nonlinear or chaotic) systems (Marwan,
2008). For constructing a recurrence plot for a dynamical system from an observed time series
first embed the time series in a w-dimensional space (phase space reconstruction) thus defining
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a set of vectors z⃗i. Then define a matrix A, also called the recurrence matrix, where the elements
(i, j) are defined based on the proximity relation in phase space of the vectors z⃗i and z⃗j (Eckmann
et al., 1987). The proximity relation can be defined by different criteria, namely, fixed (probability)
mass, where a fixed amount of nearest neighbor vectors is established, or fixed volume, where
an ε-threshold of proximity is established. The matrix A is commonly defined with elements:

Ai,j =

{
1 if ∥⃗zi − z⃗j∥ ≤ ε

0 otherwise
, (3.22)

where ε is a distance threshold and ∥ · ∥ can be any norm in phase space (for example, Euclidean,
Manhattan, or maximum norm) (Marwan et al., 2007). The matrix A is a symmetric (Ai,j = Aj,i)
matrix with constant values on the diagonal (Ai,i = 1), and it can be interpreted as the adjacency
matrix of an undirected and unweighted network, the recurrence network, where the nodes
represent {⃗zi} and the edges are defined by Ai,j, usually the self-loops are removed (Ai,i = 0).
A direct generalization is considering the associated distance matrix between pairs of states,
resulting in a weighted network. This type of network, both weighted and unweighted, are
spatial networks, where the nodes (states) are located in an m-dimensional space equipped with
a norm in the phase space and which is reflected in the topological characteristics/features of the
networks (Donner et al., 2010). In the unweighted network’s case, the probability of finding an
edge between two states will decrease with the distance. For weighted networks, the direct use
of the distance matrix is generally avoided because the more distant/dissimilar two states are,
the stronger the connection between them. To avoid this other alternatives can be used, such as
the inverse of the distance wi,j =

1
∥⃗zi−z⃗j∥ (Strozzi et al., 2011). Recently, a general alternative, that

can be applied to any kind of network, was presented to recurrence networks where weights are

given by: wi,j =

√
kik j

kmax
, kmax is the maximum degree in the unweighted recurrence network (Jacob

et al., 2019).

The construction of these networks implies that they do not incorporate any temporal
information on the underlying process and therefore do not explicitly depend on the presence
of equally spaced observations, which is a major issue in the analysis of time series observed
in many phenomena (Donner et al., 2011b). Recurrence plots are also one of the few time
series analysis techniques that work well with non-stationary time series data. However, in
the case of more complex systems, the rich geometric structure of recurrence plots can become
difficult to interpret, for example, for chaotic systems this happens due to their unstable periodic
orbits (Bradley and Kantz, 2015). The characteristics and topological properties of recurrence
networks depend essentially on their construction, namely on the following parameters: the
dimension of states w, time delay τ and threshold ε, and the measure of proximity between
states. It is important to note w = 1 meaning that the embedding in the phase space is not
required in which case the distance is computed between the points of time series (Marwan
et al., 2009; Zhao et al., 2020).

The literature essentially highlights three types of recurrence networks, the κ-nearest neighbor
networks, the adaptive nearest neighbor network, and the ε-recurrence networks, which we describe in
more detail below.

51



CHAPTER 3. TIME SERIES ANALYSIS VIA NETWORK SCIENCE: CONCEPTS AND

ALGORITHMS

κ-Nearest Neighbor Networks, κ-NNN

The κ-nearest neighbor version imposes a constraint on the quantity κ of the nearest neighbor
points (nodes vj) of a given point in the phase space (node vi). This implies a direction in the
edge (vi, vj) since it is not necessarily true that, if the node vj is one of the κ the closest neighbors
of the node vi then vi is also one of the κ closest neighbors to vj, and so the adjacency matrix
becomes an asymmetric matrix. This method was proposed by Small and co-authors (Small
et al., 2009), in order to overcome the issue of cycle network mappings that requires time series
with an oscillatory nature.

κ-NNN imply that all nodes have the same amount κ of out-edges, kout
i = κ, preserving a

constant mass of the considered neighborhoods, i.e., the number of nodes is the same in all
neighborhoods (Donner et al., 2011b). However, the distribution of in-edges kin

i is allowed to
vary but the average degree is k̄in = κ. In particular, if kin

i ≪ κ, the node vi must be in a phase
space region with decreased density compared to the remaining, and if kin

i ≫ κ, vi must be
located in a densely populated region (Donner et al., 2011b), thus giving information about the
local geometry of the phase space.

Xiang et al. (2012) studied the distribution of network motifs in κ-NNN and were able to
classify different dynamic behaviors (such as maps and flows) using the frequency of motifs.
These authors have also shown that degree variations accompany the changes in the dynamics
throughout the bifurcation process of the Rössler system.

Adaptive Nearest Neighbor Networks, ANNN

In order to overcome the imposition that all nodes have the same kout
i = κ in κ-nearest neighbor

networks, a new version, called adaptive nearest neighbor networks, was proposed (Small
et al., 2009; Xu et al., 2008). In ANNN if vj is one of the κ closest neighbors of vi, then vi is also
considered a neighbor of vj, even if it is not one of the κ closest neighbors to vj. This leads to
a symmetric adjacency matrix and the node degree to be variable, unlike κ-NNN, since there
may be more than κ neighbors to a given node. Xu et al. (2008) and Liu and Zhou (2010) have
shown that the motif distributions allow characterizing different processes, namely periodic,
chaotic, noise and fractional, creating super-families. Unique fingerprints have also been found
for specific dynamical systems within a family. Additionally, Liu and Zhou (2010) analyzed
three stock market indexes and concluded that the motif distributions are equivalent for the
three series (since they have the same dynamic behavior characteristic of return stock series)
and are also very similar to the distributions obtained for the fractional Brownian motion 13.

13Fractional Brownian motion is a continuous-time Gaussian process where the increments need not be
independent. The Hurst exponent, H, describes the raggedness of the motion, H ∈ [0, 1], the higher the value
is smoother (correlated) motion (Zunino et al., 2007). It is an important measure that quantifies the correlation of a
time series, and it is used as a measure of long-term memory, the persistence of the process (Zunino et al., 2007).
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ε-Recurrence Networks

Equation (3.22) suggests that the "neighborhood" of a single state vector z⃗i can be defined
by a fixed distance in the phase space ε, considering fixed volumes (communities) in phase
space (Donner et al., 2011b). Thus, an undirected and unweighted network can be built.

This version implies choosing the distance threshold ε which allows controlling of the phase
space resolution. If ε is too small, the volume of the neighborhood will be small and therefore
there will be almost no recurrence points and the information incorporated in the network will
be insufficient. On the other hand, if ε is too large we observe a general qualitative change in the
network topology (Jacob et al., 2016), namely, each node will behave like a hub, leading to an
excess of recurring points and misleading information.

Donner and co-authors (Donner et al., 2010, 2011b) studied properties of ε-recurrence
networks at three different scales, namely local, intermediate and global on several paradigmatic
systems: Hénon map, Bernoulli map, Lorenz system and Rössler system. The authors studied
graph properties as a function of the distance threshold ε and proposed specific features like the
local clustering coefficient to detect dynamically invariant objects, saddle points, or unstable
periodic orbits. Moreover, those authors suggested varying the embedding dimension as a
means to distinguish between chaotic and stochastic systems. Zou et al. (2012) have shown that
networks created for one-dimensional maps with local power-law in the invariant density result
in scale-free networks since the degree distribution is scale-free. Overall, the exponent of the
resulting degree distribution does not need to coincide with the fractal dimension. Thus, Donner
et al. (2011a) demonstrated that the local and global transitivity of the networks is closely related
to a generalized notion of fractal dimensionality (local and global, respectively).

ε-recurrence networks were the most exploited and led to the well-established relationships
between some topological metrics of networks and the properties and measurements of phase
space. Donges and co-authors (Donges et al., 2012) propose an analytical framework for ε-
recurrence network analysis describing graph-theoretical recurrence network quantifiers. This
framework shows that several standard features of network analysis can represent discrete
estimators of continuous measures of certain complex phase space properties. A theoretical
relation is established between features of the recurrence networks and phase space properties.
ε-recurrence networks were also widely used to determine changes in the dynamics of theor-
etical (Iwayama et al., 2013; Marwan et al., 2009) and real world (Donges et al., 2011b; Fukino
et al., 2016) systems.
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3.2 Multivariate Time Series Mappings

So far we have focused on approaches to mapping univariate time series into network structures.
However, technological developments are producing a wealth of inter-connected multidi-
mensional data, such as multivariate spatio-temporal data. Tools for the analysis of these
high dimensional datasets are yet scarce, hinting at the possibility of using network science
approaches. The literature on mapping multivariate time series to the network domain,
summarized in Table 3.2, is not as developed as for the univariate case. Even so, we can
distinguish two classes of methods, introduced in Figure 3.1: those that map the multivariate
time series into a single-layer (or monoplex) network and those that map the multivariate time
series into a multiplex14 network. The mappings in the first class construct networks with
nodes representing the (component) time series and edges representing the relationship between
the node time series, computed as, e.g., causal relation. Mappings on the second class lead
to multiplex networks where each layer is a network resulting from a univariate time series
mapping. The layers usually have the same nodes and are connected via the edges which
connect the same node across adjacent layers. Details on each approach and corresponding core
results are given in the following sections.

3.2.1 Single Layer Networks

3.2.1.1 Correlation Networks

Formally, a correlation network (CN) is defined as an undirected and weighed graph G =

(V, E) where V = {Yi,t}m
i=1 and E = {(vi, vj, wi,j)|(vi, vj) ∈ V ∧ wi,j = ρi,j(0) ∧ i ̸= j} (see

in Section 2.1.2). Thus, inter-dependencies between the m time series are represented by the
(contemporaneous) correlation.

Other approaches to represent the inter-dependencies and establish the edges of the network
rely on suitable correlation measures such as cross-correlations (Nakamura et al., 2016) or partial
correlations (Epskamp and Fried, 2018), eventually subject to thresholding. The thresholding
(edges are established only if the correlation exceeds a predefined value) helps to remove
spurious edges. Alternatively, correlations can be replaced by any similarity measure, including
distance measures. The resulting similarity/distance matrix is then used to construct a monoplex
network (Mori et al., 2016).

Figure 3.8 presents an example of a correlation network representation of a toy multivariate
time series. Nodes that represent similar time series are linked by thicker edges.

14Remember that a multiplex network is just a particular case of multilayer networks so the terms are not equivalent,
see Section 2.3.2.
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Network Type
(original reference) N
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Correlation Network
Yα,t CM ✗ ✓ ✓ ✗

(Eguiluz et al., 2005)

Long-Run Variance Decomposition Network
Yα,t VD ✓ ✓ ✗ VAR

(Diebold and Yılmaz, 2014)

Causal Effect Network
t LCR ✓ ✓ ✗ CDA

(Runge et al., 2015)

Ordinal Partition Transition Network
πi TP ✓ ✓ ✗ PS

(Ruan et al., 2019; Zhang et al., 2017a)

Pattern Interdependent Network
Gi TP ✓ ✓ ✓ PS;VG

(Ren et al., 2020)

Inter-system recurrence network
z⃗[α]i DM ✗ ✗ ✗ PS

(Feldhoff et al., 2012)

Joint Recurrence Network
z⃗[α]i DM ✗ ✗ ✗ PS

(Feldhoff et al., 2013)

M
ul

ti
pl

e
La

ye
r

Multiplex Visibility Network
t V ✗ ✗ ✓ ✗

(Lacasa et al., 2015)

Multiplex Recurrence Network
t DM ✗ ✗ ✗ PS

(Eroglu et al., 2018)

Multiplex Directed Visibility Network
t V ✓ ✗ ✓ ✗

(Flori et al., 2021)

Table 3.2: Comparison of (multivariate) time series mappings based on the properties of the
corresponding algorithms and of the resulting networks. Notation: CM - correlation measures,
VD - variance decomposition, LCR - lagged causal regression, TP - transition probability, DM -
distance measures, V - natural and/or horizontal visibility, VAR - vector autoregression model,
CDA - causal discovery algorithm, PS - phase space, VG - directed visibility graph.

Correlation networks (also known as functional networks) have been widely used in
neuroscience (Bullmore and Sporns, 2009; Eguiluz et al., 2005), financial (Cai et al., 2010; Gao
et al., 2015; Tumminello et al., 2010) and climate science (Dijkstra et al., 2019; Tsonis and Swanson,
2012) areas. In particular, Eguiluz and co-authors (Eguiluz et al., 2005) applied this approach
to functional fMRI data in order to connect brain zones based on their similarities and their
relationships. They have shown that the degree distribution obeys a power law, indicating
scale-free networks which imply that there are always a few zones of the brain (hubs) with
relations to most other regions of the brain, that is, predominant zones.

Gao and co-authors (Gao et al., 2015) used correlation networks to analyze the interactions
between companies of the different sectors using clustering metrics. The objective is also to
study the influence that some companies and/or sectors have on others. The results show
important information about fluctuations of the series and show that correlation networks can
be very useful for financial risk analysis.
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(a) Toy time series (b) CN

Figure 3.8: Illustrative example of the correlation network algorithm. On the left side we present
the plot of a toy multivariate time series and on the right side the network generated by the
correlation algorithm (using contemporaneous cross-correlation). The different colors represent
the time series. Higher correlation values result in edges in the network with larger weights
represented by thicker lines.

3.2.1.2 Long-Run Variance Decomposition Networks

The mapping of multivariate time series into correlation networks is based on the contemporary
dependence of time series, but in multivariate time series, cross-sectional dependencies may
arise in different leads/lags (Lanne and Nyberg, 2016). We introduce now a class of networks
that reflect, in the directed and weighted edges, the presence of contemporaneous as well
as lagged partial correlations between time series Yi,t and Yj,t. The edges of the network are
established via VAR models and their analysis, namely Forecast Error Variance Decomposition
(FEVD). The process Y t follows a VAR(p) model, where p is the order of the VAR if it satisfies
the following equation:

Y t = φ+
p

∑
i=1

ϕiY t−i + ϵt, (3.23)

where φ is an m-vector of constants, ϕi (i = 1, 2, . . . , p) is an m × m-matrix of coefficients
to be estimated and ϵt is an m-vector of uncorrelated errors with zero mean and covariance
matrix Σ, with elements σi,j. Under stationarity conditions Y t may be represented as an infinite
moving-average representation (MA model):

Y t =
∞

∑
j=0

Θjϵt−j. (3.24)

The FEVD, carried out typically on the infinite moving-average representation of the VAR
process, calculates the proportion of the prediction error variance of the i-th variable which
is assignable to its own (lagged) shocks and to the (lagged) shocks of the other variables. A
problem with the FEVD is that it is dependent of the ordering of the variables. To overcome this
issue, Diebold and Yılmaz (2014) and Lanne and Nyberg (2016) propose to use the generalized

56



3.2. MULTIVARIATE TIME SERIES MAPPINGS

forecast error variance decomposition (GFEVD)15 which is independent of the ordering of the
variables. Thus, a long-run variance decomposition network (LVDN) is a network where the
nodes vi and vj represent the time series Yi,t and Yj,t, respectively, and the edges (vi, vj, wi,j) are

given by wi,j =
θh

i,j

∑T
j=1 θh

i,j
, where θh

i,j, denotes the (i, j)-th h-step ahead variance decomposition

component, that is, the fraction of variable i h-step ahead forecast error variance due to shocks
in variable j (Diebold and Yılmaz, 2014), calculated as:

θh
i,j =

σ−1
j,j ∑h−1

k=0(e
′
iΘkΣej)

2

∑h−1
k=0(e

′
iΘkΣΘ

′
kei)

, (3.25)

where ej is a vector of orthogonalized shocks with the j-th element unity and zeros elsewhere.
Note that the adjacency matrix Dh = [θh

i,j] is then normalized.

Diebold and Yilmaz (Diebold and Yılmaz, 2014) applied the method to 13 years of major US
financial institutions’ stock return volatilities, and they found qualitative relations between the
features of in and out-degree with traditional economic risk features. Given the interpretability
and qualities of the results obtained, Barigozzi and Hallin (Barigozzi and Hallin, 2017) proposed
an improvement of this approach to make it applicable in the analysis of large sets of time
series. Note that the LVDN involves the estimation of VAR models, which becomes unbearable
for large sets of time series. This approach involves the use of a generalized dynamic factor
model (Barigozzi and Hallin, 2016).

In finance, these methods have been widely applied to study interconnections between
financial institutions to identify possible contagion channels. The main disadvantage of these
methods is that they are heavily parameterized, as they are based on time series models that
involve the estimation of several parameters and restrictive assumptions, and this is one of the
major problems of the analysis of multivariate series.

3.2.1.3 Causal Effect Networks

Causal effect networks (Runge et al., 2015), like LVDNs, allow to encode of the inter-relations
between components of multivariate time series in different time lags and to distinguish the
directionality of these relations. The corresponding graphs are directed and weighed, the nodes
represent the individual observations Yi,t with i = 1, . . . , m at each time t, and the edges are
established based on a causal discovery algorithm16 (Runge et al., 2019a). More specifically,
the causal discovery algorithm is only used as a variable selection for a subsequent lagged
causal regression and the construction of the network consists of the following three main steps.
First, we select causal parents, P(Yj,t), for each component, Yj,t, using the causal discovery
algorithm (Runge et al., 2014) that iteratively tests the conditional correlation between Yj,t and
the remaining components at a range of time lags 0 < h ≤ hmax, hmax is a maximum time

15See Pesaran and Shin (1998) for more details.
16There are several methods of causal discovery based on different approaches, examples include approaches

based on Granger causality, structural causal models, among others. For an overview of methodological frameworks
and challenges of these approaches see Runge et al. (2019a).
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lag. Then we estimate the lagged causal regression matrix C(h) of shape (m, m, hmax) using the
selected parents:

Ci→j(h) = bj,i·P(Yj,t)(h) for h = 1, . . . , hmax and i, j = 1, . . . , m, (3.26)

where b is the standardized regression coefficient of Yi,t−h in the multiple regression model
of Yj,t on {Yi,t−h, P(Yj,t)} using ordinary least squares regression (Runge et al., 2015). Finally,
we construct the causal effect graph where the edges are established from the threshold of the
causal regression matrix |Ci→j(h)| ≥ θ chosen to obtain a given link density. Self-loops are not
counted and multiple edges are only counted once. Note that the advantage of causal effect
networks over LVDNs is that the latter can exploit sophisticated versions of conditional mutual
information and therefore do not need to resort to parametric time series models.

Causal effects networks also arise from the need to eliminate possible spurious edges added
by pairwise association measures, such as cross-correlation. These edges result from transitivity
effects (leading to indirect paths) or other processes making it difficult to analyze the causal
interactions among multiple nodes (Runge et al., 2015). However, the construction of the causal
effect networks implies several assumptions given the underlying statistical methods: causal
sufficiency (common drivers of all variables are taken into account), causal Markov condition
(all error terms of the nodes in the graph are independent), and stationarity. Note that different
causal discovery methods can lead to different assumptions (Runge et al., 2019a).

This network mapping approach can be complemented by multiple information at the edges,
such as weights indicating causal edge strengths and additional attributes with the associated
time lags. This also allows an extension from a single-layer to a multilayer network, where each
layer would correspond to a different time lag h.

Causal effect networks have been extensively explored for the analysis of climate data,
especially in complex spatio-temporal systems (Kretschmer et al., 2016; Runge et al., 2015,
2019a,b). In particular, Runge and co-authors (Runge et al., 2015), introduce novel network
features based on causal effect theory, which differ from the standard complex network tools by
distinguishing direct from indirect paths, in order to identify components with high cumulative
causal effect either as sources or as intermediate nodes on path of the causal network.

3.2.1.4 Ordinal Partition Transition Networks

The success of OPTN presented in Section 3.1.2.2 led to the extension of these types of networks
to the multivariate context. Zhang and co-authors (Zhang et al., 2017a), built the first ordinal
partition transition networks for multivariate time series {Yi,t}m

i=1, with an algorithm that
differs from the univariate case. Start by constructing the set of order patterns Π = {πj}
with j = 1, . . . , 2m, where each πj represents a pattern set (πγ

Y1,t
, . . . , π

γ
Ym,t

), γ ∈ [0, 1], with π1
Yi,t

capturing the increasing trend and π0
Yi,t

the decreasing trend of the time series Yi,t. In short, 2m

different combinations of order patterns are constructed depending on the signs of first-order
differences of the m time series, as exemplified in Table 3.3 for m = 3.
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Π π1 π2 π3 π4 π5 π6 π7 π8

∇Y1 π1
Y1

,+ π1
Y1

,+ π1
Y1

,+ π1
Y1

,+ π0
Y1

,− π0
Y1

,− π0
Y1

,− π0
Y1

,−

∇Y2 π1
Y2

,+ π1
Y2

,+ π0
Y2

,− π0
Y2

,− π1
Y2

,+ π1
Y2

,+ π0
Y2

,− π0
Y2

,−

∇Y3 π1
Y3

,+ π0
Y3

,− π1
Y3

,+ π0
Y3

,− π1
Y3

,+ π0
Y3

,− π1
Y3

,+ π0
Y3

,−

Table 3.3: Order patterns in multivariate time series with three variables (Y1,t, Y2,t, Y3,t). (Adapted
from Zhang et al., 2017a)

Then apply the first-order differences ∇Yi,t = Yi,t −Yi,t−1, to each of the m time series. Note
that this corresponds to considering the time series of changes and that much non-stationary
time series become stationary with just this procedure. At each time t, associate the order pattern
of the increasing trend with the positive sign of the difference ∇Yi,t or the order pattern of
the decreasing trend with the negative sign of the difference ∇Yi,t thus constructing the order
pattern πj1 , . . . , πjT−1 , j1, . . . , jT−1 ∈ {1, . . . , 2m}, see Figure 3.9 for an example.

(a) Toy multivariate time series (b) Ordinal pattern association

Figure 3.9: (A) Illustrative example of a toy three-dimensional series (Y1,t, Y2,t, Y3,t). (B) First-
order differences and corresponding ordinal patterns.

Finally, the ordinal partition transition network is the network with 2m nodes representing
the patterns πj and with directed weighted edges (vi, vj, wi,j) established based on the frequency
of the transitions from pattern πi to pattern πj. In Zhang et al. (2017a), the authors also propose
a measure of entropy to characterize ordinal partition transition dynamics, useful for capturing
local geometric changes of trajectories. Those authors have shown that for periodic multivariate
time series, with different combinations of periods, the resulting network presents clear evidence
of possible forbidden patterns and so the network has several disconnected nodes. This shows
the determinism of the time series, while random uniform noise multivariate time series are
mapped into a complete connected graph.
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Guo and co-authors (Guo et al., 2018) propose the cross ordinal pattern transition network and
the joint ordinal pattern transition networks in order to compare the relative rate of change between
the two processes by the signs of (∇Yi1,t −∇Yi2,t) or (∇Yi1,t · ∇Yi2,t), respectively. Note that the
last sign is related to the signs of changes in the component series while the former is related to
the amplitude of the changes.

Recently, Ruan and co-authors (Ruan et al., 2019) proposed a method of ordinal partition
transition networks to analyze bivariate time series, {Yi,t}2

i=1, based on the initial method
proposed for the analysis of univariate series (see Section 3.1.2.2). The method consists in
generating the ordinal partition transition network (following the algorithm presented in
Section 3.1.2.2) for each time series Y1,t and Y2,t and extracting the successive sequence of ordinal
patterns of each series, removing self-transitions (self-loops in the network). Having the two
sequences of ordinal patterns π

Y1,t
i and π

Y2,t
j , as shown in Figure 3.10a, the next step is to calculate

at each time t the frequencies of co-occurrence of the ordinal patterns of Y1,t with the ordinal
patterns of Y2,t+h i.e., p(πY2,t+h

j |πY1,t
i ). In particular, when h = 0 we analyze the simultaneous

co-occurrence of ordinal patterns, and when h ̸= 0 we analyze the possible indications of causal
relationships between the two systems. The resulting network has two different types of nodes
corresponding to the ordinal patterns π

Y1,t
i of Y1,t and π

Y2,t
j of Y2,t, respectively, and have directed

and weighted edges (πY1,t
i , π

Y2,t
j , wi,j) with wi,j = p(πY2,t+h

j |πY1,t
i ). This results in a bipartite OPTN

(Figure 3.10b).

Compared to the univariate case, the bipartite OPTN measures co-occurrence probabilities
between symbols in two series rather than succession probabilities of symbols in a single time
series. Ruan and co-authors (Ruan et al., 2019) have also introduced a set of OPTN-based
complexity features to infer the coupling direction and infer causality between two systems.
Those authors used these features in coupled stochastic processes and in climate time series.

3.2.1.5 Pattern Interdependent Networks

Based on the visibility graphlets networks (Section 3.1.2.4) recently, Ren et al. (2020) proposed
the pattern interdependent networks to represent the cross-correlation patterns in a stationary
bivariate time series, {Yi,t}2

i=1. The method consists in generating the state chain network
(following the algorithm presented in 3.1.2.4) for each time series component, resulting in a
bi-graphlet series: (

G1
1→G1

2→...→G1
T−w+1

G2
1→G2

2→...→G2
T−w+1

)
.

Similar to visibility graphlets networks, all unique graphlets Gi are identified. From all the
co-occurrent pairs G1

k and G2
k , with k = 1, 2, . . . , T − w + 1, the graphlet co-occurrent frequency

matrix, A, is generated by calculating the co-occurrent frequencies of all the possible pairs of the

unique graphlets, where the element Ai,j represents the occurring frequency of
(

Gi
Gj

)
in
(

G1
k

G2
k

)
.

A represents a bipartite network where the rows correspond to the total of unique graphlets
(nodes) across the time series Y1,t and the columns to the unique graphlets (nodes) across the Y2,t,
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(a) Toy bivariate time series and sequence of ordinal patterns
(b) Bipartite OPTN

Figure 3.10: (a) Illustrative example of a toy bivariate time series (Y1,t, Y2,t) and its ordinal pattern
definitions and evolution. We show an embedding in a 3-dimensional space using a time delay
τ = 2 and the schematic illustration of the OPTN analysis of the two series of ordinal patterns
with a unidirectional coupling Y1,t → Y2,t with a coupling delay of h = 1. The time-lagged
conditional co-occurrences of the patterns π

Y1,t
i and π

Y2,t+h
j are indicated by dashed arrows. (b)

The network generated by the ordinal partition transition algorithm proposed in Ruan et al.
(2019).

and the edges are only established between different node types (similar to the bipartite OPTN
illustrated in Figure 3.10b). Since the sets of nodes, unique graphlets Gi of each time series, are
identical, they are merged and the bipartite network is converted into a directed and weighted
network that represents the co-occurrent relationships between the unique visibility graphlets.

Ren and co-authors (Ren et al., 2020) applied this method to synthetic bivariate time series
and showed that a set of unique graphlets and the topological structure of the resulting networks
is determined and dependent on the cross-correlation and that the differences in features, such
as Hurst exponent, of the time series components determine the symmetry of the edges of the
network.

3.2.1.6 Inter-System Recurrence Networks

Two extensions of recurrence networks (Section 3.1.3.3) have been proposed in the literature,
one directed to bivariate time series and the other to multivariate time series (Feldhoff et al.,
2012, 2013). As in recurrence-based methods for univariate time series, we embed each time
series Yα,t with α = 1, . . . , m in a w-dimensional, defining a set of vectors z⃗[α]i (i = 1, . . . , Nα).
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Cross-recurrence networks are based on cross-recurrence plots that aim to compare the
dynamics of two time series Yα,t and Yβ,t in the same phase space (Marwan and Kurths, 2002;
Zbilut et al., 1998). So, both time series are simultaneously embedded in the same phase space
and the cross-recurrence plot is defined by the matrix CR[αβ] with elements (Marwan and Kurths,
2002):

CR[αβ]
i,j =

 1 if ∥⃗z[α]i − z⃗[β]j ∥ ≤ ε

0 otherwise
, (3.27)

where i = 1, . . . , Nα, j = 1, . . . , Nβ, and ε is a distance threshold in the joint phase space of both

processes. CR[αβ] is asymmetric, since ∥⃗z[α]i − z⃗[β]j ∥ = ∥⃗z
[β]
i − z⃗[α]j ∥ does not hold for all i, j, α, β,

and it can be non-square if we consider time series of different lengths, Nα ̸= Nβ. This matrix
can represent the adjacency matrix of a bipartite graph, corresponding to the cross-recurrence
network, where the nodes belong to two distinct groups, namely, the state vectors {⃗z[α]i } and
{⃗z[β]j } and the edges are established only between nodes of different groups.

Inter-system recurrence networks (given by adjacency matrix IR) arise from the combination
of the recurrence matrices R[α] (for univariate time series Yα,t), with the cross-recurrence matrix
CR[αβ] (Feldhoff et al., 2012):

IR =


R[1] CR[12] . . . CR[1m]

CR[21] R[2] . . . CR[2m]

...
...

. . .
...

CR[m1] CR[m2] . . . R[m]

 . (3.28)

The adjacency matrix of an inter-system recurrence network is defined as

A = IR− IN , (3.29)

where I is an identity matrix of size N = ∑m
α=1 Nα. This results in an undirected and unweighted

simple graph, where the nodes and edges obey a natural partition: subgraphs Gα correspond to
R[α] (intra-system connectivity) and subgraphs Gαβ to CR[αβ] that includes only edges between
nodes from different systems (inter-system connectivity). Note that the definition of closeness
can vary between different pairs of systems (Zou et al., 2019) if we consider different thresholds
εαβ for all α, β = 1, . . . , m.

Inter-system recurrence networks can be analyzed as a network of networks where the nodes
represent subgraphs Gα. As such and in line with previous work for the univariate case, Donges
and co-authors (Donges et al., 2011a) used specific graph features as discrete approximations
of more general geometric properties to study the interconnections between systems. These
features proved to be useful to coupling detection from two paleoclimate records (Feldhoff et al.,
2012), distinguish between the dynamics of focal and non-focal EEG signals (Subramaniyam
and Hyttinen, 2015) and characterize different oil–water flow patterns from multi-channel
measurements (Gao et al., 2013, 2016b).
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3.2.1.7 Joint Recurrence Networks

A joint recurrence network is another extension of the recurrence networks. The difference for
the networks introduced in the previous section is that joint recurrence networks study the
recurrence of different time series in their individual phase spaces, contrary to the same phase
space. The joint recurrence matrix JR is defined as follows (Romano et al., 2004):

JR[α]
i,j =

 1 if ∥⃗z[α]i − z⃗[α]j ∥ ≤ εα, α = 1, . . . , m

0 otherwise
, (3.30)

where εα is the selected distance threshold for the individual time series Yα,t. This matrix can be
seen as the adjacency matrix A of a joint recurrence network:

A = JR− IN , (3.31)

where IN is an identity matrix of size N = ∑m
α=1 Nα. A represents the joint probability of

m simultaneous recurrences (∥⃗z[α]i − z⃗[α]j ∥, α = 1, . . . , m) in the phase spaces (Marwan et al.,
2007). Joint recurrence networks are undirected and unweighted simple graphs. They can be
constructed for time series with different phase spaces and require simultaneous observations,
i.e., time series of the same length. So, unlike the recurrence networks and inter-system
recurrence networks, the time information is taken into account. This type of network can
be analyzed from the same point of view of the recurrence networks for univariate time series,
however, need to be reinterpreted in terms of the underlying joint recurrence structure (Feldhoff
et al., 2013). Note that joint recurrence networks are similar in construction to multiplex
recurrence networks, as we will see in Section 3.2.2.3, except that the former does not establish
inter-layer edges (Zou et al., 2019).

This method has been successfully used to detect generalized synchronization in time
series (Feldhoff et al., 2013). It is expected that joint recurrence will be increasingly unlikely
with an increase in the number m of processes. Therefore, Donner and co-authors (Donner et al.,
2015) proposed a version called f -joint recurrence networks that reduces the requirement of
occurrence of simultaneous recurrences in all subsystems.

3.2.2 Multiple Layer Networks

3.2.2.1 Multiplex Visibility Networks

Based on the visibility methods of Section 3.1.1 and the definition of multilayer networks, Lacasa
and co-authors (Lacasa et al., 2015) proposed an extension of the visibility mapping method
for multivariate series analysis. The networks resulting from this approach have been called
multiplex visibility graphs (MVG). A multiplex visibility graph M of m layers is constructed so that
each layer α corresponds to the NVG (Section 3.1.1) associated with the series Yα,t, as illustrated
in Figure 3.11.
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Figure 3.11: Illustration of multiplex natural visibility graph algorithm for a toy multivariate
time series.

The resulting graph M is now represented by the adjacency matrix vector [A1, A2, . . . , Am],
whose elements are the adjacency matrices of each layers and Aα

i,j = 1 if and only if the nodes vα
i

and vα
j are connected by an edge in layer Lα.

A graph of layers (or network of networks) can be built by projecting the original multiplex
visibility network into a (single-layer) weighted graph of m nodes, where each node represents
one layer. The edge weights denote a relation measure between layers, e.g., the magnitude of
mutual information (Lacasa et al., 2015) calculated by interlayer mutual information 17. We should
note that the construction of multiplex visibility networks can be based on any of the visibility
algorithms for univariate time series mentioned in Section 3.1.1.

The multiplex structure was used for the study of cellular networks of diffusively coupled
maps lattices (Lacasa et al., 2015), to model spatio-temporal complex dynamics. They show
that multiplex visibility graphs allow quantifying the amount of information flow between
different series through the interlayer mutual information metric, and also to distinguish
between different signal behaviors, between chaotic, periodic, and multiband patterns. The
analysis of this metric allowed locating data points of change between different patterns of
behavior of a system.

Bianchi and co-authors (Bianchi et al., 2017) used multiplex visibility networks method based
on the weighted HVG algorithm (Section 3.1.1.5) where the edge weights are given by:

wi,j = 1/
√
(j− i)2 + (Yi −Yj)2,

incorporating temporal and amplitude information of the data. They studied the topological
features of the networks to characterize neuron activation. For example, in certain types of
neuronal activities, the local clustering coefficient of the corresponding nodes at the moment

17Interlayer mutual information, Iα,β, quantifies the common information by every two different layers α and β

based on the similarity of the degree distributions. Higher values of Iα,β indicate that the corresponding layers are
associated/correlated and, consequently, the series they represent (Lacasa et al., 2015).
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of the activity has high values which are replicated by the same nodes in the remaining layers.
This type of metric allows identifying neuronal activities and the propagation of this activity
by different neurons. Another set of real data studied using these networks was the fMRI
series (Sannino et al., 2017) that are of extreme importance for the diagnosis of mental and
neurological diseases. The results show differences in brain activities connected to psychiatric
disorders.

In Gao et al. (2019a) the authors studied multiplex limited penetrable horizontal visibility
graphs to try to explain the difference in the accuracy of the results obtained in the task of
classifying time series from individuals in normal and fatigue states. They found that some
network metrics decrease in states of fatigue and that, consequently, there is less efficiency in
global information transfer. They concluded, therefore, that this transfer loss leads to a reduction
in the accuracy of the classification between individuals in normal states and in fatigue.

More recent works begin to look at multiplex network structures as a rich and promising
framework for analyzing multivariate time series. An example is the work carried out in De Giuli
et al. (2022) which studies MTS of asset prices to study the reaction of capital markets to the
Brexit announcements. The authors used the MVG algorithm to map the MTS and use tensor
decomposition over the multiplex structure to obtain global centrality features through scores
resulting from the tensor decomposition. These features allowed the authors to analyze and
identify volatility behaviors of the data, in both intra and inter-dimension.

3.2.2.2 Multiplex Directed Visibility Network

Based on MVG, Flori et al. (2021) propose the multiplex directed visibility graph (MDVG)
version. In this configuration, each time series component in a MTS set is mapped to a directed
natural visibility graph-layer of a multiplex network, where intra-layer edges (vα

i , vα
j ) between

two nodes (vα
i andvα

j ) are directed from the node corresponding to the timestamp that has the
lowest value to the node corresponding to the timestamp that has the highest value in the series
if there is a natural visibility line between these timestamps in the series. Formally, this directed
natural visibility concept is described by:

Yα,i < Yα,j ∧Yα,k < Yα,j + (Yα,i −Yα,j)
(tj − tk)

(tj − ti)
. (3.32)

This definition allows mapping local maximums and minimums of time series on nodes with
high in-degree and out-degree values, respectively.

Flori et al. (2021), uses tensor decomposition, which takes into account the direction of the
intra-layer edges, to produce centrality features. The authors were able to discriminate positive
and negative trends market from the in- and out-degree features and correlate these properties
with scores extracted from tensor decomposition.
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3.2.2.3 Multiplex Recurrence Networks

Recently, Eroglu and co-authors (Eroglu et al., 2018), motivated by the idea that recurrences are
a fingerprint of the characteristic properties of dynamic systems, the results from recurrence
networks, the current and ever greater need for analysis and exploration of large amounts
of data, and the previous method, multiplex visibility networks, proposed by Lacasa and co-
authors (Lacasa et al., 2015), proposed recurrence networks for the domain of multivariate time
series, the so-called multiplex recurrence networks. The algorithm follows exactly the same
process as the multiplex visibility graphs presented in Section 3.2.2.1, but using recurrence
networks presented in 3.1.3.3 instead of the visibility graphs. Remembering, the quantities of
interlayer mutual information allow us to deduce a single-layer weighted network from the
multiplex recurrence network.

Eroglu and co-authors (Eroglu et al., 2018), used metrics as the interlayer mutual information
and the average edge overlap 18 in the multiplex network and also weighted network metrics,
clustering coefficient, and average path length, in the single-layer weighted network, in order
to detect the transitions between different dynamical regimes in coupled map lattices and
real-world paleoclimate time series. They show that all the metrics capture similarities in the
topological structures of the m recurrence networks. In particular, high values of the first three
metrics have been obtained for periodic behaviors, while lower values have been obtained for
chaotic behaviors. Additionally, average path length showed the opposite behavior.

In Gao et al. (2019b), the authors propose to combine the multiplex recurrence networks
and deep learning techniques to detect driver fatigue in the EEG signals of subjects under alert
and fatigue states. They construct a multiplex recurrence network from the EEG signal, used
convolutional neural networks to extract and learn the features of the multiplex networks, and
they perform a classification task. Those authors showed that this combination can achieve high
accuracy and better results than traditional methods.

3.3 Software Frameworks

In recent years, some software packages have been made available to the research community
that allows implementing and putting into practice some of the methodologies presented in this
chapter. Below we name and briefly describe these software packages.

18The average edge overlap, ω, calculates the expected number of layers in which a given edge is present.

66



3.3. SOFTWARE FRAMEWORKS

3.3.1 pyunicorn

The pyunicorn (Donges et al., 2015) is an available Python software package that integrates
methods of network science and of nonlinear time series analysis. In addition, it implements
methods for time series analysis via graph theory, which includes the following multivariate and
univariate time series mapping methods. Recurrence networks methods for both UTS and MTS
that were presented in Sections 3.1.3.3, 3.2.1.6, 3.2.1.7 and 3.2.2.1. The available methods focus
mainly on the literature of recurrence quantification analysis. And methods of natural visibility
graph presented in Section 3.1.1.1 and horizontal visibility graph presented in Section 3.1.1.2.
Where the pyunicorn package provides network topological features related to centrality and
clustering/community properties. The source code for this package is available in the following
public repository: https://github.com/pik-copan/pyunicorn.

3.3.2 nets

An R software package nets (Network Estimation for Time Series) (Barigozzi and Brownlees,
2019) has been developed based on Diebold and Yılmaz (2014) and Barigozzi and Hallin (2017)
and on the concept of long-run partial correlation to convert a multivariate time series into
a single-layer weighted graph structure. The nets algorithm (presented in Section 3.2.1.2)
allows estimating sparse long-run partial correlation networks from multivariate time series
data, based on the estimated VAR parameters and the concentration matrix of the VAR residuals
using LASSO (Meinshausen et al., 2006) regressions on the data. The package is available in the
following public repository: https://github.com/ctbrownlees/R-Package-nets.

3.3.3 PyIOmica

A Python software package named PyIOmica (Domanskyi et al., 2020) is a package with a focus
on biological datasets, characterizing and categorizing temporal trends. Adding to several useful
bioinformatics tools, the PyIOmica incorporates a module with implementations of visibility
graphs methods. These methods can be used to visualize time series as networks, characterizing
time series in terms of autocorrelations, and categorizing temporal behavior, among others. In
this package, we can also find the DPVG algorithm (Zheng et al., 2021) and the community
detection method based on the shortest paths, presented in Section 3.1.1.8. The source code of
PyIOmica can be found in the following repository: https://github.com/gmiaslab/pyiomica.
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3.3.4 ts2net

The latest ts2net (Ferreira, 2022) software package is an R software package dedicated to
transforming UTS or MTS datasets into a monoplex network structure. This framework allows
us to represent complete time series, segments of times series, or timestamp values as node
structures of networks, where connections between pairs of nodes, ie. edges, are defined by
associations or similarity measures calculated between the corresponding time series granularity.
The main mapping methods incorporated in this package are recurrence networks, visibility
networks, and transition networks. To map MTS data we can use several distance functions
to measure the similarity between pairs of nodes (the time series components) and establish
the edges based on these measures, or user distance matrix based on recurrence networks
approaches. To map UTS data into a monoplex network the methods are based on proximity
networks, specifically, recurrence networks presented in Section 3.1.3.3, on transition networks,
namely the quantile networks presented in Section 3.1.2.1, and on the visibility graphs presented
in Sections 3.1.1.1 and 3.1.1.2. The package also takes advantage of other available packages
to compute complex network methods and data mining tools to analyze time series data. The
ts2net is available in: https://github.com/lnferreira/ts2net.

3.4 Final Remarks

In this chapter, we present several algorithms proposed in the literature to map univariate
and multivariate time series into the complex network domain with the aim of producing new
insights and overcoming open issues in time series analysis, such as high-dimensionality, finding
periodicities, classifying different dynamic processes, among others. For univariate time series,
there is a large body of literature, and the mappings may be classified according to three main
underlying concepts: visibility, transition, and proximity.

Visibility concepts map times series into graphs with nodes representing timestamps and
edges defined by a geometric relationship between data values. The graph reflects both
local and global properties of the time series, especially via local maximum. Visibility-based
mapping methods do not require preprocessing of the time series data. They are also completely
parameter-free, except for the limited and parametric versions. These networks have become
very popular in the literature due to the fact that the geometric criteria associated to visibility
mappings are intuitive and easy to understand.

Intuitively, transition networks represent the transition pattern of a time series based on
different types of symbolic encoding of the data. With the exception to time series with clear
trending behavior, these networks are not explicit about the underlying time order since time
series with sharp trend behavior are mapped into quantile graphs that are chain graphs allowing
us to perceive the time order of the data. Construct these networks involves the definition of
symbols representing quantiles, order patterns, or different dynamic states, requiring the choice
of parameters that must balance the loss of information induced by the partitioning.
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The proximity networks represent the similarity of sliding windows of data over time, thus,
reflecting how local properties of the time series evolve over time. The construction of proximity
networks involves the definition of states of the time series as vectors, such as cycles or vectors
in phase space, requiring the selection of parameters. The resulting networks have nodes
that represent these states of the time series and edges that are established using measures
of similarity or distance between the states, with or without thresholding. The construction
of transition and of proximity networks thus requires choosing several parameters that may
influence the resulting graph and consequently the analysis of the time series. These networks
are quite popular in the study of dynamic systems.

Several approaches to mapping multivariate time series into complex networks have been
developed. Most focus on the idea of constructing a single-layer network from multivariate time
series, capable of capturing dependencies between the component processes, both contemporary
and lagged, as well as the serial dependencies. However, with technological advances and the
growing need to analyze complex and high-dimensional data, new techniques have emerged,
namely, methods that give rise to high-level structures: multiple layers networks. Although
preliminary, this type of multivariate time series mapping has an important characteristic: all
the methods developed for the univariate context can be extended to the context of multilayer
networks, allowing the reuse of knowledge already acquired in the univariate case.

A network science approach to time series analysis has been used in different application
domains and allowed us to characterize system dynamics, distinguish different dynamics,
identify regime shifts and dynamical transitions, and test for reversibility and forecast. This
survey hints at the conclusion that this approach provides complementary information to
traditional time series analysis. This approach can be leveraged to address fundamental open
issues, such as: time series mining problems and visualization and analysis of high-dimensional
data. Mining large collections of time series data, such as univariate and multivariate time series
clustering and classification problems, is a non-trivial and currently hot problem in the research
areas involved. More and more eminent approaches are based on time series features, e.g. trend,
length of time series, the strength of the trend, autocorrelations (Kang et al., 2017). Features
extracted from the time series networks may be added to the classical set of time series features
to enhance the data characterization. In particular, Silva (2018) has shown that (single-layer)
network features can be used to accurately cluster univariate time series from different models,
a relevant and important contribution to time series mining. In this direction, in the remaining
of this work, we propose mappings from MTS multilayer networks and extend the MTS features
via multilayer topological features.
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Chapter | 4
Multivariate Time Series Mappings

Networks are present everywhere. All we
need is an eye for them.

Albert-László Barabási

Multivariate time series may be mapped into single or multiple layer networks. In the
former, the nodes represent the component time series and the edges represent the relationships
between the nodes (component time series) computed using statistical methods or models. These
methods imply that all important information on the dynamics of each time series component,
such as serial correlation, is inevitably lost in the mapping process. Mapping methods that
represent multivariate time series as multiplex networks were proposed with the objective of
suppressing this loss (see Section 3.2.2), preserving both the dynamical (over time) and the
cross-sectional information contained in the multivariate data (Eroglu et al., 2018; Lacasa et al.,
2015; Sannino et al., 2017; Silva et al., 2021). These multiplex networks map each component
UTS into a layer (using a UTS mapping in which each time stamp, or a representation thereof, is
represented by a node) and connect different layers via the common nodes (timestamps) through
the underlying concept of mapping. Inevitably, lagged cross-correlations, which sometimes are
the most important information, are not preserved during the mapping process.

To overcome this limitation, in the course of this work, we propose two new mapping
methods to represent a multivariate time series as a multiple layers complex network. Remem-
bering the definition in Section 2.3.2, MNets are complex structures capable of establishing
internal connections (within the same layer) and external connections (between different layers).
Therefore, an MNet allows us to create a very complete and flexible data structure (Kivelä et al.,
2014). From a high-level view, multilayer networks present a compatible structure with the
complex structure of multivariate time series. This allows us to keep more information from the
time series data after the mappings, information that is inevitably lost using the conventional
mapping methods referred to above.
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This chapter is divided into two parts, where we present the two mapping methods of MTS
proposed in this work. We describe the concepts and properties inherent to each of the mappings
and present the implementation details and respective algorithms.

4.1 MHVG: a New Multilayer Visibility Graph

Visibility methods have shown to be very promising in capturing time series characteristics
reflecting local and global properties of the data, and not requiring preprocessing of the data.

Recent literature (see Section 3.2.2) shows that multiplex versions of visibility graphs applied
to MTS can achieve better accuracy and more promising results than conventional mappings
into monoplex networks (Eroglu et al., 2018; Lacasa et al., 2015; Sannino et al., 2017; Silva et al.,
2021). However, the method results in a multiplex network where the inter-layer edges connect
nodes (timestamps) only between their counterparts, that is, the edges that connect two layers
are only between nodes of subsequent layers that represent the same entity (timestamp). In the
context of networks, this means that two nodes from different layers are reachable only using
a path that contains one or more inter-layer edges necessarily between the same entity. This
prevents direct relations between different entities on different layers. In the context of MTS and
VGs, we can think of this property as the lack of a direct geometric relationship (visibility lines)
between timestamps lagged of different variables. And thinking about the native concept of the
visibility method (Section 3.1.1.1) this seems restrictive.

In this section, we present the new visibility algorithm to map an MTS into a multilayer
horizontal visibility graph. This algorithm is based on a new visibility concept, cross-horizontal
visibility which is an extension of the traditional horizontal visibility. Next, we begin by defining
this concept.

4.1.1 Cross-Horizontal Visibility

Consider two time series Zα = (Zα,1, . . . , Zα,T) and Zβ = (Zβ,1, . . . , Zβ,T) on the same scale. Two
arbitrary data values (ti, Zα,ti) and (tj, Zβ,tj) are said to have cross-horizontal visibility, Cross-HV
if

Zα,ti , Zβ,tj > max
(

Zα,t, Zβ,t

)
, for all t, ti < t < tj, i, j = 1, . . . , T, i ̸= j. (4.1)

This definition implies that all data values have Cross-HV to its neighbours and that the
visibility is reciprocal, meaning that if (t, Zα,t) has Cross-HV to (s, Zβ,s), then (s, Zβ,s), has Cross-
HV to (t, Zα,t). The concept of cross-horizontal visibility, Cross-HV, is illustrated in Figure 4.1
with two toy time series and for the first four data points, with the bi-coloured lines indicating
(the reciprocal) visibility between the corresponding time series.
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Figure 4.1: Schematic diagram of the cross-horizontal visibility concept. (a) Illustrates a toy
bivariate time series Zyellow, Zblue, (same scale) and the corresponding maximum time series;
(b) represents the cross-horizontal visibility, Cross-HVG, by solid bi-color lines (yellow and
blue) connecting the data bars of the time series components Zyellow and Zblue, for the first four
timestamps.

4.1.2 Multilayer Horizontal Visibility Graph

A Multilayer Horizontal Visibility Graph (MHVG) is obtained by mapping a MTS, Y = {Yα}m
α=1,

into a MNet structure, M = (VM, EM, V, L), using the concepts of HV and Cross-HV, as follows.
Each unique time stamp, t, is mapped into an unique entity in VM and each component time
series, Yα is mapped into a layer, Lα ∈ L, α = 1, . . . , m, using the HVG method described in
Section 3.1.1.2, thus establishing the intra-layer edges, (vα

i , vα
j ) ∈ EM, i, j = 1, . . . , T, i ̸= j. Then

inter-layer edges (vα
i , vβ

j ) ∈ EM, between any two layers Lα and Lβ, α, β = 1, . . . , m, α ̸= β and
i, j = 1, . . . , T, i ̸= j are established using the Cross-HV described in the previous Section. Note
that to establish Cross-HV all the time series Yα, α = 1, . . . , m must be in the same scale1 which
may require a preprocessing step of the dataset Y , comprising the Min-Max scaling of each time
series. The mapping is illustrated in Figure 4.2, with toy bivariate time series, for the sake of
simplicity.

From the generated MHVG, we can identify the intra-layer graphs, {Gα}m
α=1 and the inter-

layer graphs, Gα,β, for α, β = 1, . . . , m and α ̸= β. {Gα}m
α=1 correspond to the HVG of each

individual time series component and it is represented by the adjacency matrix Aα with Aα
i,j = 1

if (vα
i , vα

j ) ∈ EM and 0 otherwise. Gα,β correspond to the cross-horizontal visibility graph (Cross-
HVG) of each pair of time series components and it is represented by the adjacency matrix
Bα,β =

[
0 Aα,β

Aβ,α 0

]
with Aα,β

i,j = 1 and Aβ,α
j,i = 1 if (vα

i , vβ
j ) ∈ EM and 0 otherwise.

1Normalization is necessary so that it is possible to make the condition of horizontal visibility (Eq. 4.1). Otherwise,
time series with very different value ranges would lead to edges only for the immediate neighbors, for example.
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CHAPTER 4. MULTIVARIATE TIME SERIES MAPPINGS

Figure 4.2: Schematic diagram of the multilayer horizontal visibility graph algorithm: (a)
original time series, (b) Min-Max rescaled time series and maximum time series, (c) illustration
of cross-HV with the edges between adjacent timestamps omitted for simplicity (detail for
the first four timestamps), (d) cross-horizontal visibility graph: solid black lines represent the
intra-layer edges (the HVGs), dashed lines the inter-layer edges (the Cross-HVGs) and the red
lines highlight inter-layer edges between nodes corresponding to non-adjacent timestamps.

Algorithm 1 describes the concept of Cross-HV and Algorithm 2 describes mapping a
multivariate time series into a Multilayer Horizontal Visibility Graph. In the Appendix A, we
describe the auxiliary functions to support the implementation of the method, Algorithm 5
describes the function that creates an HVG and Algorithm 6 describes the function that creates
the inter-layer edges.

The new method of multilayer visibility network is based on the HVG algorithm. However,
the definitions presented above, the cross-HVG algorithm and MHVG algorithm, naturally
extend to the NVG method and versions of both NVG and HVG. In the case of the NVG we can
build the Multilayer Natural Visibility Graph (MNVG), built based on the Cross-Natural Visibility
Graph (Cross-NVG) method, given by the following condition:

max
(

Zα,t, Zβ,t

)
< Zβ,tj + (Zα,ti − Zβ,tj)

(tj − t)
(tj − ti)

, (4.2)

where Zα = (Zα,1, . . . , Zα,T) and Zβ = (Zβ,1, . . . , Zβ,T) are on the same scale, and two arbitrary
data values (ti, Zα,ti) and (tj, Zβ,tj) have cross-natural visibility, Cross-NV.
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Algorithm 1: Cross-Horizontal Visibility Graph
Input: Two rescaled time series, Za and Zb, (tsA, tsB), the corresponding layers, La and Lb, (layerA,

layerB), and the maximum time series, max
(

Za, Zb
)

, (tsMax)

Procedure CHVG(tsA, tsB, tsMax, layerA, layerB)
1 T ← tsMax.size() ▷ The time series lengths

for node i in layerA.get_Nodes() do
for node j from i + 1 to T in layerB.get_Nodes() do

if node i can ’see’ j then
2 mnet.add_Edge(i, j, layerA, layerB) ▷ Add inter-layer edge (va

i , vb
j )

end

end
for node j from i− 1 to 0 in layerB.get_Nodes() do

if node i can ’see’ j then
3 mnet.add_Edge(i, j, layerA, layerB) ▷ Add inter-layer edge (va

i , vb
j )

end

end

end
4 return

Algorithm 2: Multilayer Horizontal Visibility Graph
Input: A set of time series components, {Y a}m

a=1, (mts)
Output: A multilayer network, M, (mnet)
Procedure MHVG(mts)

1 m← mts.size() ▷ The number of time series components

2 mnet← {} ▷ The empty MNet M
3 n_mts← {} ▷ List to store the rescaled time

series components

for a← 1 to m do
4 mnet.layers[a]← {} ▷ The empty layer La

5 HVG(mts[a], mnet.layers[a]) ▷ Map the time series Y a on the HVG

La (Eq. 3.2)

6 n_mts[a]← MinMax(mts[a]) ▷ Rescale time series Za

end
for a← 1 to m− 1 do

for b← a + 1 to m do
7 tsMax ← MaxTS(n_mts[a], n_mts[b]) ▷ Get the maximum rescaled time series

8 CrossHVG(n_mts[a], n_mts[b], tsMax, mnet.layers[a], mnet.layers[b]) ▷ Map the pairwise

time series Za and Zb

on Cross-HVG (Eq. 4.1)

end

end
9 return mnet
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4.2 MQG: a New Multilayer Transition Graph

In the univariate context, time series transition properties can be captured by QG (presented in
Section 3.1.2.1) with the additional advantage of allowing dimensionality reduction. As far as
we are aware, there are no mappings of MTS to multiple layer networks that capture the data
transition properties both serially and cross-dimension wise while reducing the dimensionality
of the data. Given the advantages and thinking about the problem of the dimensionality curse
that is more and more prominent, in this section, we propose a multivariate version of the QG
method for multivariate settings of temporal data, the Multilayer Quantile Graph.

In a basic sense, a Multilayer Quantile Graph (MQG) extends the concept underlying QG
presented in Section 3.1.2.1. Given a pair of time series, Yα and Y β, each one is replaced by the
corresponding QG and the contemporaneous quantiles (qα

i and qβ
j at time t) are associated by

inter-layer edges that represent the cross-dimensions contemporary transitions. In more detail,
the MQG involves the following steps (Figure 4.3):

Step 1: each time series component, Yα, α = 1, . . . , m, is mapped into the corresponding QG Lα

by applying the QG mapping described in Section 3.1.2.1. This step is illustrated at the top
of Figure 4.3.

Step 2: for each pair of QGs, Lα and Lβ with α, β = 1, . . . , m and α ̸= β, the corresponding
contemporary quantiles (at time t = 1, . . . , T), qα

i and qβ
j with i, j = 1, . . . , η, are linked.

The quantiles qα
i and qβ

j belong, respectively, to quantile sequences Qα and Qβ over time
t = 1, . . . , T (see panel (b) of Figure 4.3).

Step 3: the MTS, Y , is then mapped into a MQG, M, as illustrated in panel (c) of Figure 4.3. The
set of layers refers to each QG, i.e., Lα ∈ L, α = 1, . . . , m, and the set of node-layer refers
to the sample quantiles, VM = {qα

i }
η
i=1. From the individual QGs the directed weighted

intra-layer edges are established in layer Lα, i.e., (qα
i , qα

j , wα
i,j) ∈ EM, and from pair-wise

QGs the bidirectional weighted inter-layer edges are established between dimensions
(qα

i , qβ
j , wα,β

i,j ) ∈ EM, α ̸= β. The weight of inter-layer edge, wα,β
i,j , represents the probability

that Yα,t and Yβ,t belong to the quantiles qα
i and qβ

j , respectively, at the same time t.

The multilayer network corresponding to the MQG is a directed and weighted network.
Note that the inter-layer edges are bi-directed, that is, whenever there is a transition from qα

i to
qβ

j there is also a transition from qβ
j to qα

i . Therefore, inter-layer edges can also be represented
as undirected edges. Similar to the MHVG, we can also identify from the MQG the intra-layer
graphs, corresponding to the individual QGs, and the inter-layer graphs corresponding to the
bipartite graphs that represent the contemporary transitions. We will refer to these bipartite
graphs as Contemporaneous Quantile Graph.
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Figure 4.3: Schematic diagram of the multilayer quantile graph algorithm for η = 4: (a) original
time series, (b) illustration of the intra-layer quantile graphs (coloured regions representing the
different sample quantiles) and inter-layer contemporaneous edges mapping, (c) multilayer
quantile graph: black lines represent the intra-layer edges (the QGs), dashed lines the inter-layer
edges between nodes contemporaneous quantile nodes, and the thickness of the lines represent
the weighted intensities of the edges.

The Algorithm 7 describes mapping a multivariate time series into a Multilayer Quantile
Graph and Algorithm 4 describes the method that adds the set of inter-layer edges between
contemporary nodes to the multilayer networks. In Appendix A, we present the Algorithm 7
that describes the QG method implementation.

In the same way that the univariate quantile graphs method can be extended to represent
transitions between quantiles corresponding to lagged timestamps (rather than just between
consecutive quantiles), the inter-layer edges of the contemporaneous quantile graphs can be
extended to represent transitions between quantiles corresponding to lagged timestamps from
two different layers (see Section 3.1.2.1 for more details).
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Algorithm 3: Multilayer quantile graph
Input: A set of time series components, {Ya,t}, (mts), and a value with the number of quantiles, (numQ)
Output: A multilayer network, M, (mnet)
Procedure MQG(mts, numQ)

1 m← mts.size() ▷ The number of time series components

2 mnet← {} ▷ The empty MNet M
for a← 1 to m do

3 mnet.layers[a]← {} ▷ The empty layer La

4 set_direction(mnet.layers[a], true) ▷ Set the directionality of the intra-

layer edges as directed

5 QG(mts[a], mnet.layers[a], numQ) ▷ Map the time series Ya,t on the QG La

(Section 3.1.2.1)

end
for a← 1 to m− 1 do

for b← a + 1 to m do
6 set_direction(mnet.layers[a], mnet.layers[b], f alse) ▷ Set the directionality of

the inter-layer edges as

undirected

7 Contemp_QG(mnet.layers[a], mnet.layers[b]) ▷ Map the pairwise time

series Ya,t and Yb,t on

Contemporaneous QG

(Section 4.2)

end

end
8 return mnet

Algorithm 4: Contemporaneous quantile graph
Input: Two layers, La and Lb, (layerA, layerB)
Procedure Contemp_QG(layerA, layerB)

1 T ← layerA.size() ▷ The time series length

2 qA← layerA.q_seq ▷ The quantiles sequence of layer La

3 qB← layerB.q_seq ▷ The quantiles sequence of layer Lb

for i← 1 to T do
4 edge← mnet.get_Edge(qA[i], qB[i], layerA, layerB) ▷ Get inter-layer edge between

contemporaneous time if

quantiles it already exists

if !edge then
5 mnet.add_Edge(qA[i], qB[i], layerA, layerB, 1) ▷ Add inter-layer edge with

weight 1

end
else

6 w← mnet.get_Weight(edge) ▷ Get the weight of the edge

7 mnet.set_Weight(edge, w+1) ▷ Increase the weight of the edge

end

end
8 return
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4.3 Final Remarks

In this chapter we introduce two new mapping methods to convert a MTS into a MNet.

The first mapping is based on a new horizontal visibility concept, the cross-horizontal visibility,
developed to capture the cross dependencies between pairs of component time series. Thus,
the multiplex visibility graphs of Lacasa et al. (2015) (presented in Section 3.2.2.1) are extended
with the incorporation of inter-layer edges established according to the cross-horizontal visibility
between different nodes (timestamps). These new edges/connections can capture dependencies
between different timestamps of different variables. The resulting networks are denoted as
multilayer horizontal visibility graphs.

The second mapping is based on the concept of transition and the definition of QGs presented
in Section 3.1.2.1. The objective is to capture the transition probabilities of the dynamic (data
variations) between the timestamps of different time series components. In this way, we are
able to create a reduced structure to represent high-dimensions of multivariate data (since QGs
allow reduce the dimensionality) that characterize the serial dynamic transitions, through the
QG mapping over each time series component, and the dynamic transitions cross-dimension,
through weighted inter-layer edges between contemporary quantiles. This new mapping
method is designated by multilayer quantile graphs.

The taxonomy of algorithms for mapping time series into complex networks, proposed in
Chapter 3 and represented in Figure 3.1 must now be updated with these two new mappings.
Thus Figure 4.4 represents the updated taxonomy.

These two MNets are used in the remainder of this work to extract (univariate and mul-
tivariate) time series features via topological features from the whole MNet structure and its
substructures.
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CHAPTER 4. MULTIVARIATE TIME SERIES MAPPINGS

Figure 4.4: Overview of mapping methods. Taxonomy of algorithms for mapping time series
into complex networks based on the dimensionality of time series, resulting network structure,
mapping concept, and main mapping methods.
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Chapter | 5
Features for Univariate Time Series

The main idea behind time series feature-based approaches is to construct vectors of fea-
tures that aim to represent specific properties of the time series data by characterizing the
underlying dynamic processes (Fulcher, 2018; Fulcher and Jones, 2017). The usual features
for UTS (see Sections 2.1 and 2.2) include concepts and methods from the linear time series
analysis literature (Shumway and Stoffer, 2017), such as autocorrelation, stationarity, seasonality,
and entropy, but also methods of nonlinear time-series analysis based on dynamic systems
theory (Fulcher et al., 2013; Henderson and Fulcher, 2021; Kang et al., 2020; Wang et al., 2006).
These methods usually involve parametric assumptions, parameter estimation, non-trivial
calculations, and approximations, as well as preprocessing tasks such as finding time series
components, differencing, and whitening thus presenting drawbacks and computation issues
related to the nature of the data, such as the length of the time series.

One of the main goals of this work is to contribute to the feature-based approach in time
series analysis. For that, we start proposing an alternative set of UTS features based on complex
network concepts.

In the field of network science, we can find a vast set of topological graph features (see
Section 2.3.3). Recent literature has shown an exponential growth of scientific works where the
topological features of networks have been applied in various ways for the analysis of particular
time series and to respond to specific problems, such as description, classification, and clustering
of time series. Examples include the automatic classification of sleep stages (Zhu et al., 2014a),
characterizing the dynamics of the human heartbeat (Shao, 2010), distinguishing healthy from
non-healthy electroencephalographic series (Campanharo and Ramos, 2017), and analyzing
seismic signals (Telesca and Lovallo, 2012).
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In this section, we establish a new set of time series features, NetF, by mapping the time
series into the complex networks domain. We establish a procedure for time series mining
via NetF to address the question of whether time series features based on complex networks
are useful to capture the properties of time series. Our procedure, represented in Figure 5.1
comprises the following steps: map the time series into (natural and horizontal) visibility
graphs (see Sections 3.1.1.1 and 3.1.1.2) and quantile graphs (see Section 3.1.2.1) using the
appropriate mapping methods and compute five specific topological features for each network,
thus establishing a vector of 15 features. These features can then be used to mining time series
data. In this chapter, we present the results of applying this procedure to explore the inherent
characteristics of a large and diversified set of UTS datasets.

Figure 5.1: Schematic diagram of the network-based features approach to univariate time series
mining.

5.1 NetF: a Novel Set of Univariate Time Series Features

In this work, we introduce NetF as an alternative set of features. Our approach differs from those
previously mentioned in that we leverage the usage of different complex network mappings
to offer a set of time series features based on the topology of those networks. One of the main
advantages of this approach comes from the fact that the mapping methods (Section 3.1) do not
require typical time series preprocessing tasks, such as decomposing, differencing, or whitening.
Moreover, our methodology is applicable to any time series, regardless of its characteristics.
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NetF is constituted by 15 different features, as depicted in Figure 5.2. These features
correspond to the concatenation of five different topological features, as explained in Section 2.3.3
(k̄, the average weighted degree; d̄, the average path length; C, the clustering coefficient; S, the
number of communities; Q, the modularity), each of them applied to three different mappings
of the time series, as explained in Section 3.1.1 (WNVG, the weighted natural visibility graph;
WHVG, the weighted horizontal visibility graph; QG, the quantile graph).

Figure 5.2: Schematic diagram of the NetF. A time series Y is mapped into three complex
networks (WNVG, WHVG, and QG) and for each of these networks, five topological features
are taken (k̄, d̄, C, S and Q), resulting in the NetF vector containing 15 features.

Our main goal is to provide a varied set of representative features that expose different
properties captured by the topology of the mapped networks, providing a rich characterization
of the underlying time series.

The topological features themselves were selected so that they represent global features of
centrality, distance, community detection, and connectivity, while still being accessible, easy to
compute, and widely used in the network analysis domain.

5.2 Implementation Details

To compute the WNVGs we implement the divide & conquer algorithm proposed in Lan et al.
(2015) and for the WHVGs the algorithm proposed in Luque et al. (2009)1. To both we added
the weighted version mentioned in Section 3.1.1.5, adding the respective weights to the edges.
In this work, we used the inverse of Euclidean distance measure to define the weights, that is:
wi,j = 1/

√
(tj − ti)2 + (Yj −Yi)2. For the QGs we chose η = 50 quantiles, as in Campanharo

and Ramos (2016), and we implemented the method described in Section 3.1.2.1 to create the
nodes and edges of the networks. We used the sample quantile method, which uses a scheme of
linear interpolation of the empirical distribution function (Hyndman and Fan, 1996), to calculate
the sample quantiles (nodes) in support of the time series. To save the network structure as a
graph structure, we used the igraph (Csardi and Nepusz, 2006) package which also allows
us to calculate the topological features. The methods and algorithms used by the functions we
used to calculate the features were as follows (see Section 2.3.3 for more details):

1https://sites.google.com/view/lucaslacasa/research-topics/visibility-graphs#h.27cb86b8e1ba43fd_148
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Average Path Length (d̄) In this work, we follow an algorithm that does not consider edge
weights and uses the breadth-first search algorithm to calculate the shortest paths di,j

between all pairs of vertices, both ways for directed graphs.

Clustering Coefficient (C) The function that we use in this work ignores the edge direction for
directed graphs. For this reason, before we calculate C for QGs, which are directed graphs,
we first transform them into an undirected graph, where for each pair of nodes that are
connected with at least one directed edge the edge is converted to an undirected edge.
And then, the C is calculated by the ratio of the total number of closed triangles2 in the
graph to the number of triplets3.

Number of Communities (S) The function we use in this work calculates densely connected
subgraphs via random walks, such that short random walks tend to stay in the same
community. See the Walktrap community finding algorithm (Pons and Latapy, 2005) for
more details.

Modularity (Q) In relation to some division of nodes into communities, we measure how
separated the nodes belonging to the different communities are as follows:

Q =
1

2|E|∑i,j

[
wi,j −

kik j

2|E|

]
δ
(
Ci, Cj

)
,

where |E| is the number of edges, Ci and Cj the communities of vi and vj, respectively,
and δ(Ci, Cj) = 1 if vi and vj belong to the same community (Ci = Cj) and δ(Ci, Cj) = 0
otherwise.

We performed all implementations and computations in R (R Core Team, 2020), version 4.0.3,
and a set of packages. However, these results can be replicated using the framework we will
present in this work.

We make the source code and dataset used in this chapter available in https://github.com/
vanessa-silva/NetF.

5.3 Empirical Evaluation

In this section, we investigate, via synthetic datasets, whether the set of features introduced
above is useful for characterizing time series data.

2A triangle is a set of three nodes with edges between each pair of nodes.
3A triplet is a set of three nodes with at least edges between two pairs of nodes.
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5.3. EMPIRICAL EVALUATION

To this end, we consider a set of eleven linear and nonlinear time series models, denoted by
Univariate Data Generating Processes (UDGP), which present a wide range of characteristics
summarized in Table 5.1. A detailed description of the UDGP and computational details are
given in Appendix B.1. For each of the UDGPs (Figure 5.3 illustrate one instance of each) in
Table 5.1 we generated 100 realizations of length T = 10000. Following the steps presented
in Figure 5.1, we map each realization into three networks and extract the corresponding
topological features. The resulting time series features, organized by mapping, are summarized,
mean and standard deviation, in Tables B.1 to B.3. Note that the values have been Min-Max
normalized for comparison purposes since the range of the different features varies across
models.

Table 5.1: Summary about the univariate data generating process (time series models) of the
synthetic data. Parameters, the main characteristic of the datasets, and notation is also included.
See Appendix B.1 for more details.

Process Parameters Main Property Notation

White Noise ϵt ∼ N(0, 1) Noise effect WN

AR(1) ϕ1 ∈ {−0.5, 0.5} Smoothness AR(1)-0.5

AR(1)0.5

AR(2) ϕ1 = 1.5, ϕ2 = −0.75 Pseudo-periodic AR(2)

ARIMA(1, 1, 0) ϕ1 = 0.7 Stochastic trend ARIMA

ARFIMA(1, 0.4, 0) ϕ1 = 0.5 Long memory effect ARFIMA

SETAR(1) α = 0.5, β = −1.8, γ = 2, Regime-dependent
SETAR

r = −1 autocorrelation4

Poisson-HMM N = 2,
[

0.9 0.1
0.1 0.9

]
λ ∈ {10, 15} State transitions HMM

GARCH(1, 1) ω = 10−6, α1 = 0.1, Persistent periods of high
GARCH

β1 = 0.8 or low volatility

EGARCH(1, 1) ω =
(

10−6 − 0.1
√

2/π
)

, Asymmetric effects of
EGARCH

α1 = 0.1, β1 = 0.01, γ1 = 0.3 positive and negative shock

INAR(1) α = 0.5, ϵt ∼ Po(1) Correlated counts INAR

WNVGs (Table B.1 and Figure 5.4a) present the lowest values for the clustering coefficient
(C) for ARIMA models. Models producing time series with more than one state (HMM and
SETAR) present a lower average weighted degree but a higher number of communities (S). The
later values are comparable to those for AR(2) time series, the fact that can be explained by the
pseudo-periodic nature of the particular AR(2) model entertained here. WHVGs (Table B.2 and
Figure 5.4b) present average weighted degree (k̄) approximately 0 for HMM’s and approximately 1
for GARCH and EGARCH. This indicates that HMM time series have, on average, horizontal visibility
for more distant points (in time and/or value), while the opposite is true for heteroskedastic time
series. The clustering coefficient (C) is the lowest (approximately 0) for networks obtained from
INAR time series, indicating that most points have visibility only for the two closest neighbors.
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Figure 5.3: Plot of one instance of each simulated time series model.

QGs (Table B.3 and Figure 5.5) present high values of average path length, (d̄), for ARIMA,
contrasting with all other UDGP which present low values. On the other hand, the (C) for
ARIMA presents low values while all other UDGPs present high values.

The next step is to study the feature space to understand which network features capture
specific properties of the time series models. Figure 5.6 represents a bi-plot obtained using the 15
features (5 for each mapping method) and with the two principal components (PC) explaining
68.8% of the variance. It is noteworthy that the eleven groups of time series models are clearly
identified and arranged in the bi-plot according to their main characteristics. Overall, we can
say that the number of communities of VGs, S, are positively correlated among themselves and
are negatively correlated with the average weighted degree, k̄, of NetF. The average path length,
d̄, of WHVGs and QGs and the clustering coefficient, C, of WHVG are positively correlated,
but negatively to the d̄, C and Q of WNVG, Q of WHVG and C of QGs. The features that most
contribute to the total dimensions formed by the principal component analysis (PCA) are: k̄, S, Q
and d̄ of the QGs, k̄ of the WNVGs, and k̄, S and Q of the WHVGs (see Figure 5.7).

The (stochastic) trend of the ARIMA, in fact, the only non-stationary UDGP in this dataset,
is represented by high average path lengths, d̄, in WHVG and QG. Discrete states in the data,
HMM,SETAR,INAR, are associated with the number of communities, S. The bi-plot further
indicates that height average weighted degree, k̄, mainly that of the WHVG, represents hetero-
skedasticity in the time series, e.g., GARCH and EGARCH. Cycles, AR(2), are captured by the
clustering coefficient, C.
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(a) WNVG topological features

(b) WHVG topological features

Figure 5.4: Boxplot (by time series model) of (a) WNVG topological features, and (b) WHVG
topological features. The plots also show the results of applying a statistical significance test
(ANOVA).

Figure 5.5: Boxplot (by time series model) of 50-QG topological features. The plots also show
the results of applying a statistical significance test (ANOVA).
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Figure 5.6: Bi-plot of the first two PC’s for the synthetic dataset. Each Univariate Data Generating
Process (UDGP) is represented by a color and the arrows represent the contribution of the
corresponding feature to the PC’s: the larger the size, the sharper the color, and the closer to
the red the greater the contribution of the feature. Features grouped together are positively
correlated while those placed on opposite quadrants are negatively correlated.

Figure 5.7: Bar plot with contributions of NetF features to the total of all 15 principal components
formed by the PCA. The red dashed line on the plot indicates the expected average contribution.
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5.4 Conclusions

In this chapter we introduce NetF, a novel set of 15 time series features, and we explore its
ability to characterize univariate time series data. Our methodology relies on mapping the time
series into complex networks using three different mapping methods: natural and horizontal
visibility and quantile graphs (based on transition probabilities). We then extract five topological
features for each mapped network, concatenating them into a single time series feature vector,
and we describe in detail how we can do this in practice. We select the average weighted degree,
average path length, number of communities, clustering coefficient, and modularity, which
measure global characteristics, are simple to compute and interpret in the graph context and are
commonly used in network analysis, thus capable of providing useful information about the
structure and properties of the underlying systems.

To better understand the potential of our approach, we first perform an empirical evaluation
on a synthetic dataset of 3300 networks, grouped in 11 different and specific time series models.
Analyzing the weighted visibility (natural and horizontal) and quantile graphs feature space
provided by NetF, we were able to identify sets of features that distinguish non-stationary
from stationary time series, counting from real-valued time series, periodic from non-periodic
time series, state time series from non-state time series and heteroskedastic time series. The
non-stationarity time series have high values of average path length and low values of clustering
coefficients in their QGs, and the opposite happens for the stationary time series. The counting
series has the lowest value of the average weighted degree, the highest value of the number
of communities in their QGs, and the lowest value of the clustering coefficient in WHVGs,
while the opposite happens for the non-counting time series. For state time series the average
weighted degree value in their weighted VGs is the lowest and the number of communities
is high, the opposite happens for the non-state time series. Heteroskedastic time series are
identified with high average weighted degree values of their WHVGs, compared to the other
UDGPs.

The results show that NetF is able of capturing information regarding specific properties of
time series data. In particular, features from different types of networks are able of capturing
different information from the time series model (including the same base feature). This shows
that different mapping methods translate the data information to the connections of the resulting
graph differently.

NetF does not require typical time series preprocessing tasks, such as decomposing, differen-
cing, or whitening. Moreover, our methodology is applicable to any time series, regardless of the
nature of the data. The mappings and topological network features considered are global, but it
is important to clarify that they do not constitute a "universal" solution. In particular, we found
that the weighted versions of the visibility graph mappings used here produce better results
than their unweighted versions, as we can see in previous works (Silva, 2018). Formulating a set
of general features capable of fully characterizing a time series without knowing both the time
series properties and the intended analysis is a difficult and challenging task (Kang et al., 2020).
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Chapter | 6
Features for Multivariate Time Series

The set of features available for multivariate time series is not as large as in the univariate setting,
and is commonly extracted via statistical measures based on computations of causality, such as
Granger causality (Runge et al., 2019a), correlation, such as CCF, as well as measures of distance
between time series, such as dynamic time warping (Ruiz et al., 2021). Many of the MTS analysis
methods focus on methods for dimensionality reduction and feature representation, commonly
based on PCA (Granato et al., 2018), for example.

Recent literature (see Section 3.2.2) shows that multiplex versions of visibility graphs applied
to MTS can achieve better accuracy and more promising results than conventional mappings
into monoplex networks (Eroglu et al., 2018; Lacasa et al., 2015; Silva et al., 2021). However, as
far as we are aware, the above-mentioned results do not work directly with inter-layer edges
basing the analysis of the networks on topological measurements on the monoplex networks
resulting from flattening approaches or through similarity measures on the individual layers of
the multiplex networks. We believe that high-level network structures lead to less loss of data
information after mapping functions allowing to expand the range of resources available in the
literature and to explore more network components, such as inter-layer edges.

In this chapter, we propose to use multilayer network topological measures as features to
MTS. In particular, we will make use of intra-layer and inter-layer edges to compute topological
features to compare and analyze the serial and cross-dependencies, verifying whether they
complement the intra-layer features that are normally used. Based on the underlying concepts
of NetF (presented in Section 5.1), node centrality, graph distances, clustering, and community,
and in the 3 types of MNet subgraphs previously mentioned in Section 2.3.2, we propose a set
of MNet topological features based on MNet subgraphs structure which includes: i) common
topological features extended to MNets and ii) a new feature constructed for MNets.
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We start by introducing the new set of topological features. Next, we analyze this feature set
on the new method for mapping time series into MHVG (see Section 4.1). Finally, we propose
the MNetF as a diversified vector of multidimensional topological features extracted from the
proposed multilayer time series network, MHVG and MQG.

6.1 Multilayer Network Topological Features

A common approach to analyzing multilayer networks through features is the direct approach,
where the usual topological features of complex networks are extended to the MNet structure
and its substructures. In this section, we follow this approach and extend five topological
features to the subgraph of MNets. Furthermore, we propose a new feature based on the
intra-layer degree and inter-layer degree measures. Figure 6.1 illustrates this process.

Figure 6.1: Schematic diagram of topological features extraction from MNet. From each
subgraph, MNet (intra-layer, inter-layer, and all-layer graphs) are computed global topological
features and relational features.

6.1.1 Topological Features Extended to MNets

Common network topological features (see Section 2.3.3) such as node centrality, graph distances,
clustering, and community can be naturally extended to an MNet structure and all the subgraphs
mentioned in Section 2.3.2. To illustrate, consider local centrality features for single-layer
networks such as the degree ki of a node-layer vi, which represents the number of its adjacent
edges. In an MNet, we can compute three variants of node degree for each individual layer α

(with α = 1, . . . , m) that measures the number of adjacency edges of a given node vα
i depending

of the connections type, i.e., intra-layer edges, inter-layer edge, or both (intra-layer and inter-
layer) edges:
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• intra-layer degree: kα
i = ∑j Aα

ij

• inter-layer degree: kα≺β
i = ∑j Aα,β

ij

• all-layer degree: kα⪯β
i = kα

i + kα≺β
i

where β ̸= α and the symbol ≺ (and ⪯) expresses the inter-layer edges from a "source" layer α

(and including intra-layer edges of the "source" layer) to a "destination" layer β. Note that local
inter-layer and all-layer topological features are asymmetric features, that is, kα≺β

i ̸= kβ≺α
i and

kα⪯β
i ̸= kβ⪯α

i , since the feature is relative to node-layer vα
i or node-layer vβ

i .

In general, any common (local) topological feature Fi can be easily extended to intra-layer
features, Fα

i , just computing them over individual layers, to inter-layer features, Fα≺β
i , computing

over inter-layer edges, and to all-layer features, Fα⪯β
i , which compute over both intra-layer and

inter-layer edges.

An important feature associated with the degree is the degree distribution P(k) that measures
the fraction of nodes in a single-layer network with degree k. In this work, we analyze the three
variants of degree distributions, P(kα), P(kα≺β) and P(kα⪯β), in layer Lα, α = 1, . . . , m, associated
with its intra-layer degree, inter-layer degree and all-layer degree, respectively.

To measure the similarity between pairs of layers in an MNet, we also use the Jensen–Shannon
divergence (JSD) which measures the distance between two distributions. As an example, the
JSD between intra-layer degree distributions P(kα) and P(kβ), (JSDα,β

intra) is defined as follows:

JSD(P(kα)||P(kβ)) =
1
2

KLD(P(kα)||Q(k)) +
1
2

KLD(P(kβ)||Q(k))

where Q(k) = 1
2 (P(kα) + P(kβ)) and KLD is the Kullback–Leibler divergence:

KLD(P(kα)||Q(k)) = ∑
k

P(kα) log2

(
P(kα)

Q(k)

)
.

Similarly, we define JSD for the inter-layer degree distributions (JSDα,β
inter =

JSD(P(kα,β)||P(kβ,α))) and the all-layer degree distributions (JSDα,β
all = JSD(P(kα,β)||P(kβ,α))).

Note that JSD is a symmetrical version of the asymmetrical feature KLD. In the remainder of
this work, we will refer to similarity measures, such as JSD, as relational features.

In addition, we also extend global topological features to MNets. These features involve all
(sub)graph elements and therefore are symmetric. As an example, consider the average degree k̄
which calculates the arithmetic mean of the degree ki of all nodes in a single-layer network. As
before, we can compute three variants of average degree in a MNet as follow,

• average intra-degree: k̄α = 1
|Vα| ∑i kα

i

• average inter-degree: k̄α,β = 1
|Vα|+|Vβ|

(
∑i kα≺β

i + ∑j kβ≺α
j

)
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• average all-degree: k̄α,β
all = 1

|Vα|+|Vβ|

(
∑i kα⪯β

i + ∑j kβ⪯α
j

)
In short, we can compute a (global) topological feature F in the subgraphs of the MNet: intra

(Fα), inter (Fα,β), and all-layer graphs (Fα,β
all ).

Motivated by the NetF set of features proposed in Silva et al. (2022), namely based on the
concepts of node centrality, graph distances, clustering, and community and the three types of
MNet measurements defined above, we propose intra-layer, inter-layer, and all-layer, for each
pair of layers, features as follows (see Table 6.1 for the formulation details):

• Average Degree: the average intra-degree k̄α, average inter-degree k̄α,β and average all-
degree k̄α,β

all , as formulated above.

• Average path length: geodesic distances di,j, i ̸= j between node vi and vj corresponding
to the length of the shortest paths between them, where the path length is the number of
edges in the path. The average (intra-/inter-/all-)path length (d̄α, d̄α,β and d̄α,β

all ) is the arithmetic
mean of the shortest paths among all pairs of nodes in (intra, inter, and all-layer) graph.

• Number of communities: The number of (intra-/inter-/all-)communities, (Sα, Sα,β and Sα,β
all ), is

the amount of groups/communities of nodes that are densely connected on the subgraph.
These communities are found by performing random walks on the subgraph (intra, inter,
and all-layer graph), so that short random walks tend to stay in the same community until
the modularity value (defined below) cannot be increased anymore.

• Modularity: (Intra-/Inter-/All-)modularity, (Qα, Qα,β and Qα,β
all ), measures how good a

specific division of the corresponding subgraph G is into (intra-/inter-/all-)communities.

6.1.2 Ratio Degree: a New MNet Topological Feature

The ratio degree is a new topological feature for multilayer graphs, introduced here to relate
intra-layer and inter-layer visibility.

For any two different layers Lα and Lβ, α, β = 1, . . . , m, the ratio degree of node vα
i from layer

Lα to layer Lβ is defined as

rα⪯β
i =

kα≺β
i
kα

i
(6.1)

with α ̸= β and i = 1, . . . , T. The average ratio degree, r̄α⪯β, is the arithmetic mean of the ratio
degree of the nodes of layer Lα. Note that the ratio degree and the average ratio degree are
asymmetric, and thus it is not necessarily true that ri

α⪯β = ri
β⪯α and that r̄α⪯β = r̄β⪯α.

Table 6.1 provides the formulation details of the multilayer topological features studied in
this work.
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Table 6.1: Summary formulation of topological features of multilayer networks 1.

Feature Formulation Note

Average Degree
k̄α =

1
Nα

∑
i

kα
i

k̄α,β =
1

Nα,β

∑
i

kα≺β
i + ∑

j
kβ≺α

j


k̄α,β

all =
1

Nα,β

∑
i

kα⪯β
i + ∑

j
kβ⪯α

j



Degree Distribution
P(kα) =

nkα

Nα
n: number of nodes vα

i
with the corresponding
degree kP(kα≺β) =

nkα≺β

Nα

P(kα⪯β) =
nkα⪯β

Nα

Average Path
Length

d̄α =
1

Nα(Nα − 1) ∑
i ̸=j

dα
i,j di,j: length of the shortest

paths between vi and vj in
the corresponding subgraphd̄α,β =

1
Nα,β(Nα,β − 1) ∑

i ̸=j
dα,β

i,j

d̄α,β
all =

1
Nα,β(Nα,β − 1) ∑

i ̸=j
dα,β

i,j,all

Number of
Communities

Sα = |Cα|
C: set of communities in
corresponding subgraphSα,β = |Cα,β|

Sα,β
all = |Cα,β

all |

Modularity
Qα =

1
2|Eα| ∑i,j

[
Bi,j −

kikj

2|Eα|

]
δ
(
Ci, Cj

)
B = Aα

Qα,β =
1

2|Eα,β| ∑i,j

[
Bi,j −

kikj

2|Eα,β|

]
δ
(
Ci, Cj

)
B =

[
0 Aα,β

Aβ,α 0

]

Qα,β
all =

1

2|Eα,β
all |

∑
i,j

Bi,j −
kikj

2|Eα,β
all |

δ
(
Ci, Cj

)
B =

[
Aα Aαβ

Aβα Aβ

]

Jensen–Shannon
Divergence

JSDα,β
intra = JSD(P(kα)||P(kβ))

JSDα,β
inter = JSD(P(kα≺β)||P(kβ≺α))

JSDα,β
all = JSD(P(kα⪯β)||P(kβ⪯α))

Average Ratio
Degree

r̄α⪯β =
1
|Nα| ∑i

rα⪯β
i

1Remember that Vα is the set of nodes in layer Lα, we define Nα = |Vα| and Nα,β = |Vα|+ |Vβ| the number of
nodes in the corresponding layer(s).
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6.2 Empirical Evaluation of MHVG Features

In this section, we investigate whether the MHVG mapping method proposed in Section 4.1 and
the features set described in Table 6.1 are useful for characterizing MTS data by evaluating the
performance of the methodology for MTS mining tasks. We use synthetic bivariate time series,
generated from bivariate time series models to control for MTS correlation (serial and cross)
properties. First, we make some considerations about the implementation of the methodology.

6.2.1 Implementation Details

We briefly describe how we computed our proposed methodology, illustrated in Figure 6.2. For
illustrative purposes, we used m = 2, but the method is extensible to any value of m.

Figure 6.2: Schematic diagram of the multilayer network features set extraction process. A
multivariate time series Y is mapped into a multilayer horizontal visibility graph. And for
each of its subgraphs (intra-layer, inter-layer, and all-layer graphs) are computer the global
topological features (k̄, d̄, S, Q and P(k)) and relational features (r̄ and JSD).

To map a multivariate time series Y into an MHVG, we follow Algorithm 2. The intra-
layer HVGs, {Gα}m

α=1, for each time series component, {Yα}, α = 1, . . . , m, are created using
Algorithm 5 proposed in Luque et al. (2009). The inter-layer edges are added following the
mapping method based on cross-horizontal visibility criteria proposed in Section 4.1.1, and
using Algorithm 6. Subgraphs corresponding to intra-, inter-, and all-layers, are fixed via
corresponding adjacency sub-matrices of the MHVG (see Sections 2.3.2). And the corresponding
topological features described above are computed using the methodologies and algorithms
described below.
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The average degree (k̄) and average ratio degree (r̄) are calculated by the arithmetic mean
of the degrees ki and ratio degrees ri, respectively, of all node vi in the respective subgraph. In
this work, the average path length (d̄) follows an algorithm that computes the average shortest
path length between all pairs of nodes (of respective subgraphs) using a breadth-first search
algorithm. To calculate the number of communities (S), the function used makes use of the
known "Louvain" algorithm that finds community structures by multi-level optimization of
modularity (Q) measure (see Blondel et al. (2008) for more details). And the degree distributions
(P(k)) and Jensen–Shannon divergence (JSD) are implemented as described above section.

We used C++ and the set of libraries (such as igraph and standard libraries) to implement
the data structure to store an MNet and compute the functions to extract the topological features.

6.2.2 Synthetic Datasets

We consider a set of six bivariate time series models (m = 2), denoted by Multivariate Data
Generating Processes (MDGPs), summarized in Table 6.2. These MTS models present a set
of particular characteristics in terms of serial and cross-correlation (see Section2.1.2), namely:
white noise (WN) processes simulate noise effects, one process does not present any kind of
correlation, and the other presents a strong contemporaneous correlation; vector autoregression
(VAR) processes simulate smooth linear data, presenting both serial and cross-correlation; vector
generalized autoregressive conditional heteroskedasticity (VGARCH) processes simulate nonlinear
data with persistent periods of high or low volatility. The parameters of each MDGP are chosen
so that the data exhibits a range of serial and cross-correlation properties as described in Table 6.2.
A detailed description of the MDGP and their properties as well as computational details are
presented in Appendix C.1.

For each MDGP in Table 6.2, we generated 100 instances of length T = 10000. As illustrated
in Figure 6.2, we map each bivariate time series into an MHVG, highlight the intra-, inter-, and
all-layer graphs and extract the corresponding topological features.

To illustrate the procedure, we represent in Figure 6.3 one instance with 300 observations
of each MDGP and the corresponding cross-correlation (CCF) plot (first two columns of the
plot), the intra-, inter-, and all-layers degree distributions on a semi-logarithmic scale (last
three columns of the plot). These degree distributions are computed as the arithmetic mean
of the degree distributions of the 100 simulated instances 2. The plots clearly show that the
degree distributions are different across the MDGPs. In fact, Luque et al. (2009) has shown
that the intra-layer degree distribution for white noise (uncorrelated data) follows a power law(

P(k) = 1
3

(
2
3

)k−2
)

and our results indicate that strong serial correlation leads to intra-layer

degree distributions that are positively skewed: as illustrated in Appendix C.1, the sVAR is
the only MDGP that produces data with strong serial correlation. The degree distribution for
the inter-layer subgraphs does not have an algebraic close form even in the simplest case of

2In Figure C.2 we present the variability of the 100 samples of the degree distributions in the form of boxplots
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Table 6.2: Summary about the multivariate data generating processes (bivariate time series
models) of the synthetic data. Parameters, the main characteristic of the datasets, and notation
is also included. See Appendix C.1 for more details.

MDGP Parameters Characteristics Notation

Independent White Noise ϵt ∼ N(0, 1) Noise effect
No correlation

iBWN

Correlated White Noise
[

ϵ1,t
ϵ2,t

]
∼ N

(
0,
[

1.00 0.86
0.86 1.50

])
Noise effect
No serial correlation
Cross-correlation

cBWN

Weak VAR(1) φ =
[

2.50
0.50

]
, ϕ =

[
0.20 0.10
0.02 0.10

]
Weak correlation
(serial and cross)

wVAR

ϵt ∼
[

1.00 0.10
0.10 1.50

]
Strong VAR(1) φ =

[
0
0

]
, ϕ =

[
0.70 0.02
0.30 0.80

]
Strong correlation
(serial and cross, lagged
and contemporaneous)

sVAR

ϵt ∼
[

1.00 0.86
0.86 1.50

]

Weak VGARCH(1, 1) ω =
[

0.05
0.02

]
, α =

[
0.10 0.00
0.00 0.05

]
No serial correlation
Weak cross-correlation

wGARCH

β =
[

0.85 0.00
0.00 0.88

]
, ϵt ∼

[
1.00 0.10
0.10 1.50

]
Strong VGARCH(1, 1) ω =

[
0.05
0.02

]
, α =

[
0.10 0.00
0.00 0.05

]
Strong contemporaneous
cross-correlation

sGARCH

β =
[

0.85 0.00
0.00 0.88

]
, ϵt ∼

[
1.00 0.86
0.86 1.50

]

two uncorrelated white noises. However, the extensive simulations (see Figure C.2) and the
analytical results that we present in Appendix E indicate that the inter-layer degree distribution

does not follow the power law P(k) = 1
3

(
2
3

)k−2
, as illustrated in the first line, the third column

of Figure 6.3. The plots also indicate that inter-layer degree distribution depends both on the
correlation between the two time series (CCF represented in the second column of the plot in
Figure 6.3) and the serial correlation within each time series. Moreover, we note that inter-layer
degree distributions for sVAR are positively skewed, for GARCH models, wGARCH and sGARCH,
are exponentially shaped while the remaining are approximately linear. Once again, a slower
decay of the lagged correlation leads to a longer tail in the degree distribution. Also, the degree
distribution curves corresponding to the GARCH models stand out from the others, especially
the inter- and all-layer degree distributions. The exponential shape of the inter-layer degree
distributions is induced by the heteroscedasticity and volatility clusters in the data which limit
cross-horizontal visibility to the nearest neighbors.
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Figure 6.3: Analysis plot of multivariate DGP. The first column shows a subset of timestamps
from each MDGP bivariate time series, the second column plots the cross-correlation function
between their corresponding time series components, and the last three columns show the
intra, inter, and both layers degree distribution plots of the corresponding MHVG’s. The plots
corresponding to the degree distributions are on a semi-logarithmic scale. Lines of different
colors refer to the different MDGP models (Y t), where the darkest colors refer to their first-time
series components (Y1,t) and the lighter colors to the second components (Y2,t).
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Table 6.3: Mean values (standard deviation) of the 100 instances of each MDGP for each
topological global feature from intra-layer graphs, G1 and G2, and inter-layer graph, G1,2,
resulting from the corresponding MHVGs. The columns of the tables are colored with a gradient
based on the mean values: cells with the highest value are coloured red, cells with the lowest
value are coloured white, and the remainder with a hue of red colour proportional to its value
in the respective column.

MDGP
Average Average Number of

Modularity
Degree Path Length Communities

k̄1 k̄2 k̄1,2 d̄1 d̄2 d̄1,2 S1 S2 S1,2 Q1 Q2 Q1,2

iBWN
0.805 0.756 0.615 0.044 0.049 0.012 0.265 0.312 0.206 0.150 0.207 0.319
(0.081) (0.077) (0.033) (0.019) (0.023) (0.024) (0.083) (0.083) (0.064) (0.055) (0.056) (0.093)

cBWN
0.802 0.752 0.940 0.045 0.050 0.007 0.260 0.310 0.126 0.150 0.196 0.181
(0.083) (0.080) (0.078) (0.022) (0.022) (0.015) (0.084) (0.090) (0.080) (0.051) (0.062) (0.141)

wVAR
0.790 0.759 0.615 0.058 0.056 0.009 0.342 0.338 0.211 0.287 0.277 0.308
(0.079) (0.090) (0.033) (0.022) (0.025) (0.016) (0.093) (0.100) (0.062) (0.058) (0.062) (0.099)

sVAR
0.561 0.601 0.683 0.449 0.328 0.011 0.791 0.700 0.195 0.893 0.857 0.263
(0.121) (0.108) (0.092) (0.050) (0.039) (0.025) (0.104) (0.121) (0.069) (0.046) (0.064) (0.103)

wGARCH
0.540 0.554 0.102 0.380 0.325 0.252 0.239 0.282 0.696 0.185 0.207 0.669
(0.159) (0.140) (0.135) (0.136) (0.097) (0.188) (0.104) (0.083) (0.212) (0.057) (0.081) (0.210)

sGARCH
0.542 0.505 0.146 0.390 0.385 0.232 0.234 0.300 0.670 0.179 0.212 0.626
(0.184) (0.186) (0.174) (0.138) (0.149) (0.217) (0.103) (0.105) (0.220) (0.065) (0.065) (0.240)

The results for all the 21 features introduced in Section 6.1 and all MDGPs, organized by
subgraph structure, are summarized, mean (standard deviation), in Tables 6.3 and 6.4. The
values have been Min-Max normalized (across models) for comparison purposes since the range
of the different features varies across the different MDGPs. The cells in the tables are coloured
with a gradient based on the mean values in each column: cells with the highest value are
coloured red, cells with the lowest value are coloured white, and the remainder with a hue of
red colour proportional to its value in the respective column.

The results indicate that each set of features - intra-layer (first two columns of each feature in
Table 6.3), inter-layer (third column of each feature in Table 6.3), all-layer (first four columns
of Table 6.4) and relational (last five columns of Table 6.4) - distinguishes two groups of MTS
depending on properties pertaining to correlation (serial and cross) and volatility clustering.

Focusing on the characteristic of data heteroscedasticity, we can see that the mapping that
result in Cross-HVG is very sensitive to this property. In fact, the visibility criterion is very
dependent on the very high and very low values of the data over time, and therefore the
heteroscedasticity and correlation between the data impose even more limits on the visibility
between values of different variables over time, which is reflected in greater variability of the
topological features of the Cross-HVG. This fact can be observed in Figure C.2 where the values
of the (intra, inter and all-layer graph) degree distributions corresponding to the 100 samples of
each MDGP analyzed here are plotted as boxplots.
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Table 6.4: Mean values (standard deviation) for each topological global and relational features
from all-layer graphs, G1,2

all , resulting from MHVGs of MDGP, computed over the 100 instances
of each MDGP. The columns of the tables are colored with a gradient based on the mean values:
cells with the highest value are coloured red, cells with the lowest value are coloured white, and
the remainder with a hue of red colour proportional to its value in the respective column.

MDGP
Average Average Num. of

Modular.
Average Jensen–Shannon

Degree Path L. Comm. Ratio Deg. Divergence

k̄1,2
all d̄1,2

all S1,2
all Q1,2

all r̄1⪯2 r̄2⪯1 JSDα,β
intra JSDα,β

inter JSDα,β
all

iBWN
0.617 0.042 0.237 0.338 0.586 0.582 0.170 0.034 0.090
(0.033) (0.018) (0.107) (0.052) (0.028) (0.037) (0.071) (0.0355) (0.047)

cBWN
0.940 0.051 0.382 0.507 0.942 0.931 0.166 0.061 0.244
(0.078) (0.018) (0.087) (0.064) (0.071) (0.084) (0.079) (0.076) (0.236)

wVAR
0.616 0.054 0.305 0.413 0.565 0.571 0.207 0.034 0.096
(0.033) (0.022) (0.107) (0.049) (0.032) (0.034) (0.074) (0.041) (0.051)

sVAR
0.682 0.457 0.457 0.842 0.574 0.579 0.682 0.120 0.314
(0.092) (0.04955) (0.127) (0.05673) (0.106) (0.091) (0.128) (0.148) (0.225)

wGARCH
0.104 0.297 0.310 0.206 0.103 0.097 0.154 0.085 0.075
(0.134) (0.065) (0.108) (0.076) (0.136) (0.127) (0.065) (0.110) (0.065)

sGARCH
0.147 0.388 0.431 0.3954 0.149 0.145 0.149 0.114 0.137
(0.173) (0.120) (0.118) (0.088) (0.179) (0.170) (0.077) (0.161) (0.172)

To understand which MNet topological features capture the specific properties of the MTS
models, we perform PCA on the feature space. Figure 6.4 represents a bi-plot obtained using
the intra-, inter-, all-layer, and relational features, with the two principal components (PC)
explaining 83.8% of the variance. The bi-plots resulting from PCA in restricted feature sets are
represented in Figure C.3 (Appendix C.1). Overall, we can say that the average degree and
average ratio degree, k̄ and r̄, are positively and negatively correlated, respectively, with the
average path length, d̄. The community-related features of the intra- and all-layer graphs are
positively correlated but less correlated with the community-related features of the inter-layer
graphs. The features that most contribute to the first two PCs are the k̄1,2, S1,2 and Q1,2 of the
inter-layer graphs, the k̄1,2

all of the all-layer graphs, the r̄1⪯2 and r̄2⪯1 of the relational layers, and
Q1 and Q2 of the intra-layer graphs (see Figure C.4 of Appendix C.1).

Figure 6.4 clearly shows four groups of models, GARCH, sVAR, cBWN and a group
constituted by the wVAR and the iBWN and identifies the topological features that characterize
them.
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Figure 6.4: Bi-plot of the first two principal components (PC) of principal component analysis
for the Data Generating Process (MDGP). Each MDGP is represented by a different color and
the arrows represent the contributions of the MNet features to the PCs, the larger the size,
sharpness, and closer to the red the greater the contribution of the feature. Features set together
are positively correlated and those placed on opposite quadrants are negatively correlated.

The strong ACF and CCF of the sVAR are represented by high values for the number of
communities and modularity in its intra- and all-layer graphs. Inter-layer graphs present
higher values of community-related features for GARCH models. The average path length
represents the GARCH models, in particular, the average path length of the all-layer graphs
tries to distinguish both wGARCH and sGARCH. The strong contemporaneous CCF of the cBWN is
represented by high values of average ratio degree, such as the average degree values of its inter
and all-layer graphs. The iBWN and wVAR, are represented by high values of intra-layer average
degree.

The above results indicate that the topological features extracted from MHVG are adequate
as a set of MTS features.

6.3 MNetF: a Novel Set of Multivariate Time Series Features

Based on the results obtained in the previous section and on the NetF concept for univariate
time series, we propose a more complete set of global topological features of MNet: the MNetF
feature vector. In general MNetF is defined as a vector of global topological features formed
by concatenating the vector of MNets features (introduced in 6.1) from the resulting MHVG
and MQG of a multivariate time series. It comprises intra-layer topological features, inter-layer
topological features, all-layer topological features, and relational features which are computed for
an MTS for the two different mapped multilayer networks.
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MNetF is constituted by different features corresponding to the concatenation of six different
topological features from intra, inter, and all-layer subgraphs, as explained in Section 6.1 (k̄, the
average degree; d̄, the average path length; S, the number of communities; Q, the modularity; r̄,
the average ration degree; JSD, the Jensen–Shannon divergence), each of them applied to three
different mappings of the MTS, as explained in Chapter 4 (MHVG, the multilayer horizontal
visibility graph; MQG, the multilayer quantile graph with η = 50). To compute MNetF we follow
the same steps described in Section 6.2.1, with the addition of two new steps: repeat the process
described for MQG, and concatenate the two resulting feature vectors.

Our main goal is to provide a varied set of representative features that expose different
properties captured by the topology of the mapped MNet, improving the previous results.

Next, we investigate, via synthetic multivariate datasets, whether the set of features
introduced to MNetF are useful for characterizing multivariate time series data. To this
end, we consider the same MDGP analyzed in the previous section: a set of six linear and
nonlinear bivariate time series models with particular characteristics in terms of serial and
cross-correlation.

We study the feature space with the aim of understanding which of the topological
multidimensional features capture specific properties of the time series models. In Figure 6.5 we
represent a bi-plot obtained using a total of 42 features (21 for each mapping method) and with
the two PC’s explaining 84% of the variance. We can see that the clustering of the MTS samples
has improved since the clusters seem denser. And we can also observe a better distinction
between the sGARCH and wGARCH models that is more noticeable in a three-dimensional space
(see Figure C.5 in Appendix). The introduction of new topological features from different kinds
of MNets seems to distinguish other properties of the data. Specifically, if we analyze only the
features extracted from MQGs (see the feature space in Figure 6.6), we can say that the set of
features of the MQGs makes a better distribution of the samples of the models by the feature
space. Therefore, we can say that the MQG topological features are the ones that best distinguish
heteroskedastic data with different cross-correlation properties. Since the QG are very good
at characterizing the dynamic variations of the data and consequently the heteroscedasticity
properties. We can see that the average degree and the number of communities of intra-layer
graphs of MQG try to place the WN models in the third quadrant while the same features for
inter-layer graphs try to place the VGARCH and VAR models weakly correlated in the second
quadrant. If we analyze Figure C.6 which shows the features of MNetF that most contribute to
the PCs, we can see that they are the features related to the MQGs.

103



CHAPTER 6. FEATURES FOR MULTIVARIATE TIME SERIES

Figure 6.5: Bi-plot of the first two PCs of MNetF feature set for the synthetic bivariate dataset.
Each Multivariate Data Generating Process (MDGP) is represented by a color and the arrows
represent the contribution of the corresponding feature to the PC’s: the larger the size, the sharper
the color, and the closer to the red the greater the contribution of the feature. Features grouped
together are positively correlated while those placed on opposite quadrants are negatively
correlated.

Figure 6.6: Bi-plot of the first two PCs of MQG topological feature set for the synthetic bivariate
dataset. Each Multivariate Data Generating Process (MDGP) is represented by a color and
the arrows represent the contribution of the corresponding feature to the PC’s: the larger the
size, the sharper the color, and the closer to the red the greater the contribution of the feature.
Features grouped together are positively correlated while those placed on opposite quadrants
are negatively correlated.
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6.4 Conclusions

To assess the proposed MHVG method, we analyzed a specific set of topological features of
multilayer networks. These features are based on concepts of node centrality, graph distances,
clustering, communities, and similarity measures. Each feature extracted from all the subgraphs
of the resulting multilayer network structure: intra-layer graphs (only intra-layer edges), inter-
layer graphs (only inter-layer edges) and all-graphs (with both intra and inter-layer edges).

We perform an empirical evaluation on a set of 600 synthetic bivariate time series, grouped in
6 different and specific statistical models, that result in a dataset of 600 MHVGs. To understand
the potential of our proposed mapping method, we first analyze the degree distributions of the
intra, inter, and all-layer subgraphs of MHVGs. We were able to identify the specific properties of
multivariate time series models, namely, we were able to relate weak and strong cross-correlation
with shapes of the inter-layer degree distribution curves and weak and strong autocorrelation
with shapes of the intra-layer degree distribution curves. In particular, we were also able to
relate the persistence of strong correlations to distributions (that result in positively skewed
shape) that have a longer right tail. Adding to the correlation properties (both auto and cross,
contemporaneous and lagged), the properties of the statistical models, such as heteroscedasticity
and smoothness, resulting in inter and all-layer degree distributions with different shape curves.

We also investigated the global features of the subgraphs (intra, inter, and all-layer).
Community-related features from intra and all-layer graph highlight the strongly VAR models,
with high and persistent autocorrelation and cross-correlation, as well as with smoothness, and
from inter-layer graphs highlight the heteroscedasticity models, both weak and strong VGARCH
models. However, the values of average path length from all-layer graphs seem to distinguish
the properties of weakly and strongly correlated. The average intra-degree has higher values for
independent white noise and weak VAR models, but not distinguishing them.

The new similarity measure proposed in this work, average ratio degree, seems to
differentiate well the highly correlated contemporary white noise models, which leads to
a similarity in its inter-layer degree and intra-layer degree features. In the context of this work,
based on the synthetic models chosen for analysis, the Jensen–Shannon divergence measure
is only useful to characterize strong VAR models that present very strong and very persistent
correlations, unlike the other models. However, this feature can be quite useful in real contexts,
where the different variables of a multivariate time series can follow different dynamic models
that will be captured by this feature. We intend to investigate this and other characteristics, as
well as other topological features of multilayer networks in our future works.
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Similar to what was done for the univariate case, we also propose a much larger set of
features, which we call MNetF, which result from features of the different types of multivariate
networks that we propose in this work: MHVG and MQG. Making use of the proposed
set of multivariate time series models to analyze MHVG networks, we apply the proposed
methodology to the MNetF. The results show that the MQG mappings are sufficient to
distinguish the characteristics inherent to each of the models analyzed in this work. Combining
all features into a single vector, the MNetF, shows slightly worse results for this dataset.

The purpose of this work is not to find a unique feature vector restricted to all types of time
series data. In fact, this is very far from being possible. Our goal is to contribute to a diverse set
of multidimensional topological features that, in their particularities, can be used together or
separately to analyze various types of multivariate temporal data. In particular, it is possible to
apply feature selection methods on the proposed MNetF vector in order to retain the features
that best fit the data under analysis.

To conclude, this chapter proposes a procedure to map multivariate time series into
multilayer networks as a mean to obtain a rich set of multivariate time series features that
can be used for mining tasks. Multilayer networks encode significantly more information than
their isolated single layers since they incorporate correlations between the nodes in different
layers and between the statistical properties of layers (time series components). This was
proven by the empirical analysis carried out in this chapter, where the introduction of inter-layer
graph features and all-layer graph features improve the results obtained with solely intra-layer
features.
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Chapter | 7
Mining Time Series via Complex
Networks

In this chapter, we illustrate the usefulness of complex networks based time series features in
data mining tasks with a case study regarding time series clustering. We focus on the whole
(univariate and multivariate) time series clustering. Within the various possible methodologies,
we will focus on feature-based clustering methodologies (Maharaj et al., 2019), where (univariate
or multivariate) time series data are represented by a set of descriptive characteristics that are
passed as input to the clustering methods. We use the NetF and MNetF presented, respectively, in
Sections 5.1 and 6.3, to clustering analysis of synthetic and real-world and benchmark (univariate
and multivariate) datasets.

For purposes of evaluating and comparing the approaches proposed in this work, we
use two other sets of conventional benchmark time series features (Henderson and Fulcher,
2021), as feature vectors that represent the UTS (or the individual variables of the MTS, in the
multivariate setting). The first is a set of time series statistical features that has been used in a
variety of tasks such as clustering (Wang et al., 2006), forecasting (Kang et al., 2017; Talagala
et al., 2018) and generation of time series data (Kang et al., 2020). It comprises sixteen features
calculated using the tsfeatures package (Hyndman et al., 2020) of the R CRAN (R Core Team,
2020), namely, frequency and number and length of seasonal periods, the strength of the trend,
"spikiness" of a time series, linearity and curvature, spectral entropy, and measures based on
autocorrelation coefficients of the original series, first-differenced series, and second-differenced
series. These will be denoted by tsfeatures in the remainder of this work. The second, is the
denominated canonical feature set (Lubba et al., 2019) (we will be denoted by catch22), and has
been recently proposed based on a features library from an interdisciplinary time series analysis
literature (Fulcher and Jones, 2017) and has been used in time series classification tasks (Lubba
et al., 2019). There are twenty two features calculated using the Rcatch221 package (Henderson,

1https://github.com/hendersontrent/Rcatch22
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2021) of the R CRAN (R Core Team, 2020), that include properties of the distributions and simple
temporal statistics of values in the time series, linear and nonlinear autocorrelation, successive
differences, scaling of fluctuations, and others.

We start this chapter by describing the methodology used for the task of clustering time
series using feature vectors, which is common to the presented univariate and multivariate
clustering problems. Next, we perform an empirical study of the NetF features in the context
of clustering the UDGP dataset and an empirical study of the MNetF for clustering the MDGP
dataset. We analyzed the performance of the different combinations of the feature vectors
from the WNVG, WHVG, and QG mappings to the NetF analysis and of the features vectors
from MHVG and MQG to the MNetF analysis. We also analyzed the different combinations of
feature vectors corresponding to the proposed approaches (NetF or MNetF) with the two sets
of feature vectors previously proposed in the literature (conventional approach), to compare
results. Finally, we present a clustering analysis on the benchmark datasets using the different
(multilayer) network-based time series feature extraction strategies.

7.1 Clustering Methodology

The overall procedure proposed here for feature-based clustering is represented in Figure 7.1.

Figure 7.1: Schematic diagram for the (univariate or multivariate) time series clustering analysis
procedure.
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Given a set of UTS (or MTS) data, we compute the feature vectors (network-based
features and statistical features) which are then Min-Max rescaled into the [0, 1] interval and
organized in a feature data matrix. Principal Components (PC) are computed (no need of
z-score normalization within PCA) and finally a clustering algorithm is applied to the PC’s
corresponding to 100% of variance. Among several algorithms available for clustering analysis,
we opt for k-means (Hartigan and Wong, 1979) since it is fast and widely used for clustering. Its
main disadvantage is the need to pre-define the number of clusters. This issue will be discussed
within each dataset example. The clustering results are assessed using appropriate evaluation
metrics: Average Silhouette (AS); Adjusted Rand Index (ARI) and Normalized Mutual Information
(NMI) when the ground truth is available. The AS does not need the ground truth, while the
ARI and NMI do. The scale of the results for NMI is [0, 1], while for ARI and AS is [−1, 1]. A
higher value refers to a model with more coherent clusters (or identical partitions to the intrinsic
structure), and a lower value refers to a model with less coherent clusters (or random partitions).

7.2 Clustering Synthetic Data

In this section, we perform an empirical study of Clustering of synthetic UTS and MTS datasets
using NetF and MNetF, respectively. NetF is tested and compared with two other benchmark
feature vectors in the UTS models (UDGP) presented in Table 5.1, and MNetF is tested and
compared with catch22 in the synthetic multivariate models (MDGP) presented in Tables 6.2.

7.2.1 UTS Clustering using NetF

In this section, we analyze the performance of different combinations of the feature vectors from
the WNVG, WHVG, and QG mappings in a clustering of UDGP. We set the number of clusters
to k = 11, the total of UTS models, and assess the clustering results with the evaluation features.
The results are summarized in Table 7.12. Comparing the first three rows of Table 7.1 with the
last three rows we can see that joining the features obtained from the two mapping concepts
(VGs and QGs) adds information that leads to improvements in the clustering results. In fact, as
illustrated in Figure 7.2, clustering based on NetF can lead to a perfect attribution of the UTS
model samples across the 11 different clusters.

2The results are means from 10 repetitions of the clustering analysis. The chosen clustering method (k-means)
is a stochastic process, so 10 repetitions are adequate. The corresponding standard deviations indicate little or no
variation between the repetitions.
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Table 7.1: Clustering evaluation metrics for the different clustering analyses resulting from
different network-based feature vectors. The values reflect the mean of 10 repetitions of the
proposed method for different feature vectors and for the ground truth (k = 11). The highest
values are highlighted.

Mappings
ARI NMI AS
[−1, 1] [0, 1] [−1, 1]

WNVG 0.68 0.86 0.51
WHVG 0.83 0.94 0.63
QG 0.64 0.84 0.66
WNVG - WHVG 0.81 0.93 0.57
WNVG - QG 0.84 0.94 0.67
WHVG - QG 0.90 0.96 0.73

NetF 0.92 0.97 0.68

Figure 7.2: Attribution of the samples corresponding to instances of time series models to the
different clusters, according to NetF. The different models are represented on the horizontal
axis and by a unique color. The time series is represented by the colored points according to its
model process. The vertical axis represents the cluster number to which a time series is assigned.

These results show that different mapping methods capture different properties from the
series, as we analyzed in the previous Section 5.3, translating into a better clustering result
of the widely diverse set of UTS models, as we expected. If we analyze only feature vectors
corresponding to one network kind, the first three rows of Table 7.1, we note that the WHVGs
are the ones that best capture the characteristics of time series models, having high evaluation
values, namely, 0.83 for ARI, 0.94 for NMI and 0.63 for AS. The last three lines of Table 7.1 show
better results than those obtained using only WHVG features, thus showing that the resulting
features of the QGs add information about certain properties of the time series models.
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We also study how these seven sets of features perform in determining the number of clusters
k (knowing that the ground truth is k = 11) using the ARI, NMI, and AS evaluation metrics, as
a reference for choosing the best k. The results for k obtained from features corresponding to
only one kind of network, range from 8 to 13 for ARI, from 11 to 14 for NMI, and 3 to 9 for AS.
However, when NetF is used, we obtain k = 11 for ARI and NMI and k = 10 for AS.

To validate the results presented here, we performed a comparative analysis with the two
vectors of conventional features: tsfeatures and catch22. We present the clustering results for the
ground truth in Table 7.2. The clustering and feature scaling process performed was the same
for all experiments. We can verify that the best results fall on the feature vector that includes
the topological features proposed in this work. The vector of statistical features tsfeatures also
had great results, as expected, since it includes several features of conventional time series
analysis, and the dataset under analysis is a dataset of systematic time series models. Note that
the best result is observed for the vector resulting from the concatenation of NetF with tsfeaures.
Apparently, the vector of catch22 features makes the results worse.

Table 7.2: Clustering evaluation features for the different clustering analysis resulting from
different feature vectors: NetF, tsfeatures, and catch22. The values reflect the mean of 10 repetitions
of the proposed method for different feature vectors and for the ground truth (k = 11). The
highest values are highlighted.

Mappings
ARI NMI AS
[−1, 1] [0, 1] [−1, 1]

tsfeatures 0.76 0.91 0.73
catch22 0.40 0.66 0.39
tsfeatures - catch22 0.56 0.77 0.40
NetF - tsfeatures 0.91 0.97 0.73
NetF - catch22 0.76 0.87 0.43
NetF - tsfeatures - catch22 0.78 0.89 0.48

NetF 0.92 0.97 0.68

We also investigate the performance of NetF, catch22 and tsfeatures in the automatic
determination of the number of clusters k, using the clustering evaluation metrics, ARI, NMI
and AS. For the proposed approach (NetF) the results of k were the ones mentioned above, for
tsfeatures the best values obtained for k were 14 considering ARI and NMI and 9 considering
AS; for catch22 were 8, 13 and 2, for ARI, NMI and AS, respectively. Comparing the results,
NetF and tsfeatures are the ones that best fit the known value of k, with NetF being the best, with
catch22 having the worst results, especially when we look at the AS feature as the feature that
determines the value of k (which is commonly used). Figure 7.3 shows this results to AS feature
evaluation.
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Figure 7.3: Number of clusters, k, for the UDGP, using the silhouette method for 10 repetitions
of the clustering analysis using the 3 features vectors: NetF, tsfeatures and catch22. The ground
truth for UDGP is k = 11.

7.2.2 MTS Clustering using MNetF

In this section, we present the clustering analysis results obtained from different feature vectors
(from MHVG, MQG and MNetF) to the MDGP. We start by analyzing the results of the set of
features corresponding to the MHVGs, then those corresponding to the MQGs and we finish
with the results for the MNetF.

The clustering results obtained using the all 21 features from MHVG and from MQG
introduced in Section 6.1 of all MDGPs are summarized, respectively, in Figures 7.4 and 7.5. For
the synthetic dataset analyzed here, the MQG mapping obtained the best results in all evaluation
features. As illustrated in Figure 7.4, the different evaluation features indicate a different number
of clusters for the dataset: ARI indicates k = 5 followed by k = 6, which is the ground truth
value of the MDGP dataset, while the NMI indicates either k = 6 or k = 7. The AS, using the
silhouette method to assess the quality of the clusters indicates k = 3. The three clusters are
constituted by: the sVAR models are one cluster (very strong auto and cross-correlations), the
GARCH models are another (heteroskedastic data), and the WN and wVAR models are the last
cluster (white noise and weakly correlated data), indicating that the MDGPs were clustered
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according to correlation (serial and cross) and volatility properties. For the MQG features vector,
the results are consistent to ARI and NMI, obtaining k = 6 with near-maximum values. While
for AS the maximum value of 0.70 indicates k = 2 (that is not a good result), but obtain 0.6 for
k = 5 (that is a great result for the AS feature). The latter joins in the same cluster the wVAR and
iWN models that are dynamically more similar.

Figure 7.4: Evaluation of clustering results from MHVG features set for the MDGP. The results
represent the 10 repetitions of the clustering analysis. The ground truth for MDGP is k = 6.

Figure 7.6 represents the results from clustering the 100 instances of the 6 MDGPs, using the
21 MNet features (from MHVG and from MQG) and the k-means algorithm with k = 6. The
result from MHVG features presents a perfect attribution of cBWN and sVAR samples across two
different clusters (clusters 1 and 3), the attribution of iBWN and wVAR samples across the same
cluster (cluster 2), and a homogeneous attribution of GARCH samples (wGARCH and sGARCH)
across two clusters (4 and 5), and some samples of cBWN and sGARCH across cluster 6 since
k = 6 and the GARCH samples are the most disparate in the feature space. While from MQG
features the MTS samples are (almost) perfectly attributed by the 6 different clusters, only a few
samples of the weakly or no cross-correlated models (iWN, wVAR and wGARCH) are assigned to
neighboring clusters.
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Performing the clustering exercise considering subsets of the MNet feature set. The results
summarized in Table 7.3 indicate that inter-layer edges contain, in fact, information about
the MTS, leading to better clustering results (together with the intra-layer edges). We can
also analyze that the relational features, which include the new topological features of MNet
proposed in this work (average ratio degree), achieve good clustering results when considered
alone.

Figure 7.5: Evaluation of clustering results from MQG features set for the MDGP. The results
represent the 10 repetitions of the clustering analysis. The ground truth for MDGP is k = 6.

Subgraphs with both intra-layer edges and inter-layer edges add information that leads to
improvements in the clustering results (compare the last three rows of the Table 7.3 with the
first two). The results show that cross-HVG and the contemporaneous quantile graphs (the
inter-layer edges from MHVG and MQG, respectively) capture different properties from MTS
data, that, as we expected, translate into better clustering results. Also note that the results of
ARI and NMI from the set of intra-layer features are good results, because the MDGP under
analysis involves the same statistical process for the two components of time series whose
properties inherent to each process are also captured by the HVG and QG mapping methods.
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(a) MHVG (b) MQG

Figure 7.6: Attribution of the samples corresponding to instances of MTS models to the different
clusters, according to MHVG and MQG feature sets. The different models are represented on
the horizontal axis and by a unique color. The bivariate time series samples are represented
by the colored points according to their model process. The vertical axis represents the cluster
number to which a bivariate time series samples are assigned.

Table 7.3: Clustering evaluation metrics for the different clustering analyses resulting from
different MNet feature vectors of MHVG and MQG. The values reflect the mean of 10 repetitions
of the proposed method for different feature vectors and for the ground truth (k = 6). The
highest values are highlighted.

Feature Set
ARI NMI AS
[−1, 1] [0, 1] [−1, 1]

MHVG MQG MHVG MQG MHVG MQG
Intra-layer 0.52 0.52 0.61 0.65 0.29 0.52
Inter-layer 0.29 0.57 0.42 0.68 0.51 0.83
All-layer 0.67 0.78 0.72 0.86 0.50 0.78
Relational 0.57 0.71 0.65 0.81 0.62 0.55

MNet 0.63 0.96 0.71 0.96 0.45 0.53

MNetF 0.73 0.86 0.49

To finalize our empirical analysis, we apply the MNetF in the context of clustering the MDGP.
We set the number of clusters to k = 6 and we obtain the following conclusion (see last two rows
of the Table 7.3): the topological features from MQGs is more accurate, almost perfect when
we look at the evaluation features ARI and NMI, with mean value of 0.96, and AS with 0.53,
when compared to cross-visibility-based mappings and of MNetF that obtain, respectively, 0.63
and 0.73 to ARI feature, 0.71 and 0.86, to NMI feature, and 0.45 and 0.49 to AS. For the dataset
studied here (MDGP), the MQG is sufficient to group the different MTS model samples. We can
also say that the topological features of MHVG worsen the clustering accuracy when joined
with MQG. However, for other datasets, they may be more valuable, such as multidimensional
data with periodic characteristics that tend to be well captured by visibility concepts (Silva et al.,
2022). We will analyze this in the next section.
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7.3 Clustering Benchmark Data

In this section, we perform a Clustering analysis of real-world and benchmark UTS and MTS
datasets using the proposed approaches: NetF and MNetF, respectively. NetF is tested and
compared in the following univariate datasets: the benchmark empirical UTS datasets from UEA
& UCR Time Series Classification Repository (Bagnall et al.), widely used in classification tasks;
the M3 competition data from package Mcomp (Hyndman, 2018) used for testing the performance
of forecasting algorithms; the set "18Pairs" extracted from package TSclust (Montero and
Vilar, 2014) which represents pairs of time series of different domains; and a new dataset
regarding the production of several crops across Brazil (IBGE). MNetF is tested and compared
in the set of benchmark empirical MTS datasets from UEA & UCR Time Series Classification
Repository (Bagnall et al.).

7.3.1 UTS Clustering using NetF

In this section, we analyze the performance of the proposed approach to extract features from
benchmark UTS datasets via single-layer networks. In the following, we present only some of
these datasets (for the sake of simplicity) which are described in Table 7.4, but in Appendix D a
brief description and clustering results for the remaining datasets are presented in Tables D.2-D.6.
For the benchmark UTS datasets, we assume the labels/classes associated with each dataset to
be the ground truth for the clustering, so the clustering evaluation measures ARI and NMI can
be used. Additionally, we also analyze a set of observations comprising the production over
forty three years of nine agriculture products in 108 meso-regions of Brazil (IBGE). We note that
the size of the ElectricDevices dataset, 16575 time series, is different from the total available
in the repository, as exactly 62 time series return missing values for the entropy feature of the
tsfeatures set and so we decided to exclude these series from our analysis.

First, we investigate the performance of NetF, catch22 and tsfeatures in the automatic
determination of the number of clusters k, using the clustering evaluation metrics, ARI, NMI
and AS. The results (see Table D.1) show overall similar values but we note that NetF seems to
provide a value of k equal to or closer to the ground truth value (when available) more often.
For the Production in Brazil data, for which there is no ground truth, values for k are obtained
by averaging 10 repetitions of the clustering procedure and using the silhouette method. The
results of the 10 repetitions are represented in Figure D.1 and summarized in Table 7.6.

Next, fixing k to the ground truth we perform the clustering procedure. The clustering
evaluation metrics, mean over 10 repetitions, are presented in Table 7.5 3.

3The results for the remaining empirical time series datasets of the UEA & UCR Time Series Classification
Repository are presented in Tables D.2 to D.4.
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Table 7.4: Brief description of the empirical univariate time series datasets.

Dataset
Dataset Time Series Num. of

Source
Size Length Classes

18Pairs 36 1000 18 Montero and Vilar (2014)

M3 data 3003 [20, 144] 6 Hyndman (2018)

CinC_ECG_torso 1420 1639 4 Bagnall et al.

Cricket_X 780 300 12 Bagnall et al.

ECG5000 5000 140 5 Bagnall et al.

ElectricDevices 16575 96 7 Bagnall et al.

FaceAll 2250 131 14 Bagnall et al.

FordA 4921 500 2 Bagnall et al.

InsectWingbeatSound 2200 256 11 Bagnall et al.

UWaveGestureLibraryAll 4478 945 8 Bagnall et al.

Production in Brazil 108 198 9 IBGE

Table 7.5: Clustering evaluation metrics obtained for the three approaches NetF, tsfeatures and
catch22. The values reflect the mean of 10 repetitions of the clustering analysis with number of
classes equal to the ground truth (see Table B.2). The values in bold represent the best results.

ARI NMI AS
Dataset [−1, 1] [0, 1] [−1, 1]

tsf. cat. NetF tsf. cat. NetF tsf. cat. NetF

18Pairs 0.51 0.39 0.49 0.89 0.86 0.89 0.42 0.32 0.34
M3 data 0.14 0.13 0.13 0.21 0.19 0.18 0.36 0.22 0.31
CinC_ECG_tors 0.31 0.32 0.45 0.37 0.35 0.52 0.23 0.19 0.31
Cricket_X 0.15 0.15 0.16 0.32 0.28 0.30 0.20 0.16 0.10
ECG5000 0.29 0.28 0.31 0.32 0.29 0.30 0.24 0.24 0.16
ElectricDevices 0.20 0.21 0.19 0.30 0.29 0.29 0.33 0.25 0.27
FaceAll 0.15 0.21 0.15 0.33 0.36 0.29 0.22 0.15 0.09
FordA 0.19 0.01 0.01 0.27 0.01 0.01 0.53 0.33 0.29
InsectWingbeat 0.07 0.21 0.17 0.18 0.37 0.32 0.19 0.18 0.11
UWaveGesture 0.17 0.2 0.18 0.27 0.28 0.28 0.2 0.19 0.12

Synthetic (UDGP) 0.76 0.40 0.92 0.91 0.66 0.97 0.73 0.39 0.68
Production Brazil 0.09 0.18 0.30 0.40 0.55 0.70 0.46 0.39 0.61
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The results indicate that none of the three approaches performs uniformly better than the
others. Some interesting comments follow. For the synthetic datasets and 18Pairs, tsfeatures
and NetF perform better than catch22 in all evaluation criteria. The clusters for ECG5000,
ElectricDevices, and UWaveGestureLibraryAll datasets produced by the three approaches
fare equally well when assessed by ARI, NM, and AS. The same is true for M3 data and
Cricket_X datasets, with slightly lower results. NetF approach seems to produce better clusters
for CinC_ECG_torso measured according to the three criteria, the tsfeatures seems to produce
better clusters for FordA, and the catch22 for FaceAll and InsectWingbeat measured according to
the ARI and NMI.

Analyzing the overall results, Tables 7.5, D.2-D.6 we can state that tsfeatures and NetF
approaches present the best ARI and NMI evaluation metrics, while tsfeatures achieves by
far the best results in the AS. If we consider the UEA & UCR repository classification of the
datasets, we note the following: the NetF approach presents good results for time series data of
the type Image (BeetleFly, FaceFour, MixedShapesRegularTrain, OSULeaf and Symbols), ECG
(CinC_ECG_tors and TwoLeadECG) and Sensor (Wafer); the tsfeatures performs best for types
Simulated (BME, UMD and TwoPatterns), ECG (NonInvasiveFetalECGTho), Image (ShapesAll)
and Sensor (SonyAIBORobotSurface and Trace); finally the catch22 approach presents best results
for Spectro (Coffee), Device (HouseTwenty) and Simulated (ShapeletSim) types. In summary
NetF and tsfeatures perform better in data with the same characteristics while catch22 seems to be
more appropriate to capture other characteristics.

Regarding the dataset Production in Brazil, Table 7.6 shows more detail on the clustering
results, adding the value k to indicate the number of clusters that was automatically computed.
We note that the 4 clusters obtained with NetF correspond to 4 types of goods: eggs; energy;
gasoline and cattle; hypermarkets, textile, furniture, vehicles and food. Figure 7.7 shows the
clustering results for each of the three approaches used. Note that both tsfeatures and catch22
put eggs and textile production in the same cluster, and tsfeatures cannot distinguish energy.
The NetF approach also resulted in the highest AS value, which means that, on average, the
consistency of the samples within clusters of data formed using NetF is better than that of the
clusters resulting from the tsfeatures and catch22 approaches. To illustrate the relevance of the
results, Figure 7.8 depicts a representative time series for each cluster.

Table 7.6: Clustering evaluation metrics for the different clustering analysis on Production in
Brazil dataset based on Netf, tsfeatures and catch22 approaches. The values reflect the mean of 10
repetitions of the proposed method for different feature vectors and for the number of clusters
detected according to the average silhouette metric.

Approach k
ARI NMI AS
[−1, 1] [0, 1] [−1, 1]

tsfeatures 2 0.09 0.40 0.46
catch22 3 0.18 0.55 0.39
NetF 4 0.30 0.70 0.61
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Figure 7.7: Attribution of the Production in Brazil time series to the different clusters, according
to each of the feature approaches. The different productions are represented on the horizontal
axis and by a unique color. The time series are represented by the colored points according to
its production type. The vertical axis represents the cluster number to which a time series is
assigned.

Figure 7.8: Production in Brazil representative of each cluster (indicated in subtitle) obtained
using the proposed approach, NetF.
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7.3.2 MTS Clustering using MNetF

In this section, we analyze the performance of the proposed approach to extract features from
benchmark MTS via MNets. And we also compare the results with the catch22 feature vector. In
the multivariate setting analyzed in the section, we extract these statistical features, individually,
from the time series components. Note that we do not compare with the statistics feature
set tsfeatures, as it is not computable in most of the datasets, leading to the need for data
preprocessing and selection of computable features which is not the purpose of this work.

The datasets in Table 7.7 are MTS data, belonging to the UEA & UCR Time Series
Classification Repository (Bagnall et al.). We summarize the description of the dataset, the
size of the dataset, its length, the number of classes, and the number of dimensions/components
UTS. For the benchmark MTS datasets, we assume the labels/classes associated with each
dataset to be the ground truth for the clustering, so the clustering evaluation measures ARI and
NMI can be used. The UEA & UCR Time Series Classification Repository has a total of 30 MTS
datasets available. However, in this work we present only a subset of these datasets for the
reasons that we describe below. Some datasets do not have the same length, making it difficult
to compute the catch22 features since, currently, the R software implementations for catch22 and
their respective auxiliary utility packages are not designed to receive datasets with different
lengths as input. Furthermore, the high dimensionality of some datasets made it difficult to
compute the catch22 and MHVG feature vectors, while, as expected, the MQG feature vector was
possible to compute. The high dimensionality also led to some memory-related problems when
computing the PC’s, which were also calculated using R software. For the sake of simplicity and
consistency of comparison between all feature vectors (MHVG, MQG, MNetF and catch22), we
decided not to present the datasets with the mentioned problems, since it does not impair the
purpose of this work.

For all real-world datasets, we investigated the different feature sets proposed in this work
(features from MHVG, MQG, and MNetF). Table 7.8 presents the clustering results (using k as
the ground truth corresponding to each dataset) for the three clustering evaluation features used
in this work. The ARI and NMI measures shows better results of in most cases for the approach
based on MNetF (9 of the 19 datasets), while the AS measure shows better results for the MHVG
feature set (11 of the 19 datasets).

As we expected, some of the datasets are better using the proposed MNetF set than just
using the MQG feature set, one particular example is the ERing dataset (which describes finger
and hand gestures) with only 65 observations on each time series component, which obtains an
ARI value of 0.28 for MQG and 0.51 and 0.65 for MHVG and MNetF, respectively. The results
suggest that the MQG (isolated) are descriptively weaker than the MNetF in a dataset with a
larger dimension. The datasets in which we obtain higher values of ARI and NMI are datasets
of type HAR (Human Activity Recognition). And the datasets with the highest AS value are
ECG (eletrocardiograma) and EEG (electroencephalogram) type datasets.
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Table 7.7: Brief description of the empirical multivariate time series datasets.

Dataset
Dataset TS Num. of Num. of

Source
Size Length Dimen. Classes

Synthetic MDGP (0) 600 10000 2 6 -

PenDigits (1) 10992 8 2 10 Bagnall et al.

LSST (2) 4925 36 6 14 Bagnall et al.

Handwriting (3) 1000 152 3 26 Bagnall et al.

ArticularyWordRecognition (4) 575 144 9 25 Bagnall et al.

SelfRegulationSCP1 (5) 561 896 6 2 Bagnall et al.

EthanolConcentration (6) 524 1751 3 4 Bagnall et al.

FingerMovements (7) 416 50 28 2 Bagnall et al.

SelfRegulationSCP2 (8) 380 1152 7 2 Bagnall et al.

NATOPS (9) 360 51 24 6 Bagnall et al.

Libras (10) 360 45 2 15 Bagnall et al.

RacketSports (11) 303 30 6 4 Bagnall et al.

ERing (12) 300 65 4 6 Bagnall et al.

Epilepsy (13) 275 206 3 4 Bagnall et al.

HandMovementDirection (14) 234 400 10 4 Bagnall et al.

Cricket (15) 180 1197 6 12 Bagnall et al.

BasicMotions (16) 80 100 6 4 Bagnall et al.

AtrialFibrillation (17) 30 640 2 3 Bagnall et al.

StandWalkJump (18) 27 2500 4 3 Bagnall et al.

Then, we perform the clustering procedure for the conventional approach where we use the
vector of features corresponding to catch22 (for each sample of an MTS dataset, we compute
catch22 individually for each of the time series components). We also analyzed the advantage of
using MNetF over this type of time series problem, joining the features vector of MNetF to the
vector of catch22, in order to verify if the topological features add valuable information to the
features already existing in the literature. The results are presented in Table 7.9. The results are
balanced for the ARI and NMI features, while for AS the clusters seem to be more defined for
the catch22 feature set. Some datasets seem to get better clustering results when we combine
both MNetF and catch22 vectors, these results are directed towards small datasets, i.e. with
small time series lengths. This suggests that topological features can be useful for MTS with few
observations, which in fact is one of the major problems in conventional time series analysis.
The statistical models need a good set of observations to better model time series data, which
leads to performance losses on small datasets.
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Table 7.8: Evaluation metrics of the resulting multivariate times series clustering from different
features vectors, namely, features from MHVGs, features from MQGs, and features from MNetF.
The values reflect the mean of 10 repetitions of the clustering analysis with the number of classes
equal to the ground truth (see Table 7.7). The values in bold represent the best results.

ARI NMI AS
Dataset [−1, 1] [0, 1] [−1, 1]

MHVG MQG MNetF MHVG MQG MNetF MHVG MQG MNetF

(0) 0.63 0.96 0.73 0.71 0.96 0.86 0.45 0.53 0.49

(1) 0.21 0.04 0.19 0.35 0.08 0.29 0.23 0.18 0.12
(2) 0.06 0.04 0.06 0.16 0.12 0.17 0.04 0.04 0.03
(3) 0.02 0.02 0.03 0.17 0.18 0.19 0.06 0.08 0.05
(4) 0.60 0.28 0.65 0.79 0.57 0.81 0.09 0.06 0.08
(5) 0.00 0.04 0.03 0.00 0.03 0.02 0.29 0.24 0.15
(6) 0.00 0.00 0.00 0.00 0.01 0.00 0.10 0.08 0.07
(7) 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.09 0.07
(8) 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.24 0.15
(9) 0.29 0.43 0.44 0.42 0.51 0.54 0.04 0.05 0.05
(10) 0.35 0.26 0.42 0.59 0.52 0.65 0.17 0.19 0.17
(11) 0.07 0.08 0.08 0.12 0.14 0.17 0.05 0.04 0.04
(12) 0.51 0.28 0.65 0.62 0.39 0.71 0.14 0.09 0.11
(13) 0.40 0.38 0.42 0.40 0.40 0.43 0.11 0.13 0.10
(14) 0.01 -0.01 0.00 0.03 0.01 0.01 0.03 0.05 0.03
(15) 0.80 0.51 0.72 0.89 0.70 0.85 0.22 0.16 0.21
(16) 0.82 0.79 0.83 0.82 0.79 0.87 0.14 0.09 0.11
(17) -0.04 0.01 -0.03 0.05 0.06 0.05 0.22 0.26 0.18
(18) 0.07 0.03 0.02 0.14 0.14 0.12 0.19 0.16 0.17

Mean 0.23 0.18 0.25 0.31 0.26 0.33 0.14 0.12 0.11
Win 5 4 9 4 5 9 11 10 1

Win (%) 26.32 21.05 47.37 21.05 26.32 47.37 57.89 52.63 5.26
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Table 7.9: Evaluation metrics of the resulting multivariate times series clustering from different
approaches, namely, MNetF (proposed approach) and catch22 (conventional approach). The
values reflect the mean of 10 repetitions of the clustering analysis with the number of classes
equal to the ground truth (see Table 7.7). The values in bold represent the best results.

ARI NMI AS
Dataset [−1, 1] [0, 1] [−1, 1]

MNetF catch MNetF-catch MNetF catch MNetF-catch MNetF catch MNetF-catch

(0) 0.73 0.28 0.67 0.86 0.37 0.77 0.49 0.29 0.29

(1) 0.19 0.31 0.41 0.29 0.44 0.50 0.12 0.16 0.12
(2) 0.06 0.05 0.05 0.17 0.14 0.14 0.03 0.12 0.10
(3) 0.03 0.04 0.06 0.19 0.23 0.26 0.05 0.08 0.05
(4) 0.65 0.88 0.76 0.81 0.94 0.88 0.08 0.12 0.09
(5) 0.03 0.05 0.03 0.02 0.04 0.02 0.15 0.18 0.15
(6) 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.23 0.10
(7) 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.12 0.07
(8) 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.24 0.15
(9) 0.44 0.28 0.44 0.54 0.46 0.54 0.05 0.06 0.05
(10) 0.42 0.44 0.54 0.65 0.67 0.74 0.17 0.18 0.17
(11) 0.08 0.25 0.30 0.17 0.34 0.38 0.04 0.08 0.04
(12) 0.65 0.54 0.92 0.71 0.60 0.92 0.11 0.11 0.12
(13) 0.42 0.33 0.36 0.43 0.39 0.41 0.10 0.14 0.11
(14) 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.05 0.03
(15) 0.72 0.92 0.85 0.85 0.95 0.92 0.21 0.26 0.22
(16) 0.83 0.97 0.82 0.87 0.96 0.83 0.11 0.24 0.15
(17) -0.03 -0.03 -0.03 0.05 0.03 0.04 0.18 0.15 0.16
(18) 0.02 -0.02 -0.05 0.12 0.06 0.03 0.17 0.18 0.11

Mean 0.28 0.30 0.32 0.35 0.35 0.39 0.16 0.16 0.12
Win 5 4 6 6 5 6 2 16 1

Win (%) 26.31 21.05 31.58 31.58 26.31 31.58 10.53 84.21 5.26
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7.4 Conclusions

In this chapter, we presented the results obtained for univariate time series clustering and
multivariate time series clustering using the NetF and MNetF feature vectors, respectively. We
also compared the results with conventional feature vectors from time series analysis.

The results presented in this section show that NetF is capable of capturing information
regarding specific properties of UTS data. And the clustering results show that using the whole
feature set (from WNVG, WHVG, and QG) leads to better performance than any possible
subset. This showcases how the different features complement each other and how they capture
different characteristics of the underlying time series. This is even more evident when we
compare the results with more conventional feature vectors.

To further showcase the applicability of NetF, we use its feature set for clustering both the
previously mentioned synthetic data, as well as a large set of benchmark empirical UTS datasets.
The results for the datasets in which ground truth is available indicate that NetF yields the
highest mean for ARI (0.287) compared to alternative time series features, namely tsfeatures and
catch22, with means of 0.267 and 0.228, respectively. For the NMI metric the results are similar
(0.395, 0.397 and 0.358, respectively) and for AS the highest mean was found for tsfeatures, 0.332
versus approximately 0.3 for the others. However, the higher values for AS4 must be viewed in
light of the low values of ARI and NMI which indicate an imperfect formation of the clusters.
For the production data in Brazil, for which no ground truth is available, NetF produces clusters
that group production series with different characteristics, namely, time series of counts, marked
upward trend, series in the same range of values, and with the seasonal component.

NetF is capable of grouping time series of different domains, such as data from ECGs, images
and sensors, as well as identifying different characteristics of the time series using different
mapping concepts, which stand out in different topological features. The general characteristics
of the data, namely, the size of the dataset, the length of the time series and the number of
clusters, do not seem to be influencing the results obtained.

We verified that not all test cases present the best results for NetF. However, this is not our
purpose. First, NetF does not comprise a complete set of topological features, it represents a
restricted set of possible graph topological features. And second, we want to show that the use
of features from networks can help in time series mining tasks, such as clustering, being an
additional feature vector that can complement those already existing in the literature.

4samples are very similar inside the cluster and show little similarity inter-cluster
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In this chapter, we also conclude that the introduction of inter-layer edges to MTS mapping
methods can capture information that is lost during MTS mappings to multiplex networks or
single-layer networks. Although alone (considering only the inter-layer edges) do not obtain
the best results (for example in MTS clustering tasks), when combined with intra-layer edge
structures, the topological features of networks are enriched. Relational topological features
also seem to have an important impact on the description of multivariate data, capturing
cross-dependencies and similarities between time series components.

Through the results presented, we can conclude that the different sets of features (statistics
and topology) used in this work describe different properties of the MTS data, which
complement each other in certain types of data. The results also show that the proposed
mapping methods can be useful to provide new insights and provide new methodologies for
analyzing multivariate data, mainly in contexts of short datasets. Through the datasets used,
it is perceived that the topological features seem to be good for analyzing data extracted from
human activity recognition methodologies, which are increasingly one of the main sources of
data for analysis in a variety of real-world problems.

Statistical features, which are often based on statistical models and methods designed
for certain parameters, often become impractical. The approach proposed in this work tries
to overcome this limitation, in fact, the topological features of networks used are always
computable for any type of dataset and do not need data preprocessing.

125





Chapter | 8
tsmnet: a Framework for Time Series
and Feature Extraction

In the course of this work, we have been developing a complete framework, which we call
tsmnet, which supports the methodologies and methods proposed in this document. tsmnet is an
object-oriented application framework written entirely in C++ with the main goal of providing
methods for mapping large datasets of univariate and multivariate time series into general
and complex structures of multilayer networks as well as methods for extracting topological
features from these networks. It implements mapping functions based on visibility graphs
and mapping functions of quantile graphs. Both are adapted for univariate and multivariate
temporal data and are adapted to run in parallel when mapping is done for large datasets. It
also implements several topological features of multilayer networks that are adapted to the
substructures of the MNets presented in this work and implements other useful functions.
All functions are fully implemented, but there is also a module that allows integration with
the igraph network library for C, in order to allow the use of other network methods not
implemented in the core of tsmnet. Thus, another goal of tsmnet is to put together useful methods
from other packages/frameworks so as not to limit network methods. The tsmnet allows us to
have complete control of the underlying structures and methods as well as full development
freedom.

As we saw in Section 3.3 there are not many software packages available for mapping time
series to networks, mainly for multilayer networks. In fact, as far as we know, no other package
software is adapted to the more general structure of a MNet. The tsmnet is and embodies
this structure. In this way, tsmnet can be very promising. And although it still only contains
mappings based on visibility graphs and quantile graphs, the objective is to implement other
mapping methods. tsmnet is available at: https://github.com/vanessa-silva/tsmnet.

In this chapter, we present the main functions and methods of tsmnet.
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8.1 tsmnet Definition

In general, tsmnet has inheritance and composition hierarchy, as we can see in Figure 8.1 through
the dependency graph which reflects relationships between the main class modules. tsmnet is
divided into the following modules:

components Data structures for multilayer networks, able to handle general multilayer
networks structures (Kivelä et al., 2014), that allows any inter-layer edges type, multiple
layers, and multiple aspects.

mappings Mapping methods to transform a multivariate time series into multilayer visibility
networks and multilayer quantile networks.

metrics Topological multilayer network features (local and global features), adapted to
incorporate both intra-layer and inter-layer components.

utils Useful functions, such as prints, adjacency matrix structure, and transformation multilayer
network functions.

io Functions to read multivariate time series datasets and functions to write multilayer networks
data.

Figure 8.1: Dependency graph of tsmnet framework.

In order to better understand the workflow for which tsmnet is designed, we present the
respective flowchart in Figure 8.2. tsmnet receives as input one (or several) sets of temporal data
(MTS or UTS), which are read and stored in a data structure. Following is the mapping of the
dataset into multilayer networks, as described in Sections 4.1 and 4.2, the multiplex networks
version can also be selected. The mapping involves two steps, mapping each individual UTS
and mapping the inter-layer edges from pairs of UTS components. After the creation of MNet,
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several functionalities can be implemented. Perform an aggregation approach of MNet into
a single-layer network and then compute topological features from the transformed network.
Compute topological features on the intra and inter-layer MNet structures. These features can
be used to create relational (single-layer) networks, where the nodes represent the layers (UTS
components) of the MNet and the directed edges represent relationships between layers based
on the computed features, next we can compute new features from the created networks. After
computing the topological features, it is possible to extract them to a file to be used in other data
analysis tools. Finally, MNet, its possible transformations, and its substructures can be written
to be a specific format in order to allow the use of external tools, such as tools for network
visualization.

Figure 8.2: Schematic diagram with the possible workflow paths that tsmnet allows.
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8.2 Implementation Aspects

Apart from the necessary set of standard libraries, the tsmnet framework does not depend on
any external framework to work. However, we make use of the igraph library available for
C, as an auxiliary and complementary tool to the framework. The igraph is used to model
networks, it provides many different network analysis tools, which we can be used to extract
information from the MNet and its intra-layer graphs and inter-layer graphs.

The process of mapping methods to transform MTS into MNets normally requires a high
number of computations. For this reason, the slowest and most important feature functions are
implemented in parallel by multithreading support of thread and mutex libraries.

Multilayer Networks Data Structure

The components module is a fundamental module of tsmnet. It incorporates the whole
data structure developed to store the multilayer network information (nodes and edges).
The structure implemented here is defined based on the definitions of Kivelä et al. (2014)
and Dickison et al. (2016), and the corresponding libraries Pymnet (a Python software library
available at http://www.mkivela.com/pymnet/) and multinet (Python and R software
libraries Magnani et al., 2022).

The general MultilayerNetwork data structure follows the general definition of MNets
presented in Section 2.3.2, and depends on the basic structures represented by the following
components classes (see Figure 8.3 for class diagram):

Edge a basic component of MNet that represents an intra or interconnection between two Node
components belonging to the same Layer component or to different Layer components,
respectively. These components are used to represent intra and interconnections within
and between observations (or patterns) of time series components.

Node a basic component of MNet that is represented by an Entity component and belongs
to a Layer component in a MNet. It is used to represent a specific timestamp (or sample
quantile) of an UTS component.

Entity a basic component of MNet that represents a set of Node components in a MNet.
Entity is used to represent the single timestamps or single sample quantiles reference.

Layer a basic component of MNet that represents a set of Node components and can belong to
a Aspect in a MNet. It represents a UTS component.

Aspect a basic component of MNet that represents a set of Layer components in a MNet. It
can be used to represent the dimensions (or the feature) of a multidimensional MTS.
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Figure 8.3: Dependency graph of MultilayerNetwork class.

Time Series Mapping Functions

The functions that define the mappings used to translate MTS into MNets are the core of tsmnet.
These functions are implemented in mappings module where the main class mappingsmanages
the call of specific mapping functions, the available functions are the following:

do_mapping() Function that creates the unique Entity and Layer components and calls
the respective mapping methods to add the intra-layer edges and inter-layer edges.

map_NVG() Maps a UTS component into a (weighted) natural visibility graph. The undirected
and directed versions of NVG are internally incorporated into the MNet structure. The
function follows different implementation strategies depending on the time series length,
in order to be more efficient. Uses the original implementation proposed in (Lacasa et al.,
2008) (see Section 3.1.1.1) and the divide and conquer implementation proposed in (Lan
et al., 2015).

map_HVG() Maps a UTS component into a (weighted) horizontal visibility graph. The
undirected and directed versions are internally incorporated into the MNet structure. The
function follows different implementation strategies depending on the time series length.
Uses the original implementation proposed in (Luque et al., 2009) (see Section 3.1.1.2) and
the linear time implementation proposed in (Zhu et al., 2014b).

map_QG() Maps a UTS component into a layer using the quantile graph method (see
Section 3.1.2.1). The intra-layer edges are directed and weighted, with weight representing
the transition frequency between quantile ranges, or the transition probability, if required
a Markov matrix. The function uses a scheme of linear interpolation of the empirical
distribution function to the quantile computation. If the number of quantiles, η, is not
given by the user, is used the heuristic presented in (Campanharo et al., 2018): η ≈ 2T1/3.
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map_interMNVG() Maps a MTS into a multilayer (weighted) natural visibility graph. The
function adds inter-layer edges, between pairs of layers, based on the cross-natural
visibility method (see Section 4.1). A divide and conquer strategy (based on (Lan et al.,
2015)) and code parallelization is implemented.

map_interMHVG() Maps a MTS into a multilayer (weighted) horizontal visibility graph. The
function adds inter-layer edges, between pairs of layers, based on the cross-horizontal
visibility method (see Section 4.1). A linear strategy and code parallelization is used.

map_interMQG() Maps a MTS into multilayer quantile graph. The function adds inter-layer
edges, between pairs of layers, based on the sequence of contemporary quantiles method
proposed in Section 4.2.

map_multiplex() Create a multiplex network adding inter-layer edges between counterpart
nodes across the layers. It runs in parallel.

All mapping functions are fully implemented in tsment framework. Figure 8.4 presents the
corresponding class dependency diagram.

Figure 8.4: Dependency graph of mappings class.

Topological Features

tsmnet provides a considerable set of topological features of MNets that incorporate the metrics
module. We divide these features into the following categories (see Figure 8.5):

metrics The metric module incorporates a set of auxiliary functions that return sets of local,
global, and relational topological features for the intra-layer, inter-layer, all-layer, and
whole MNet structures. The concept behind these features is presented in Section 6.1. The
auxiliary functions call the respective metric functions depending on the intended feature
concept.

basic Set of functions to compute basic features of the MNet: order, the number of
nodes/entities in a MNet, size, the number of edges, and density, the graph density.
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degree Set of functions to compute the degree centrality measures of the MNet. In this module,
tsmnet has a diverse choice of features related to the degree (number of connections of a
node/entity) in the structure and substructures of MNet. This includes degree vectors,
degree sequences, distributions, means, standard deviations, and maximum and minimum
values. It also includes strength (weighted degree) features and the new proposed features:
average ratio degree (see Section 6.1).

distance Set of functions to compute the topological features related to path lengths in a MNet.
It includes the shortest path length, average path length, diameter, and radius. The
implementations follow the Dijkstra implementation. tsmnet also include the mean jump
length feature proposed in (Campanharo and Ramos, 2016).

centrality Set of centrality features, namely, betweenness centrality, closeness centrality,
harmonic closeness centrality, and eccentricity. The betweenness centrality is only
implemented for the intra-layer graph and the rest of the features use the distance measure
that follows the Dijkstra algorithm.

importance Set of features that provide a description, in terms of neighborhood, of the entities
in the multilayer network. It measures the importance of the components of a MNet in
terms of redundancy and relevance features introduced to multiplex networks (Dickison
et al., 2016).

overlap Feature set that measures the overlap edges in a set of layers of MNet (see (Campanharo
and Ramos, 2016) for more details).

entropy Designed to compute the entropy of the MNet according to the Von Neumann entropy.
However, it is not yet implemented.

similarity Set of features to measure similarities between pairs of layers in an MNet. It includes
local similarity, connection similarity, inter-layer mutual information, Kullback–Leibler,
and Jensen–Shannon divergences.

Figure 8.5: Dependency graph of metrics module.
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Useful Functions

The utils module serves various additional functionalities which support the remaining tsmnet
modules. It includes:

math Auxiliary basic mathematical and statistical functions. Among others, it includes
auxiliary functions for matrix calculation (markov_matrix, trace_matrix,
multiplication_matrix, transpose_matrix), data normalization
(normalize_Min_Max), and quantile calculation (Quantiles).

dtw Method to calculate the cost matrix of dynamic time warping between two time series
components (euclideanDistance, costMatrixDTW).

graphMatrix Data structure implementation of a graph (defined as an abstract class) using both
adjacency matrix and list.

transform Set of functions that take a MNet and return transformed versions of them.
aggregate consists of aggregation methods, which merge all nodes corresponding to
the same entity into a single node in a new single-layer network (or a new 1-aspect
multilayer network, if the initial network has more than 1 aspect), and aggregates the
edges between pairs of nodes that belong to all layers of the network or to preselected
layers. The aggregation can result in two types of edge weights: the edge weight indicates
the sum of weights of aggregated edges, or the edge weight indicates the number of layers
where the edge is present. relational_net create a new single-layer network with
nodes corresponding to each layer of a MNet and weighted directed edges represent a
relationship between pairs of layers that are determined by a given topological feature.
supra_adjacency_matrix consists of a flattening approach to the transformation of a
MNet structure into the corresponding supra-adjacency matrix.

igraphFormat Utility functions to convert multilayer network components in to igraph

structures (create_igraph).

igraphMeasures Utility functions that call a set of igraph functions that compute
(local and global) topological features (igraph_global_measures and
igraph_local_measures).

In Figure 8.6 we display the class dependency diagram.
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Figure 8.6: Dependency graph of utils module.

Input/Output Functions

The tsmnet has two functions to read and store multivariate time series data (readMTS).

read_mts_csv() read multivariate time series data from comma-separated values files
(.csv),

read_mts_ts() read multivariate time series data from a bespoke time series storage format 1

files (.ts),

these functions store the MTS data in appropriate data structures. In particular, the last function
is useful to read datasets from The UEA & UCR Time Series Classification Repository (Bagnall et al.).

The writeMNet include utility functions to write a multilayer network in various types of
appropriated files. It includes the following functions:

• write_gephi_format: generates node lists and edge lists, designed to be used in Gephi
software 2.

• write_multinet_format: generate the appropriate file based on the R software
package multinet terms 3.

• write_pymnet_format: generate the appropriate file based on the Python software
library pymnet terms 4.

• write_muxviz_format: generate the appropriate file based on the R software package
muxViz terms 5.

1https://github.com/alan-turing-institute/sktime/blob/main/examples/loading_data.ipynb
2https://gephi.org/
3https://www.rdocumentation.org/packages/multinet/versions/3.2/topics/multinet.IO
4http://www.mkivela.com/pymnet/
5https://github.com/manlius/muxViz
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8.3 Final Remarks

In this chapter, we present the framework that we have developed throughout this research
work. tsmnet is a C++ framework aimed at transforming multivariate time series into multilayer
network structures, as well as extracting topological features for time series analysis. A constant
concern about mapping methods is the run-time for transforming large sets of multivariate
series. To minimize this problem, tsmnet was designed to use mapping functions with the best
time complexity as well as to execute mapping functions in parallel, using multithreading. Our
goal with tsmnet is to design it so that it is easy to access and use. At this moment, tsmnet
receives a series of commands as arguments and automatically processes these commands in
order to generate an output that can be: multilayer network files, files with topological features
for an MTS dataset, or several files of topological features for MTS datasets that are used for
feature-based mining tasks, such as clustering and classification. Some of tsmnet’s functionality
is not completely finalized and some methods can still be improved and optimized. The aim is
to improve it over time and extend it as new methods emerge.
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Chapter | 9
Conclusions and Future Work

Complex networks are universal models capable of describing the most diverse artificial and
natural systems. The representation of (univariate and multivariate) time series data via
networks provides a new tool for extracting information from these high-dimension datasets.
Network methodologies have already been applied to time series analysis in many fields, such as
finance, medicine, climate science, and engineering, and to respond to tasks such as forecasting,
classification, clustering, and outliers detection. However, this is still a recent area, despite
nearly two decades of research work. Time series data present characteristic properties related
to temporal dependence, which can be serial and crossed, and which leads to difficulty in
understanding and properly analyzing this dataset. Extraction of descriptive features from
such data represents a difficult problem from a mathematical, selection, and also computational
point of view when we are dealing with large datasets. The objective of this thesis is precisely
to provide alternative and innovative methods that can help to solve these problems and to
leverage the currently existing methods.

This chapter summarizes the main results obtained, present the main contributions, and
discusses limitations and directions for future research.

9.1 Summary

This work overviews the state-of-the-art on time series analysis via network science, describing
all main mappings methods with an emphasis on their concepts and algorithmic aspects. With
nearly two decades of related research work, there is substantial related published literature.

137



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

The core of the work resides in extending the existing methodology to the context of
multivariate time series data. From a conceptual point of view, current methods follow two
distinct approaches based on the structures of the resulting networks: single-layer networks
where each series (or patterns based on observations from multivariate series) is represented by
a node in the network and the connections are established based on relationships between the
series (or patterns); and multiple layers where each layer represents a time series and each layer
can be mapped based on one of the univariate time series mapping methods, separately.

Most existing works focus on the first mapping approach, and the second approach is very
recent and focuses only on a specific set of multilayer networks, i.e. the multiplex networks.
However, we are interested in the more complete structures of multilayer networks. Such
structures allow us to add more information to the data to be mapped, avoiding losses inherent
to the mapping. This implies that it is possible to add external connections between the mapped
structures (timestamps or patterns/symbols), leaving the criteria with which they are established
dependent on the mapping concept used.

One of the main innovations introduced in this work is the creation of two new methods
for mapping multivariate time series in multilayer networks based on two new concepts: cross
visibility and transition of contemporary symbols. The addition of inter-layer edges based on
these concepts allows us to add information from cross-time series data.

The first question is how to perform these mappings? tsmnet is a C++ framework that
was created with that purpose in mind. It represents a general data structure for multilayer
networks capable of storing the set of components that constitute a multilayer network: aspects,
layers, entities, nodes, and edges (intra and inter-layers). And it represents an appropriate
data structure to map (univariate and multivariate) time series data in multilayer networks.
Its main function is to read a set of multivariate time series data and apply the previously
provided mapping methods, storing the resulting information in the multilayer data structure
in an appropriate way.

The mapping methods developed in this work, as well as the underlying methods
(corresponding methods in the univariate context), are implemented in the data structure
that generates the mapping methods. Multilayer quantile graphs have no limitations and are
easy to implement, requiring only one parameter that dictates the number of quantiles used
for the mapping. Cross-visibility graphs, on the other hand, are much more complex at the
computational level for very large datasets, since they depend on the length of the time series
and the number of components. As this last method is pairwise (the condition of visibility is
made between all pairs of layers and it is directional) we parallelize the code in order to execute
this mapping faster for a large dataset. In this work, we focus on single-aspect multilayer
networks. However, the proposed methods can be extended, naturally, to multiple-aspects. In
particular, tsmnet already allows this extension so the data structure of multilayer networks was
designed according to the more general definition which includes multiple aspects.
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The second question is how can I extract (multivariate) time series information through
the resulting (multilayer) network structures? We propose a set of topological features to
answer this question. We propose NetF, a set of topological features of univariate time series
networks extracted from three types of univariate mapping methods: (natural and horizontal)
visibility graphs and quantile graphs. And we propose a set of topological features of multilayer
networks that give rise to the MNetF which constitutes a set of topological features of multilayer
networks of multivariate time series extracted from two types of multivariate mapping methods:
multilayer horizontal visibility graphs and multilayer quantile graphs.

The third question is are topological features appropriate for analyzing properties of temporal
data? In order to answer this question, we propose an approach based on topological features
that aim at the exploratory analysis of the space of (multilayer) topological features resulting
from (multivariate) time series mappings and aims to apply the resulting topological feature
vectors to time series mining tasks, which in this work was the clustering analysis.

With all methods, algorithms, and data structures developed, we obtained a methodological
framework for the analysis of multivariate and univariate time series datasets.

9.2 Main Contributions

This work makes the following major contributions:

• Survey and comparison of time series mappings algorithms: we present a complete
literature survey of mapping algorithms (in univariate and multivariate settings), creating
a high-level conceptual division and an associated taxonomy and illustrative figure able to
distinguish methods, and we present the main experimental results and comparison.

• A set of network-based univariate time series features: we introduce NetF as an
alternative set of features, incorporating several representative topological features of
different complex network mappings of the univariate time series. We can connect mapped
network features to properties inherent in diversified time series models, showing that
NetF can be useful to characterize time data. We also show that NetF is appropriate to time
series mining tasks.

• New multivariate time series mappings methods: we propose two novel methods for
mapping multivariate time series into complete multilayer network structures. The first
is based on a new concept of cross-visibility between pairs of time series components. It
is designed to keep the temporal lagged dependencies between timestamps of different
variables in the network structure. And the second is based on contemporaneous transition
quantiles. It is designed to analyze the contemporaneous variations between the pairs of
time series components. We show that the incorporation of inter-layer edges based on
these mapping concepts can add additional information to the network structure when
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the multiplex structures do not allow connection between timestamps or different symbols
from different time series.

• A set of network-based multivariate time series features: we propose a set of global
topological multilayer network features as a novel set of features for multivariate time
series data that comprise intra-layer topological features, inter-layer topological features,
all-layer topological features, and relational features. We propose new topological features
aimed at relating intra and inter-layer connections between time series components. The
features set allows us to analyze and compare the underlying properties of intra-layer
and inter-layer edges, and to assess the contribution of the proposed mapping method
concerning the multiplex methods in the literature.

• tsmnet framework and its associated algorithms: we implement a general framework for
mapping multivariate time series data into multilayer networks, extracting topological
features from these networks (and from their substructures), and able to extract (by writing)
the multilayer network generated to external analysis.

9.3 Future Work

Time series analysis via network science approaches can be leveraged to address existing
fundamental open issues. Among them, we highlight the following: missing values, unequally
spaced data, visualization of high-dimensional data, time series classification, and clustering.
Data recorded using electronic devices such as sensors are prone to missing values and
conventional imputation methods may cause bias in the data. The work of Donner and Donges
(2012) addresses this problem of missing values via a network perspective and, although the
results are preliminary, they highlight a path to the solution of this issue. Unequally spaced data
collected over time occurs frequently for several reasons, hindering the application of time series
analysis methodology. The most common approach to this issue is data aggregation which leads
to the loss of information. As far as we know, this problem has not yet been addressed from the
point of view of networks. Visualization of high dimensional temporal data is a practical issue
to whose solution may contribute strategies to reduce the dimensionality of the data by using
suitable mapping methods (for example, the multilayer quantile graphs that we introduce in this
work). Mining time large collections of time series data is increasingly accomplished via time
series features, e.g. trend, length of time series, the strength of the trend, autocorrelations (Kang
et al., 2017). The features extracted from the time series networks may be added to the classical
set of time series features to enhance the data characterization. In this work, we show that
(single-layer and multilayer) network features can be used to accurately cluster (univariate and
multivariate) time series from different models, a relevant and important contribution to time
series mining.
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We hope that the work presented in this thesis can lead to further research in this captivating
area of data science. We present general methods for also general tasks of time series mining.
That is, we present a methodological work that can serve as a basis for several branches of
research on temporal data. Most of the work presented in this thesis was based on two basic
concepts of mapping methods existing in the literature, within a wide list of possibilities, based
on global topological features of graphs and commonly used in the area, also within a wide
range available, and based on high-level network structures where several approaches can be
followed for their analysis. We provide some indications for future work below.

• Improve mapping methods available in tsmnet. The proposed multilayer visibility
methods can be computationally heavy for datasets with many time series components
since the methods perform visibility between components in a pair-wise way.

• Explore other topological features. In our work, we extended the one of most common
topological features of networks to a multilayer setting. However, there is a vast other set
of topological features that can be explored and that can even get better discriminatory
results from time series analysis.

• Time series classification problems. In this work, we focus on time series clustering tasks
to analyze our approaches because clustering is an unsupervised learning method, so it
was more advantageous for our analysis. However, time series classification problems are
in recent years one of the main focuses of time series data mining research, and therefore
using topological features in classification models can lead to interesting results.

• Spatio-temporal datasets. Data indexed in time and indexed in space is a type of data
that has attracted the attention of researchers in recent times. The flexible structure of
multilayer networks can enhance the creation of interesting space-time models.

9.4 Final Remarks

More than four years ago, when work on this thesis began, the theme "Time Series Analysis
via Network Science" was still very much focused on time series analysis for univariate
settings. Over the years, developments around this area have grown a lot and lifted the veil
for multidimensional network structures. We tried to be as general as possible, to include as
many time series data problems as possible, focusing on the general structures of multilayer
networks, which in itself is almost as broad as the main topic addressed here. The concept of
multidimensionality ends up uniting both multivariate temporal data and multilayer network
structures and, in the end, we feel that everything seems to be directed toward the future of new
lines of research in data science.
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Researching these tasks was both a difficult and very interesting process, where we studied
diversified concepts from major core areas (time series analysis, network science, and data
mining), as well as algorithmic aspects, and applied our methods to exploring synthetic and real
datasets. We hope that our tools will be useful for the scientific community and practitioners.
One of the most rewarding aspects of this process was receiving positive feedback on the work
that was published and made available.

Finally, we hope that our work will lead to new research.
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Appendix | A
Mapping Algorithms

In this Appendix we present the implementation algorithms that support the mapping methods
proposed in this thesis.

We present the implementation algorithms that support the MHVG method. The Algorithm 5
describes our implementation of the HVGs to a given input univariate time series component.
And the Algorithm 6 describes our implementation of the Cross-HVG method to map two given
input time series components into a Cross-HVG. Note that the time complexity of the algorithm
can be improved by computing the two "for" loops in parallel.

We also present the implementation Algorithm 7 that describes our implementation of the
QGs to a given input univariate time series component.
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Algorithm 5: Horizontal Visibility Graph
Input: A time series, Y a, (ts), and a layer, La, (layer)
Procedure HVG(ts, layer)

1 T ← ts.size() ▷ The time series length

for i← 1 to T do
2 mnet.add_Node(i, layer) ▷ Add node-layer va

i corresponding

to timestamp ti

end
for i← 1 to T − 1 do

3 mnet.add_Edge(i, i+1, layer) ▷ Add intra-layer edge (va
i , va

i+1)

4 k← 1
for j← 2 to T − i do

5 condition← ts[i + k]
6 p← ts[i + j]

/* Test HVG condition: Eq. 3.2 */

if condition ≥ ts[i] then
7 break

else if condition < p then
8 mnet.add_Edge(i, i+j, layer) ▷ Add intra-layer edge (va

i , va
i+j)

9 k← j

end

end
10 return
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Algorithm 6: Cross-Horizontal Visibility Graph
Input: Two rescaled time series, Za and Zb, (tsA, tsB), the corresponding layers, La and Lb, (layerA,

layerB), and the maximum time series, max
(

Za, Zb
)

,(tsMax)

Procedure CHVG(tsA, tsB, tsMax, layerA, layerB)
1 T ← tsMax.size() ▷ The time series lengths

/* Test cross-horizontal visibility to the right of Ya,i */

for i← 1 to T − 1 do
2 k← i + 1

for j← i + 1 to T do
if j = i + 1 then

3 mnet.add_Edge(i, i+1, layerA, layerB) ▷ Add inter-layer edge (va
i , vb

i+1)

else
4 condition← tsMax[k]
5 p← tsB[j]

/* Test Cross-HVG condition: Eq. 4.1 */

if condition ≥ tsA[i] then
6 break

end
if condition < p then

7 mnet.add_Edge(i, j, layerA, layerB) ▷ Add inter-layer edge (va
i , vb

j )

8 k← j

else if condition < tsMax[j] then
9 k← j ▷ Update index k when tsMax[j] > tsMax[k]

end

end

end

end
/* Test cross-horizontal visibility to the left of Ya,i */

for i← 2 to T do
10 k← i− 1

for j← i− 1 to 1 do
if j = i− 1 then

11 mnet.add_Edge(i, i-1, layerA, layerB) ▷ Add inter-layer edge (va
i , vb

i−1)

else
12 condition← tsMax[k]
13 p← tsB[j]

/* Test Cross-HVG condition: Eq. 4.1 */

if condition ≥ tsA[i] then
14 break

end
if condition < p then

15 mnet.add_Edge(i, j, layerA, layerB) ▷ Add inter-layer edge (va
i , vb

j )

16 k← j

else if condition < tsMax[j] then
17 k← j ▷ Update index k when tsMax[j] > tsMax[k]

end

end

end

end
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Algorithm 7: Quantile graph
Input: A time series, Ya,t, (ts), a layer, La, (layer), and a value with the number of quantiles, (numQ)
Procedure QG(ts, layer, numQ)

1 T ← ts.size() ▷ The time series length

2 probs← {} ▷ List to store the probabilities

3 quantiles← {} ▷ List to store the sample quantiles

for i← 1 to numQ do
4 probs[a]← i/numQ

end
5 quantiles← Quantile(ts, probs) ▷ Produces sample quantiles using linear

interpolation of the empirical cdf

for i← 1 to numQ do
6 mnet.add_Node(i, layer) ▷ Add node-layer va

i corresponding to the

i-th quantile

end
for i← 1 to numQ− 1 do

7 f rom_node← which_geq(quantiles, ts[i]) ▷ Find corresponding quantile of Ya,i

8 to_node← which_geq(quantiles, ts[i+1]) ▷ Find corresponding quantile of Ya,i+1

9 edge← mnet.get_Edge(from_node, to_node, layer) ▷ Get the intra-layer edge

between consecutive time

quantiles if it already exists

/* If the intra-layer edge does not exist yet */

if !edge then
10 mnet.add_Edge(from_node, to_node, layer, 1) ▷ Add intra-layer edge with

weight 1

end
/* If the intra-layer edge exists */

else
11 w← mnet.get_weight(edge) ▷ Get the weight of the edge

12 mnet.set_weight(edge, w+1) ▷ Increase the weight of the edge

end
/* Store the current quantile(s) in the quantiles sequence */

13 layer.q_seq[i]← f rom_node
if i == T − 1 then

14 layer.q_seq[T]← to_node

end

end
15 return
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Appendix | B
NetF: Evaluation on Univariate
Time Series Models

B.1 Univariate Time Series Models

Main reference (Shumway and Stoffer, 2017)

Linear Models

WN The white noise process, ϵt, is a sequence of i.i.d. random variables with mean 0 and constant
variance σ2

ϵ . It is the simplest time series process that reflects information that is neither
directly observable nor predictable. We generated ϵt ∼ N(0, 1) white noise processes and
refer to them as WN.

AR(p) We defined a process as an AR process of order p if it satisfies the following equation:

Yt =
p

∑
i=1

ϕiYt−i + ϵt, (B.1)

where ϵt is the white noise and ϕi is the autoregressive constant. We used p ∈ {1, 2}, and
parameters ϕ1 ∈ {−0.5, 0.5} to generate AR(1) processes and ϕ1 = 1.5 and ϕ2 = −0.75
for AR(2) processes. These parameters ensure that the time series present the following
characteristics: ϕ1 = 0.5 leads to smoother time series than ϕ1 = −0.5; and ϕ1 = 1.5 and
ϕ2 = −0.75 generates pseudo-periodic time series. We refer to the three models generated
as AR(1)-0.5, AR(1)0.5 and AR(2), respectively.
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ARIMA(p, d, q) The autoregressive integrated moving average model is a generalization of
the ARMA model suitable for modeling non-stationary time series. A process is an
ARMA(p, q) process if it satisfies the equation:

Yt =
p

∑
i=1

ϕiYt−i +
q

∑
i=1

θiϵt−i + ϵt, (B.2)

where θi is the moving average constant. If a process is a non-stationary time series it can
be written as an ARIMA(p, d, q) process if its dth-differences ∇dYt = (1− B)dYt, d ∈N, is
a stationary ARMA(p, q) process. So Yt satisfies the following equation,(

1−
p

∑
i=1

ϕiBi

)
(1− B)dYt =

(
1 +

q

∑
i=1

θiBi

)
ϵt, (B.3)

where B represents the backshift operator, BYt = Yt−1. We use p = 1, d = 1, q = 0, and
ϕ1 = 0.7 to generate ARIMA(1, 1, 0) processes with stochastic trend. We refer to these
processes as ARIMA.

ARFIMA(p, d, q) Autoregressive fractionally integrated moving average model is a generalization of
the ARIMA model useful for modeling time series with long range dependence. A process
is an ARFIMA(p, d, q) if it satisfies the (Eq B.3) and the difference parameter, d, can take
real values. We generate the ARFIMA(1, 0.4, 0) processes that exhibit long memory and
refer to them as ARFIMA.

Univariate time series are generated from the above UDGP using the following R packages:
timeSeries (Wuertz et al., 2017a) and fracdiff (Maechler et al., 2020).

Nonlinear Models

SETAR(1) The self-exciting threshold autoregressive model of order 1 specify the nonlinearity in
the conditional mean. It is useful for processes with regime changes that approximate a
nonlinear function by piece wise linear functions dependent on the regime (Tong, 2011).
This model can be presented by the following equation system,

Yt =

{
αYt−1 + ϵt , if Yt−1 ≤ r
βYt−1 + γϵt, if Yt−1 > r

, (B.4)

where r represents a real threshold. We used α = 0.5, β = −1.8, γ = 2, and r = −1,
generating time series with regimes presenting different autocorrelation properties: in the
first, the correlation is positive, while in the second, it alternates between positive and
negative values. We refer to this model as SETAR.
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HMM Hidden Markov models are probabilistic models for the joint probability the random
variables (Y1, . . . , YT, X1, . . . , XT) where Yt is a discrete (or continuous) variable and Xt is a
hidden Markov chain with a finite number of states. The following conditional independence
assumptions hold (Zucchini et al., 2016):

1. P(Xt | Xt−1, Yt−1, . . . , X1, Y1) = P(Xt | Xt−1),

2. P(Yt | XT, YT, . . . , X1, Y1) = P(Yt | Xt).

We used 2 states and the transition matrix
[

0.9 0.1
0.1 0.9

]
. The data are generated from a Poisson

distribution with λ = 10 for the first regime and λ = 15 for the second. We refer to this
model as HMM.

The following nonlinear models are based on ARCH models where the mean-corrected
asset return is serially uncorrelated but dependent and the dependency can be described by
a simple quadratic function of its lagged values (Tsay, 2005). Hereafter, ϵt are uncorrelated
random variables, zt represents a white noise with variance 1 and σt the standard deviation of
ϵt, that is ϵt = σtzt.

GARCH(p, q) The GARCH model is a generalization of the ARCH model in which the
conditional volatility is a function not only of the squares of past innovations, but also
of their own past values (Cryer and Chan, 2008). Thus, ϵt is a GARCH(p, q) process if it
satisfies the following equation,

σ2
t = ω +

p

∑
i=1

βiσ
2
t−i +

q

∑
i=1

αiϵ
2
t−i, (B.5)

where ω > 0, αi, βi ≥ 0, ∑
p
i=1 βi + ∑

q
i=1 αi < 1. The conditional standard deviation can

exhibit persistent periods of high or low volatility because past values of the process are
fed back into the present value. We used p = 1, q = 1, ω = 10−6, α1 = 0.1 and β1 = 0.8 to
generate the GARCH(1, 1) processes and we refer to them as GARCH.

EGARCH(p, q) The exponential GARCH allows asymmetric effects of positive and negative
shocks on volatility (Tsay, 2005). The EGARCH(p, q) model is given by the equation,

log(σ2
t ) = ω +

q

∑
i=1

αi

∣∣∣∣ ϵt−i

σt−i

∣∣∣∣+ p

∑
i=1

βilog(σ2
t−i) +

q

∑
i=1

γi
ϵt−i

σt−i
, (B.6)

where ω = α0 − α1

√
2
π , αi characterize the volatility clustering phenomena, βi is the

persistence parameter, and γi describes the leverage effect. The logged conditional variance
allows to relax the positivity constraint of the model coefficients. To this model we choose

p = 1, q = 1, ω =

(
10−6 − 0.1

√
2
π

)
, α1 = 0.1, β1 = 0.01 and γ1 = 0.3, and we refer to it

as EGARCH.
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INAR(1) The integer-valued autoregressive models have been proposed to model integer-valued
time series, in particular, correlated counts (Silva and Oliveira, 2004). These models are
based on thinning (random) operations defined on the integers, where the following
binomial thinning is the most common: let X be a non-negative integer valued random
variable and 0 < α < 1, then α ∗ X = ∑X

i=1 Yi where {Yi} is a sequence of i.i.d. Bernoulli
random variables, independent of X. A process is said to be an INAR(1) if it satisfies the
equation,

Yt = α ∗Yt−1 + ϵt. (B.7)

If the innovation sequence ϵt and the initial distribution are Poisson, Yt is said to be a
Poisson INAR(1) process. We used α = 0.5 and Poisson arrivals with ϵt ∼ Po(1) to
generate integer-valued data with autocorrelation decaying at a rate of 0.5. We refer to this
model as INAR.

Univariate time series from the HMM and GARCH are simulated using the following R packages:
HMMpa (Witowski and Foraita, 2014) and fGarch (Wuertz et al., 2017b), respectively. The
time series generated from the remaining UDGPs are from our own implementation. For
reproducibility purposes, the source code and the datasets are made available in https://github.
com/vanessa-silva/NetF.
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B.2. FEATURE EVALUATION IN SYNTHETIC UNIVARIATE TIME SERIES

B.2 Feature Evaluation in Synthetic Univariate Time Series

The topological features of WNVGs, WHVGs, and QGs obtained from the 1100 time series
models are, respectively, summarized in tables B.1, B.2 and B.3. The table reports the mean and
standard deviation (in brackets) of the Min-Max normalized features. The columns of the tables
are colored with a gradient based on the mean values: cells with the highest value are coloured
red, cells with the lowest value are coloured white, and the remainder with a hue of red colour
proportional to its value in the respective column.

Weighted Natural Visibility Graphs

Table B.1: Table of mean values of the 100 instances of each UDGP for each topological feature,
resulting from WNVGs. The standard deviations are presented in parentheses.

Models
Average Average Number of Clustering

Modularity
Degree Path Length Communities Coefficient

(k̄) (d̄) (S) (C) (Q)

AR(1)-0.5
0.430 0.457 0.225 0.615 0.900
(0.006) (0.032) (0.063) (0.007) (0.022)

AR(1)0.5
0.698 0.443 0.116 0.751 0.963
(0.005) (0.037) (0.037) (0.009) (0.010)

AR(2)
0.719 0.408 0.472 0.968 0.792
(0.008) (0.035) (0.132) (0.012) (0.082)

ARIMA
0.919 0.211 0.257 0.188 0.367
(0.006) (0.095) (0.115) (0.079) (0.140)

ARFIMA
0.790 0.412 0.099 0.766 0.973
(0.005) (0.036) (0.035) (0.012) (0.009)

SETAR
0.273 0.438 0.491 0.631 0.772
(0.006) (0.041) (0.145) (0.007) (0.070)

HMM
0.012 0.446 0.570 0.667 0.654
(0.005) (0.039) (0.150) (0.008) (0.093)

INAR
0.570 0.452 0.131 0.631 0.956
(0.004) (0.118) (0.052) (0.011) (0.024)

GARCH
0.994 0.433 0.070 0.652 0.991
(0.003) (0.036) (0.022) (0.010) (0.005)

EGARCH
0.940 0.425 0.066 0.677 0.980
(0.004) (0.032) (0.027) (0.007) (0.004)

WN
0.581 0.450 0.128 0.667 0.942
(0.005) (0.034) (0.044) (0.007) (0.009)
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Weighted Horizontal Visibility Graphs

Table B.2: Table of mean values of the 100 instances of each UDGP for each topological feature,
resulting from WHVGs. The standard deviations are presented in parentheses.

Models
Average Average Number of Clustering

Modularity
Degree Path Length Communities Coefficient

(k̄) (d̄) (S) (C) (Q)

AR(1)-0.5
0.473 0.004 0.230 0.557 0.319
(0.005) (0.001) (0.057) (0.004) (0.056)

AR(1)0.5
0.628 0.009 0.174 0.697 0.793
(0.003) (0.001) (0.046) (0.004) (0.031)

AR(2)
0.438 0.022 0.600 0.953 0.397
(0.006) (0.002) (0.092) (0.004) (0.074)

ARIMA
0.414 0.588 0.794 0.988 0.236
(0.007) (0.161) (0.106) (0.005) (0.074)

ARFIMA
0.633 0.030 0.204 0.785 0.878
(0.003) (0.004) (0.047) (0.004) (0.028)

SETAR
0.284 0.003 0.508 0.504 0.354
(0.005) (0.001) (0.086) (0.004) (0.092)

HMM
0.009 0.013 0.640 0.467 0.385
(0.003) (0.002) (0.116) (0.006) (0.105)

INAR
0.403 0.034 0.292 0.034 0.927
(0.002) (0.005) (0.056) (0.010) (0.033)

GARCH
0.998 0.007 0.064 0.611 0.777
(0.001) (0.002) (0.022) (0.004) (0.015)

EGARCH
0.900 0.004 0.059 0.591 0.747
(0.001) (0.001) (0.026) (0.005) (0.017)

WN
0.584 0.004 0.170 0.605 0.624
(0.004) (0.001) (0.045) (0.004) (0.033)
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Quantile Graphs

Table B.3: Table of mean values of the 100 instances of each UDGP for each topological feature,
resulting from QGs. The standard deviations are presented in parentheses.

Models
Average Average Number of Clustering

Modularity
Degree Path Length Communities Coefficient

(k̄) (d̄) (S) (C) (Q)

AR(1)-0.5
1.000 0.005 0.000 0.972 0.008
(0.000) (0.000) (0.000) (0.003) (0.003)

AR(1)0.5
1.000 0.005 0.027 0.971 0.374
(0.000) (0.000) (0.010) (0.003) (0.044)

AR(2)
1.000 0.024 0.044 0.829 0.816
(0.000) (0.000) (0.015) (0.003) (0.028)

ARIMA
1.000 0.943 0.062 0.144 0.398
(0.000) (0.068) (0.022) (0.132) (0.099)

ARFIMA
1.000 0.029 0.047 0.808 0.890
(0.000) (0.003) (0.017) (0.009) (0.039)

SETAR
1.000 0.016 0.027 0.946 0.245
(0.000) (0.000) (0.009) (0.003) (0.039)

HMM
0.276 0.001 0.730 0.998 0.289
(0.008) (0.000) (0.008) (0.003) (0.027)

INAR
0.000 0.002 0.981 0.984 0.493
(0.002) (0.001) (0.009) (0.024) (0.010)

GARCH
1.000 0.001 0.031 1.000 0.055
(0.000) (0.000) (0.012) (0.001) (0.016)

EGARCH
1.000 0.002 0.019 0.999 0.041
(0.000) (0.000) (0.010) (0.001) (0.016)

WN
1.000 0.001 0.029 1.000 0.047
(0.000) (0.000) (0.011) (0.000) (0.011)
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Appendix | C
MNetF: Evaluation on Multivariate
Time Series Models

C.1 Multivariate Time Series Models

Main references (Cipra, 2020; Shumway and Stoffer, 2017; Tsay, 2013; Wei, 2019).

Linear Models

BWN The vector white noise process, ϵt, is a vector of sequences of i.i.d. random variables
with mean vector 0 and and covariance matrix function Σ, where Σ is an m × m
symmetric positive definite matrix. The components of the white noise process are serially
uncorrelated, corr(ϵi,t, ϵi,s) = 0 for t ̸= s, but may be contemporaneously correlated,
corr(ϵi,t, ϵj,t) ̸= 0. It is the simplest multivariate time series process that reflects information
that is neither directly observable nor predictable. We generate two sets of vector white
noise processes, one not correlated, that is, are independent, ϵt ∼ N(0, 1), and we refer

to this as iBWN, and the other contemporaneously correlated,
[

ϵ1,t
ϵ2,t

]
∼ N

(
0,
[

1.00 0.86
0.86 1.50

])
,

and we refer to this model as cBWN.
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VAR(1) The vector autoregression process is a natural extension of the univariate AR process in
which variable values depend linearly on its own previous values and on a stochastic term.
We defined a VAR(1) process as a vector AR process of order 1 if it satisfies the following
equation:

Y t = φ+ ϕY t−1 + ϵt, (C.1)

where ϵt is the vector white noise, ϕ is the vector of autoregressive constants and φ is the
vector of intercepts. We generate a VAR(1) of 2 components with the following vector of
parameters: [

Y1,t
Y2,t

]
=
[

φ1,1
φ2,1

]
+
[

ϕ1,1 ϕ1,2
ϕ2,1 ϕ2,2

][
Y1,t−1
Y2,t−1

]
+
[

ϵ1,t
ϵ2,t

]
, (C.2)

where φ =
[

2.50
0.50

]
, ϕ =

[
0.20 0.10
0.02 0.10

]
and ϵt ∼

[
1.00 0.10
0.10 1.50

]
to generate weakly correlated VAR(1)

processes, and φ =
[

0
0

]
, ϕ =

[
0.70 0.02
0.30 0.80

]
and ϵt ∼

[
1.00 0.86
0.86 1.50

]
to generate strongly correlated

VAR(1) processes. We refer to the two models generated as wVAR and sVAR, respectively.

Nonlinear Models

VGARCH(1, 1) Also generalized autoregressive conditional heteroskedasticity (GARCH) models
can be generalized to multidimensional settings, extending the principle of univariate
conditional heteroscedasticity to mutual volatility. We generate a bivariate GARCH(1, 1)
model according to the following volatility equation:

σt = ω + αϵ2
t−1 + βσt−1, (C.3)

where σt denotes the volatility in the variables Y t. We generate a VGARCH(1, 1) of 2
components with the following vector of parameters:[

σ11,t
σ22,t

]
=
[

ω1,1
ω2,1

]
+
[

α1,1 α1,2
α2,1 α2,2

][
ϵ2

1,t−1

ϵ2
2,t−1

]
+
[

β1,1 β1,2
β2,1 β2,2

][
σ11,t
σ22,t

]
, (C.4)

where ϵt ∼
[

1.00 0.10
0.10 1.50

]
to generate weakly correlated VGARCH(1, 1) processes, and ϵt ∼[

1.00 0.86
0.86 1.50

]
to generate strongly correlated VGARCH(1, 1) processes. To both processes we

use ω =
[

0.05
0.02

]
, α =

[
0.10 0.00
0.00 0.05

]
and β =

[
0.85 0.00
0.00 0.88

]
. We refer to the two models generated

as wVGARCH and sVGARCH, respectively.

The bivariate time series are generated from the above DGP using the following R packages,
lgarch (Sucarrat, 2015), mAr (Barbosa, 2012) and ccgarch (Nakatani, 2014).
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C.2. AUTOCORRELATION FUNCTION PLOTS

C.2 Autocorrelation Function Plots

See Figure C.1.

Figure C.1: Plot of the autocorrelation function of an instance of each of the MDGP. The first
column refers to the ACF’s of the first time series component (Y1,t) of each model, while the
second column refers to the second component (Y2,t).

157
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C.3 Degree Distribution of MHVG Feature Set

Figure C.2: Variability analysis of the degree distributions of MHVG structures that represents
the MDGP’s. The first line shows intra-layer degree distribution, the second shows inter-layer
degree distribution, and the three line shows the all-layer degree distribution of the MHVGs. The
plots are on a semi-logarithmic scale and correspond to the boxplot of the degree distribution
values obtained to 100 samples of each MDGP. Different colors refer to each different MDGP (Y),
where the darkest colors refer to their first components (Y1) and the lighter ones to the second
(Y2).
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C.4. PRINCIPAL COMPONENT ANALYSIS RESULTS

C.4 Principal Component Analysis Results

(a) Intra-layer features (b) Inter-layer features

(c) All-layer features (d) Relational features

Figure C.3: Bi-plot of the first two principal components (PC) of principal component analysis
for the Univariate Data Generating Process (UDGP) using the different feature vectors. Each
UDGP is represented by a different color and the arrows represent the contributions of the
set of features to the PC’s, the larger the size, sharpness, and closer to the red the greater the
contribution of the feature.

Figure C.4: Bar plot with contributions of MNet features to the total of all 20 principal
components formed by the PCA. The red dashed line on the plot indicates the expected average
contribution.
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(a) MHVG Features (b) MNetF

Figure C.5: 3D-plot of the first three principal components (PC) of principal component analysis
for the Multivariate Data Generating Process (MDGP) using the different feature vectors (MNetF
and only to MHVG). Each MDGP is represented by a different color.

Figure C.6: Bar plot with contributions of MNetF feature set to the total of all 20 principal
components formed by the PCA. The red dashed line on the plot indicates the expected average
contribution.

160



Appendix | D
NetF: Experimental Evaluation

D.1 Clustering Time Series with NetF

Figure D.1: Number of clusters, k, for the Production in Brazil dataset using the silhouette
method for 10 repetitions of the clustering analysis using the 3 features vectors: NetF, catch22
and tsfeatures.
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D.2 Clustering Results: UEA & UCR Time Series Datasets

For some sets of benchmark empirical time series, some features of tsfeatures and catch22
approaches return missing values, and some have time series with missing values. We decided
not to consider these sets in our clustering analysis as they are just a few. So Tables D.2 to D.6
present the results for 119 sets, out of a total of 129.

Table D.2: Brief description of the empirical time series datasets from UEA & UCR time series
repository (Bagnall et al.) and the clustering evaluation metrics obtained for the two conventional
approaches (tsfeatures and catch22) and for the proposed approach (NetF). The values reflect
the mean of 10 repetitions of the clustering analysis for the ground truth, k. The values in bold
represent the best results of the respective evaluation metric comparing the two approaches. M
represents the size of dataset, T the time series length and k the number of classes.

ARI NMI AS
Dataset M T k [−1, 1] [0, 1] [−1, 1]

tsf. cat. Net. tsf. cat. Net. tsf. cat. Net.

ACSF1 200 1460 10 0.22 0.32 0.17 0.50 0.56 0.40 0.48 0.30 0.23

Adiac 781 176 37 0.21 0.21 0.11 0.55 0.55 0.43 0.20 0.26 0.13

ArrowHead 211 251 3 0.24 0.17 0.34 0.27 0.21 0.31 0.24 0.27 0.15

BME 180 128 3 0.50 0.36 0.40 0.58 0.36 0.45 0.55 0.20 0.23

Beef 60 470 5 0.09 0.05 0.04 0.23 0.24 0.18 0.33 0.38 0.18

BeetleFly 40 512 2 0.55 0.10 0.63 0.48 0.11 0.55 0.34 0.26 0.16

BirdChicken 40 512 2 0.07 0.55 0.63 0.10 0.56 0.53 0.35 0.19 0.29

CBF 930 128 3 0.31 0.37 0.37 0.34 0.39 0.40 0.22 0.19 0.13

Car 120 577 4 0.25 0.16 0.20 0.35 0.23 0.29 0.22 0.28 0.18

Chinatown 365 24 2 0.33 0.29 -0.05 0.29 0.21 0.03 0.23 0.34 0.27

ChlorineConcentration 4307 166 3 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.42 0.17

CinCECGTorso 1420 1639 4 0.31 0.32 0.45 0.37 0.35 0.52 0.23 0.19 0.31

Coffee 56 286 2 0.61 1.00 0.45 0.54 1.00 0.42 0.32 0.21 0.13

Computers 500 720 2 0.00 0.00 0.07 0.00 0.00 0.05 0.46 0.17 0.27

CricketX 780 300 12 0.15 0.15 0.16 0.32 0.28 0.30 0.20 0.16 0.10

CricketY 780 300 12 0.13 0.14 0.08 0.27 0.28 0.21 0.19 0.17 0.09

CricketZ 780 300 12 0.15 0.16 0.14 0.33 0.28 0.27 0.19 0.16 0.10

Crop 24000 46 24 0.19 0.16 0.09 0.39 0.34 0.26 0.19 0.18 0.09

DiatomSizeReduction 322 345 4 0.67 0.11 0.69 0.67 0.26 0.67 0.34 0.34 0.26

DistalPhalanxOutlineAgeG 539 80 3 0.45 0.44 0.20 0.35 0.34 0.35 0.47 0.47 0.44

DistalPhalanxOutlineCorr 876 80 2 0.00 0.00 0.01 0.00 0.00 0.01 0.45 0.42 0.69

DistalPhalanxTW 539 80 6 0.41 0.45 0.28 0.47 0.45 0.43 0.31 0.42 0.11
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Table D.3: (cont.) Brief description of the empirical time series datasets from UEA & UCR time
series repository (Bagnall et al.) and the clustering evaluation metrics obtained for the two
conventional approaches (tsfeatures and catch22) and for the proposed approach (NetF). The
values reflect the mean of 10 repetitions of the clustering analysis for the ground truth, k. The
values in bold represent the best results of the respective evaluation metric comparing the two
approaches. M represents the size of dataset, T the time series length and k the number of
classes.

ARI NMI AS
Dataset M T k [−1, 1] [0, 1] [−1, 1]

tsf. cat. Net. tsf. cat. Net. tsf. cat. Net.

ECG200 200 96 2 0.25 0.07 0.03 0.16 0.05 0.04 0.30 0.19 0.16

ECG5000 5000 140 5 0.29 0.28 0.31 0.32 0.29 0.30 0.24 0.24 0.16

ECGFiveDays 884 136 2 0.02 0.00 0.00 0.02 0.00 0.01 0.36 0.30 0.25

ElectricDevices 16575 96 7 0.20 0.21 0.19 0.30 0.29 0.29 0.33 0.25 0.27

EOGHorizontalSignal 724 1250 12 0.18 0.16 0.12 0.38 0.33 0.27 0.27 0.22 0.13

EOGVerticalSignal 724 1250 12 0.10 0.13 0.06 0.26 0.28 0.17 0.21 0.20 0.11

Earthquakes 461 512 2 0.00 -0.03 -0.07 0.00 0.07 0.04 0.27 0.18 0.52

EthanolLevel 1004 1751 4 0.01 0.00 0.01 0.01 0.00 0.02 0.15 0.27 0.15

FaceAll 2250 131 14 0.15 0.21 0.15 0.33 0.36 0.29 0.22 0.15 0.09

FaceFour 112 350 4 0.26 0.36 0.46 0.32 0.45 0.54 0.39 0.22 0.23

FacesUCR 2250 131 14 0.14 0.19 0.15 0.33 0.37 0.28 0.22 0.15 0.09

FiftyWords 905 270 50 0.19 0.19 0.09 0.57 0.54 0.44 0.18 0.17 0.11

Fish 350 463 7 0.19 0.12 0.17 0.29 0.21 0.30 0.20 0.25 0.13

FordA 4921 500 2 0.19 0.01 0.01 0.27 0.01 0.01 0.53 0.33 0.29

FordB 4446 500 2 0.27 0.07 0.02 0.31 0.07 0.02 0.48 0.29 0.22

FreezerRegularTrain 3000 301 2 0.22 0.27 0.31 0.19 0.21 0.24 0.52 0.50 0.11

FreezerSmallTrain 2878 301 2 0.22 0.27 0.32 0.19 0.21 0.24 0.52 0.50 0.11

Fungi 204 201 18 0.77 0.72 0.40 0.92 0.90 0.68 0.48 0.43 0.13

GestureMidAirD1 338 360 26 0.27 0.25 0.31 0.62 0.59 0.63 0.23 0.23 0.15

GestureMidAirD2 338 360 26 0.24 0.25 0.26 0.60 0.60 0.61 0.21 0.23 0.15

GestureMidAirD3 338 360 26 0.18 0.14 0.16 0.52 0.48 0.50 0.19 0.19 0.13

GesturePebbleZ1 304 [100, 455] 6 0.15 0.16 0.23 0.23 0.22 0.35 0.16 0.15 0.18

GesturePebbleZ2 304 [100, 455] 6 0.15 0.16 0.23 0.23 0.22 0.35 0.16 0.15 0.18

GunPoint 200 150 2 0.00 0.00 0.19 0.06 0.00 0.30 0.70 0.28 0.27

GunPointAgeSpan 451 150 2 0.01 0.10 0.00 0.02 0.07 0.00 0.48 0.23 0.30

GunPointMaleVersusFema 451 150 2 0.07 0.05 0.32 0.13 0.04 0.37 0.48 0.23 0.30

GunPointOldVersusYoung 451 150 2 0.00 0.08 0.20 0.00 0.06 0.27 0.48 0.23 0.30
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Table D.4: (cont.) Brief description of the empirical time series datasets from UEA & UCR time
series repository (Bagnall et al.) and the clustering evaluation metrics obtained for the two
conventional approaches (tsfeatures and catch22) and for the proposed approach (NetF). The
values reflect the mean of 10 repetitions of the clustering analysis for the ground truth, k. The
values in bold represent the best results of the respective evaluation metric comparing the two
approaches. M represents the size of dataset, T the time series length and k the number of
classes.

ARI NMI AS
Dataset M T k [−1, 1] [0, 1] [−1, 1]

tsf. cat. Net. tsf. cat. Net. tsf. cat. Net.

Ham 214 431 2 0.00 0.00 0.01 0.00 0.01 0.01 0.33 0.16 0.18

HandOutlines 1370 2709 2 0.05 0.02 0.06 0.02 0.00 0.11 0.37 0.50 0.53

Haptics 463 1092 5 0.04 0.03 0.07 0.07 0.07 0.10 0.38 0.28 0.15

Herring 128 512 2 0.00 -0.01 -0.01 0.00 0.00 0.00 0.22 0.16 0.17

HouseTwenty 135 3000 2 -0.01 0.64 0.10 0.01 0.61 0.09 0.40 0.21 0.29

InlineSkate 650 1882 7 0.10 0.02 0.08 0.22 0.07 0.17 0.29 0.18 0.16

InsectEPGRegularTrain 311 601 3 0.50 0.43 0.55 0.65 0.44 0.61 0.37 0.22 0.19

InsectEPGSmallTrain 266 601 3 0.50 0.44 0.52 0.65 0.46 0.61 0.37 0.21 0.19

InsectWingbeatSound 2200 256 11 0.07 0.21 0.17 0.18 0.37 0.32 0.19 0.18 0.11

ItalyPowerDemand 1096 24 2 0.04 0.01 0.03 0.05 0.01 0.03 0.38 0.40 0.27

LargeKitchenAppliances 750 720 3 0.21 0.06 0.00 0.23 0.05 0.01 0.35 0.23 0.30

Lightning2 121 637 2 0.07 0.02 0.05 0.14 0.04 0.07 0.42 0.28 0.19

Lightning7 143 319 7 0.22 0.21 0.18 0.39 0.39 0.35 0.24 0.24 0.14

Mallat 2400 1024 8 0.70 0.69 0.53 0.80 0.83 0.65 0.35 0.32 0.13

Meat 120 448 3 0.45 0.45 0.17 0.46 0.63 0.18 0.29 0.43 0.13

MedicalImages 1141 99 10 0.10 0.03 0.06 0.28 0.19 0.17 0.31 0.21 0.17

MiddlePhalanxOutlineAgeG 554 80 3 0.42 0.43 0.42 0.39 0.39 0.39 0.56 0.49 0.40

MiddlePhalanxOutlineCorr 891 80 2 -0.01 0.00 -0.01 0.01 0.00 0.01 0.47 0.41 0.71

MiddlePhalanxTW 553 80 6 0.34 0.57 0.24 0.40 0.43 0.39 0.28 0.47 0.14

MixedShapesRegularTrain 2925 1024 5 0.44 0.23 0.52 0.49 0.26 0.55 0.31 0.20 0.21

MixedShapesSmallTrain 2525 1024 5 0.45 0.23 0.51 0.49 0.25 0.54 0.31 0.20 0.21

MoteStrain 1272 84 2 0.01 0.02 0.17 0.01 0.01 0.17 0.48 0.25 0.20

NonInvasiveFetalECGThor1 3765 750 42 0.51 0.27 0.07 0.76 0.58 0.30 0.22 0.20 0.09

NonInvasiveFetalECGThor2 3765 750 42 0.54 0.36 0.11 0.79 0.67 0.36 0.25 0.23 0.11

OSULeaf 442 427 6 0.29 0.28 0.49 0.42 0.38 0.54 0.17 0.15 0.16

OliveOil 60 570 4 0.29 0.18 0.10 0.36 0.27 0.17 0.30 0.32 0.10
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Table D.5: (cont.) Brief description of the empirical time series datasets from UEA & UCR time
series repository (Bagnall et al.) and the clustering evaluation metrics obtained for the two
conventional approaches (tsfeatures and catch22) and for the proposed approach (NetF). The
values reflect the mean of 10 repetitions of the clustering analysis for the ground truth, k. The
values in bold represent the best results of the respective evaluation metric comparing the two
approaches. M represents the size of dataset, T the time series length and k the number of
classes.

ARI NMI AS
Dataset M T k [−1, 1] [0, 1] [−1, 1]

tsf. cat. Net. tsf. cat. Net. tsf. cat. Net.

PLAID 1074 [100, 1344] 11 0.38 0.27 0.25 0.51 0.41 0.38 0.31 0.22 0.18

PhalangesOutlinesCorrect 2658 80 2 0.01 0.01 0.00 0.00 0.00 0.00 0.33 0.37 0.70

Phoneme 2110 1024 39 0.06 0.07 0.09 0.29 0.31 0.34 0.14 0.13 0.13

PickupGestureWiimoteZ 100 [29, 361] 10 0.22 0.24 0.29 0.50 0.50 0.55 0.18 0.18 0.19

PigAirwayPressure 312 2000 52 0.11 0.04 0.13 0.63 0.57 0.64 0.26 0.20 0.17

PigArtPressure 312 2000 52 0.40 0.45 0.44 0.79 0.82 0.81 0.24 0.24 0.22

PigCVP 312 2000 52 0.13 0.18 0.20 0.64 0.68 0.68 0.20 0.14 0.16

Plane 210 144 7 0.98 0.86 0.97 0.98 0.90 0.97 0.58 0.34 0.37

PowerCons 360 144 2 0.13 0.00 0.25 0.11 0.00 0.22 0.22 0.20 0.22

ProximalPhalanxOutlineAg 605 80 3 0.55 0.57 0.35 0.53 0.56 0.45 0.49 0.40 0.50

ProximalPhalanxOutlineCo 891 80 2 0.05 0.06 0.04 0.07 0.08 0.05 0.44 0.49 0.73

ProximalPhalanxTW 605 80 6 0.43 0.47 0.34 0.56 0.58 0.48 0.29 0.41 0.15

RefrigerationDevices 750 720 3 0.02 0.02 0.02 0.02 0.02 0.02 0.41 0.27 0.27

Rock 70 2844 4 0.36 0.16 0.35 0.51 0.27 0.49 0.25 0.23 0.24

ScreenType 750 720 3 0.03 0.04 0.01 0.03 0.04 0.01 0.31 0.16 0.22

SemgHandGenderCh2 900 1500 2 0.00 0.00 0.01 0.01 0.00 0.00 0.29 0.23 0.31

SemgHandMovementCh2 900 1500 6 0.06 0.04 0.10 0.14 0.12 0.20 0.24 0.23 0.22

SemgHandSubjectCh2 900 1500 5 0.16 0.26 0.18 0.25 0.33 0.28 0.25 0.24 0.26

ShakeGestureWiimoteZ 100 [40, 385] 10 0.54 0.45 0.56 0.72 0.67 0.74 0.29 0.20 0.27

ShapeletSim 200 500 2 0.10 1.00 0.85 0.08 1.00 0.78 0.18 0.33 0.17

ShapesAll 1200 512 60 0.37 0.28 0.23 0.70 0.65 0.60 0.26 0.22 0.13

SmallKitchenAppliances 750 720 3 0.19 0.08 0.18 0.19 0.07 0.20 0.32 0.25 0.50

SonyAIBORobotSurface1 621 70 2 0.58 0.42 0.56 0.53 0.47 0.47 0.34 0.26 0.25

SonyAIBORobotSurface2 980 65 2 0.55 0.37 0.00 0.47 0.28 0.01 0.37 0.22 0.14

StarLightCurves 9236 1024 3 0.49 0.43 0.65 0.57 0.56 0.53 0.42 0.34 0.32

Strawberry 983 235 2 -0.05 -0.02 0.01 0.11 0.09 0.03 0.52 0.35 0.16

SwedishLeaf 1125 128 15 0.46 0.31 0.41 0.68 0.53 0.60 0.25 0.23 0.16

Symbols 1020 398 6 0.69 0.65 0.77 0.78 0.79 0.84 0.40 0.49 0.35

SyntheticControl 600 60 6 0.57 0.61 0.43 0.71 0.74 0.50 0.34 0.20 0.14
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Table D.6: (cont.) Brief description of the empirical time series datasets from UEA & UCR time
series repository (Bagnall et al.) and the clustering evaluation metrics obtained for the two
conventional approaches (tsfeatures and catch22) and for the proposed approach (NetF). The
values reflect the mean of 10 repetitions of the clustering analysis for the ground truth, k. The
values in bold represent the best results of the respective evaluation metric comparing the two
approaches. M represents the size of dataset, T the time series length and k the number of
classes.

ARI NMI AS
Dataset M T k [−1, 1] [0, 1] [−1, 1]

tsf. cat. Net. tsf. cat. Net. tsf. cat. Net.

ToeSegmentation1 268 277 2 0.01 0.00 0.05 0.01 0.00 0.05 0.22 0.23 0.20

ToeSegmentation2 166 343 2 0.12 0.07 0.37 0.06 0.03 0.26 0.30 0.18 0.37

Trace 200 275 4 1.00 0.73 0.63 1.00 0.79 0.70 0.65 0.35 0.22

TwoLeadECG 1162 82 2 0.00 0.01 0.71 0.00 0.01 0.61 0.60 0.16 0.19

TwoPatterns 5000 128 4 0.14 0.00 0.01 0.17 0.00 0.01 0.16 0.15 0.11

UMD 180 150 3 0.48 0.17 0.35 0.53 0.20 0.38 0.41 0.24 0.21

UWaveGestureLibraryAll 4478 945 8 0.17 0.20 0.18 0.27 0.28 0.28 0.20 0.19 0.12

UWaveGestureLibraryX 4478 315 8 0.18 0.19 0.23 0.30 0.29 0.33 0.19 0.20 0.15

UWaveGestureLibraryY 4478 315 8 0.22 0.16 0.14 0.36 0.25 0.25 0.22 0.20 0.15

Wafer 7164 152 2 -0.02 -0.04 0.99 0.00 0.02 0.96 0.56 0.33 0.51

Wine 111 234 2 0.03 -0.01 0.01 0.03 0.00 0.01 0.39 0.43 0.22

WordSynonyms 905 270 25 0.14 0.10 0.05 0.41 0.34 0.26 0.21 0.18 0.11

Worms 258 900 5 0.19 0.14 0.13 0.24 0.22 0.22 0.26 0.17 0.22

WormsTwoClass 258 900 2 0.04 0.07 0.12 0.02 0.04 0.08 0.34 0.19 0.29

Yoga 3300 426 2 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.20 0.27

Mean - - - 0.24 0.22 0.24 0.33 0.30 0.32 0.33 0.26 0.23

Win - - - 46 28 47 48 28 43 82 26 16

Win (%) - - - 38.66 23.53 39.50 40.34 23.53 36.13 68.91 21.85 13.45
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Appendix | E
An Approximation of Degree Distribu-
tion of Cross-HVG under Independence

Let X t and Y t two independent bi-infinite time series of i.i.d. random variables with probability
density f (.) with the distribution support in a generic interval, i.e., x, y ∈ [a, b] and consider
its associated Cross-HVG. Without loss of generality, we can rescale the distribution support
to [0, 1] since the associated graph remains invariant. Following the method presented in the
works of Erdős and Rényi (1966); Luque et al. (2009); Zhang and Small (2006) we will find a
mathematical expression for degree distribution P(k) of the Cross-HVGs 1.

We select a data x0 ∈ X to be the seed. We calculate the probability that an arbitrary data
with value x0 has cross-horizontal visibility of exactly k other data of Y . From the definition
of Cross-HV presented in Section 4.1.1, whenever a x0 has cross-horizontal visibility to k data,
there are two bounding data (max(x−j, y−j) and max(xi, yi)) one on the left side of x0 and one
on the right side, that limit the visibility of x0 to other data beyond them. Furthermore, the
remaining k− 2 visible data (or even the remaining k− 1 or k data, since the bounding data can
be data of the same random variable as x0, i.e., x−j or xi, and therefore are not cross-visible by
x0) are located within the two bounding data. Note that k = 2 is the minimum possible degree
(see Figure E.1).

We will compute the first terms of the degree distribution of the associated Cross-HVG,
namely, P(k = 2) and P(k = 3). Compared to the HVGs of the univariate random time series,
the first terms of P(k) of a Cross-HVG are not so trivially calculated due to the cross-horizontal
visibility condition that is determined by the maximum of the two random time series. This
condition leads to a greater number of possible configurations for the same term P(k) (with
k = 1, 2, . . .) and each of the possible configurations can lead to a combination of possible values

1Note that the degree distribution of Cross-HVG corresponds to the inter-layer degree distributions P(kα≺β) of
the MHVG presented in Section 6.1, and that P(kα≺β) is asymmetric. For simplicity, in this Appendix, we will just
use the notation P(k) to refer to the degree distribution of Cross-HVG.
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APPENDIX E. AN APPROXIMATION OF DEGREE DISTRIBUTION OF CROSS-HVG UNDER

INDEPENDENCE

for the cross-visible and no cross-visible data and for the bounding data that define the value of
P(k) term. We will see this in more detail below.

Figure E.1: Set of possible configurations for a seed data x0 with k = 2. The data bars with the
red ball represent the (bounding) data cross-visible by x0 and the data bars with the gray ball
represent the bounding data that is not cross-visible by x0, i.e., xi ∈ X. Note that the minus sign
in the subscript at y−t or x−t indicates that the data is located on the left side of x0. C0 represents
the trivial configuration where the boundary and cross-visible data are the nearest neighbors of
x0 and the remaining configurations represent the rarer cases where one (C1 and C2) or both (C3)
of the boundary data are not the nearest neighbors and are not cross-visible by x0. The signs nz

l

and mz
l′ indicate the number of hidden data (non cross-visible by x0).

The probability that x0 sees k ≥ 2 is 1 by Cross-HV definition since the Cross-HVG algorithm
assures that any data will always have cross-horizontal visibility of its nearest neighbors. For
the case P(k = 2), see Figure E.1, we have to impose that there are two boundary data
(max(x−j, y−j) and max(xi, yi)) and only two cross-visible data (y−1 and y1), this leads to 4
possible configurations (C0, C1, C2 and C3) which determine the boundary data and which we
explain below. To simplicity, from now on we define the maximum time series Zt such that an
arbitrary data have value zt = max(xt, yt).

C0: the height of bounding data greater than x0.

C1: the height of bounding data greater than x0, where the left bounding data is z−1, the right
bounding data is xi with i > 1 and all yi are not cross-visible by x0, and the height of right
cross-visible data is smaller that x0.

C2: the height of bounding data greater than x0, where the right bounding data is z1, the left
bounding data is x−j with j > 1 and all y−j are not cross-visible by x0, and the height of
left cross-visible data is smaller that x0.
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C3: the height of bounding data greater than x0, where the left and right bounding data are
x−j and xi with j, i > 1, respectively, and all y−j and yi are not cross-visible by x0, and the
heights of left and right cross-visible data are smaller that x0.

Then,
P(k = 2) = P(C0) + P(C1) + P(C2) + P(C3)

≡ p0 + p1 + p2 + p3.
(E.1)

Let’s start with the base case C0 (see Figure E.1),

p0 = Prob(z−1, z1 ≥ x0)

=
∫ 1

0
f (x0) dx0

∫ 1

x0

fZ(z−1) dz−1

∫ 1

x0

fZ(z1) dz1.
(E.2)

Before we proceed, we highlight some important properties for the calculations. The
cumulative probability distribution function F(x) of any probability density f (x) is defined as

F(x) =
∫ x

0
f (x′) dx′, (E.3)

where d
dx F(x) = f (x), F(0) = 0 and F(1) = 1. The relation between f and F holds,

f (x)Fn−1(x) =
1
n

d
dx

Fn(x). (E.4)

By definition, the distribution function of Z (the maximum of two i.i.d random variables) is

FZ(x) = Prob(zt ≥ x) = Prob
(
max(xt, yt) ≥ x

)
= Prob(xt ≥ x)Prob(yt ≥ x),

(E.5)

using the fact that X and Y are independent. However, both X and Y have the same distribution
function F(.) and the same density function f (.), this means that

FZ(x) = F(x)F(x) = [F(x)]2. (E.6)

The density function of Z can now be found by differentiation,

fZ(x) =
d

dx
FZ(x) =

d
dx

[F(x)]2

= 2F′(x)F(x)

= 2 f (x)F(x).

(E.7)

Then, using Eqs. E.3, E.4 and E.7, we can rewrite the Eq. E.2:

p0 =
∫ 1

0
f (x0) dx0

∫ 1

x0

2 f (z−1)F(z−1) dz−1

∫ 1

x0

2 f (z1)F(z1) dz1

=
∫ 1

0
f (x0)[1− F2(x0)]

2 dx0

=
8
15

.

(E.8)
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We proceed to the remaining configurations. Note that in the configurations C1, C2 and C3

eventually there can be located between the cross-visible data and the no cross-visible bounding
data an arbitrary number r of hidden data (i.e., not cross-visible by x0) n1, n2, . . . , nr, and this
fact needs to be taken into account in the probability calculations. However, the geometrical
restrictions for this nl hidden data are not trivial as mentioned earlier. For the sake of simplicity,
we define nx

l if nl ∈ X, ny
l if nl ∈ Y and nz

l if nl ∈ Z. To illustrate this, we take the case C1 and
r = 2 which is shown in Figure E.2 with two possible configurations Ca

1 and Cb
1. To continue

to assure that k = 2, in Ca
1 and Cb

1 the two data nx
l (bars with yellow ball) are hidden because

its belong to the same time series (by definition), the two data ny
l and yi (bars with green ball)

are hidden data and, consequently, not cross-visible by x0 because its heights must be less
than or equal to some previous maximum data zj between z1 (inclusive) and it, restricting
the cross-horizontal visibility. For example, the cross-horizontal visibility line of yi for x0 is
intercepted by nx

2 in Ca
1 and by ny

1 in Cb
1. All these possibilities lead to a great combination of

possible configurations for the calculations of p1, p2 and p3, and remembering that r can be an
arbitrarily large number. Therefore, we decided to calculate a minorant and a majorant value for
P(k = 2), being the minorant the value corresponding to p0 (the base case) and the majorant
the total value of P(k = 2) which we calculate below and whose geometric restrictions for the
hidden data are limited to the height of x0, that is, nz

l < x0, l = 1, . . . , r and mz
l′ < x0, l = 1, . . . , s

for C1, C2 and C3. Note that, this restriction allows some configurations that should not be
included in the exact calculation of P(k = 2).

Figure E.2: Two possible example configurations for a seed x0 with k = 2 and two hidden data
(r = 2). The data bars with the red ball represent the (bounding) data cross-visible by x0, the
data bars with the gray ball represent the bounding data that is not cross-visible by x0, i.e.,
xi ∈ X, the data bars with the yellow ball represent the hidden data that is not cross-visible by
x0 because its belong to the same time series X, and the data bars with the green ball represent
the hidden data that is not cross-visible by x0 because there is some previous maximum data zj

that restricts the cross-horizontal visibility between them.

Then,

p1 = Prob
(
(z−1 ≥ x0) ∩ (z1 < x0) ∩ (xi ≥ x0) ∩ (yi ≤ z1) ∩ ({nz

l < x0}l=1,2,...,r)
)

,

p2 = Prob
(
(z1 ≥ x0) ∩ (z−1 < x0) ∩ (x−j ≥ x0) ∩ (y−j ≤ z1) ∩ ({mz

l′ < x0}l′=1,2,...,s)
)

.
(E.9)
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Note that we need to consider every possible hidden data configuration, that is, C1 without
hidden data, C1 with a single hidden data, C1 with two hidden data, and so on, and the same
for C2. Then,

p1 =
∫ 1

0
f (x0) dx0

∫ 1

x0

2 f (z−1)F(z−1) dz−1

∫ x0

0
2 f (z1)F(z1) dz1

∫ 1

x0

f (xi) dxi

∫ z1

0
f (yi) dyi

+
∞

∑
r=1

∫ 1

0
f (x0) dx0

∫ 1

x0

2 f (z−1)F(z−1) dz−1

∫ x0

0
2 f (z1)F(z1) dz1

∫ 1

x0

f (xi) dxi

∫ z1

0
f (yi) dyi

r

∏
l=1

∫ x0

0
2 f (nz

l )F(nz
l ) dnz

l

=
∫ 1

0
f (x0) dx0

∫ 1

x0

2 f (z−1)F(z−1) dz−1

∫ x0

0
2 f (z1)F(z1) dz1

∫ 1

x0

f (xi) dxi

∫ z1

0
f (yi) dyi

∞

∑
r=0

[∫ x0

0
2 f (nz

l )F(nz
l ) dnz

l

]r

,

(E.10)

where the first term corresponds to the configuration with no hidden data and the second sums
up the configurations of r hidden data. Note that p1 is equal to p2 since p1 is symmetric to p2

(see Figure E.1).

From Eq. E.4 and making e use of the sum of a geometric series we arrive to

p1 =
∫ 1

0

f (x0)

[1− F2(x0)]
dx0

∫ 1

x0

2 f (z−1)F(z−1) dz−1

∫ x0

0
2 f (z1)F(z1) dz1

∫ 1

x0

f (xi) dxi

∫ z1

0
f (yi) dyi

=
∫ 1

0
f (x0)

[1− F2(x0)][1− F(x0)]

[1− F2(x0)]
dx0

∫ x0

0
2 f (z1)F2(z1) dz1

=
2
3

∫ 1

0
f (x0)[1− F(x0)]F3(x0) dx0

=
1
30

.
(E.11)

p3 = Prob
(
(z−1, z1 < x0) ∩ (xi ≥ x0) ∩ (yi ≤ z1) ∩ (x−j ≥ x0) ∩ (y−j ≤ z−1)∩

∩({nz
l < x0}l=1,2,...,r) ∩ ({mz

l′ < x0}l′=1,2,...,s)
)

=
∫ 1

0
f (x0) dx0

∫ x0

0
2 f (z−1)F(z−1) dz−1

∫ x0

0
2 f (z1)F(z1) dz1

∫ 1

x0

f (xi) dxi

∫ z1

0
f (yi) dyi∫ 1

x0

f (x−j) dx−j

∫ z−1

0
f (y−j) dy−j

∞

∑
r=0

[∫ x0

0
2 f (nz

l )F(nz
l ) dnz

l

]r ∞

∑
s=0

[∫ x0

0
2 f (mz

l′)F(mz
l′) dmz

l′

]s

=
∫ 1

0
f (x0)

[1− F(x0)]2

[1− F2(x0)]2
dx0

∫ x0

0
2 f (z−1)F2(z−1) dz−1

∫ x0

0
2 f (z1)F2(z1) dz1

=
4
9

∫ 1

0
f (x0)

[1− F(x0)]2[F3(x0)]2

[1− F2(x0)]2
dx0

=
28
15
− 8

3
ln(2).

(E.12)
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Finally, we obtain
P(k = 2) = p0 + 2p1 + p3

=
37
15
− 40

15
ln(2).

(E.13)

Let us proceed by tackling the case P(k = 3), that is, the probability that the x0 has only three
cross-visible data. This happens in two ways, when there are 2 cross-visible data on the left side
of x0 and 1 on its right side or there are 2 cross-visible data on the right side of x0 and 1 on its
left side. Figure E.3 shows all possible configurations in which: there are two boundary data
(max(x−j, y−j) and max(xi, yi)), two (boundary) data cross-visible (y−1 and y2), and a right-hand
side inner data cross-visible (y1), and the same for another way, that is, two boundary data
(max(x−j, y−j) and max(xi, yi)), two (boundary) data cross-visible (y−2 and y1), and a left-hand
side inner data cross-visible (y−1). Note that one or both of the boundary data (max(x−j, y−j)

and max(xi, yi)) can correspond to the one or both of the (boundary) data cross-visible data (y−1

and y2 or y−2 and y1, respectively), depending on the 6 possible configurations (C0, C1, C2, C3, C4

and C5) shown in Figure E.3.

Thus, in the same way as in case P(k = 2) we have

P(k = 3) = P(C0) + P(C1) + P(C2) + P(C3) + P(C4) + P(C5)

≡ p0 + p1 + p2 + p3 + p4 + p5.
(E.14)

Let’s start with the base cases C0 and C1, where p0 = p1 once which are symmetric
configurations. So let’s proceed with the case C0. Analyzing Figure E.3, we verify that 2
configurations emerge from C0, one for the case in which the second cross-visible data by x0

has value greater than or equal to x0 (y2 ≥ x0), and therefore is also the boundary data (let’s
call this configuration C0

0 with P(C0
0) ≡ p0

0); and another configuration for the case where the
second cross-visible data by x0 has value smaller than the value of x0 (y2 < x0) , and therefore
the boundary data is x2 (x2 ≥ x0), (let’s call this configuration C1

0 with P(C1
0) ≡ p1

0). Thus, we
have

p0 = p0
0 + p1

0. (E.15)

We calculate first p0
0 and then p1

0, using the same properties that we used to calculate the
configurations of P(k = 2) and properly considering the geometric restrictions for the hidden
data.
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Figure E.3: Set of possible configurations for a seed data x0 with k = 3. The data bars with
the red ball represent the (boundary) data cross-visible by x0, the data bars with the blue ball
represent the inner data cross-visible by x0, and the data bars with the gray ball represent
the bounding data that is not cross-visible by x0, i.e., xi ∈ X t. Note that the minus sign in the
subscript ate y−i or x−i indicates that the data is located on the left side of x0. C0 and C1 represent
the trivial configurations where the boundary and cross-visible data are (y−1 and y2) or (y−2

and y1), respectively, and the remaining configurations represent the rarer cases where one (C2

and C3) or both (C4 and C5) of the boundary data are not the (boundary) data cross-visible by x0.
The signs nz

l , n′zp, mz
l′ and m′zp′ indicate the number of the hidden data (no cross-visible by x0).

p0
0 = Prob

(
(z−1 ≥ x0) ∩ (y2 ≥ x0) ∩ (z1 < x0) ∩ ({nz

l < x0}l=1,2,...,r)
)

=
∫ 1

0
f (x0) dx0

∫ 1

x0

2 f (z−1)F(z−1) dz−1

∫ 1

x0

f (y2) dy2

∫ x0

0
2 f (z1)F(z1) dz1

∞

∑
r=0

[∫ x0

0
2 f (nz

l )F(nz
l ) dnz

l

]r

=
∫ 1

0
f (x0)

[1− F2(x0)][1− F(x0)]F2(x0)

[1− F2(x0)]
dx0

=
∫ 1

0
f (x0)[F2(x0)− F3(x0)] dx0

=
1

12
,

(E.16)
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p1
0 = Prob

(
(z−1 ≥ x0) ∩ (x2 ≥ x0) ∩ (y2 < x0) ∩ (z1 < y2) ∩ ({nz

l < y2}l=1,2,...,r)
)

=
∫ 1

0
f (x0) dx0

∫ 1

x0

2 f (z−1)F(z−1) dz−1

∫ 1

x0

f (x2) dx2

∫ x0

0
f (y2) dy2

∫ y2

0
2 f (z1)F(z1) dz1

∞

∑
r=0

[∫ y2

0
2 f (nz

l )F(nz
l ) dnz

l

]r

=
∫ 1

0
f (x0)[1− F2(x0)][1− F(x0)] dx0

∫ x0

0
f (y2)

F2(y2)

[1− F2(y2)]
dy2

=
1
2

∫ 1

0
f (x0)[1− F2(x0)][1− F(x0)][−2F(x0)− ln(1− F(x0)) + ln(1 + F(x0))] dx0

=
2
3

ln(2)− 9
20

.
(E.17)

Finally, we have the value of P(C0),

p0 =
2
3

ln(2)− 11
30

. (E.18)

We now proceed to C2 and C3, where p2 = p3 since C2 and C3 are symmetric.

p2 = Prob
(
(z−1 ≥ x0) ∩ (z1 < y2) ∩ ({nz

l < y2}l=1,2,...,r) ∩ (x2 < x0) ∩ (y2 < x0)∩

∩(xi ≥ x0) ∩ (yi ≤ y2) ∩ ({n′zp < x0}p=1,2,...,s

)
=
∫ 1

0
f (x0) dx0

∫ 1

x0

2 f (z−1)F(z−1) dz−1

∫ y2

0
2 f (z1)F(z1) dz1

∫ x0

0
f (x2) dx2

∫ x0

0
f (y2) dy2∫ 1

x0

f (xi) dxi

∫ y2

0
f (yi) dyi

∞

∑
r=0

[∫ y2

0
2 f (nz

l )F(nz
l ) dnz

l

]r ∞

∑
s=0

[∫ x0

0
2 f (n′zp)F(n′zp) dn′zp

]s

=
∫ 1

0
f (x0)

[1− F2(x0)][1− F(x0)]F(x0)

[1− F2(x0)]
dx0

∫ x0

0
f (y2)

F3(y2)

[1− F2(y2)]
dy2

=
∫ 1

0
f (x0)[F(x0)− F2(x0)]

[
1
2
[−F2(x0)− ln(1− F2(x0))]

]
dx0

= − 79
360

+
1
3

ln(2).
(E.19)
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Lastly, we compute C4 and C5, with p4 = p5 (C4 and C5 are symmetric).

p4 = Prob
(
(z−1 < x0) ∩ (x−j ≥ x0) ∩ (y−j ≤ z−1) ∩ ({mz

l′ < x0}l′=1,2,...,q) ∩ (z1 < y2)∩

∩(x2 < x0) ∩ (y2 < x0) ∩ (xi ≥ x0) ∩ (yi ≤ y2) ∩ ({nz
l < y2}l=1,2,...,r) ∩ ({n′zp < x0}p=1,2,...,s)

)
=
∫ 1

0
f (x0) dx0

∫ x0

0
2 f (z−1)F(z−1) dz−1

∫ y2

0
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∫ 1
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0
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0
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∫ x0

0
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∫ 1

x0

f (xi) dxi

∫ y2

0
f (yi) dyi

∞
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[∫ y2

0
2 f (nz

l )F(nz
l ) dnz

l

]r

∞

∑
s=0

[∫ x0

0
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]s ∞

∑
q=0

[∫ x0

0
2 f (mz

l′)F(mz
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l′

]q

=
2
3

∫ 1

0
f (x0)

[1− F(x0)]2F4(x0)

[1− F2(x0)]2
dx0

∫ x0

0
f (y2)

F3(y2)

[1− F2(y2)]
dy2

=
1
3

∫ 1

0
f (x0)

[1− F(x0)]2F4(x0)

[1− F2(x0)]2

[
−F2(x0)− ln(1− F2(x0))

]
dx0

=
107
270
− π2

9
+

1
9

ln(2) +
4
3

ln2(2).
(E.20)

Finally, we obtain

P(k = 3) = 2p0 + 2p2 + 2p4

= − 41
108
− 2

9
π2 +

20
9

ln(2) +
8
3

ln2(2).
(E.21)

As the values obtained are minorant and majorant from P(k) to k = 2, 3 we can write the
following

p0 < P(k = 2) < (p0 + 2p1 + p3)

0.5333 ⪅ P(k = 2) ⪅ 0.6183,
(E.22)

where C0 is the base case of P(k = 2), and

2p0 < P(k = 3) < (2p0 + 2p2 + 2p4)

0.1909 ⪅ P(k = 3) ⪅ 0.2487,
(E.23)

where C0 and C1 is the base case of P(k = 3).

In order to validate these results, we performed an experimental study with 1000 repetitions
of bivariate white noise time series (independents) of length T = 10000. For each bivariate
time series, we generate the corresponding Cross-HVG and we obtain the associated degree
distributions P(k). A statistical summary of the P(k = 2) and P(k = 3) values corresponding to
the 1000 repetitions can be seen in Table E.1. We can verify that the values are within the limits
obtained analytically.
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Table E.1: Statistical summary of the P(k = 2) and P(k = 3) values corresponding to the 1000
repetitions of bivariate white noise time series (independents).

Min. 1st Qu. Median Mean 3rd Qu. Max.

P(k = 2)
X t 0.5736 0.5900 0.5996 0.6062 0.6169 0.7086
Y t 0.5739 0.5896 0.5988 0.6060 0.6150 0.7342

P(k = 3)
X t 0.1644 0.2018 0.2133 0.2137 0.2250 0.2571
Y t 0.1514 0.2023 0.2139 0.2137 0.2258 0.2614
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