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* Nowadays cancer is a very serious health
problem that affects a great percentage of
people around the world.

* The causes of cancer can be divide into two
groups: the environmental cause group and
the hereditary genetic cause group.

* Liver cancer is known as a cause of death in
at least 30 cases per 100,000 inhabitants in

most of the world, with higher rates

observed in parts of Africa and eastern Asia.




Intro

* |[n 2007 cancer caused about 13% of all
numan deaths worldwide (7.9 million).
Rates are rising as more people live to an
old age and lifestyles change in the
developing world.

* Liver cancer or hepatic cancer is properly
considered to be a cancer which starts in
the liver, as opposed to a cancer which

originates in another organ and migrates
to the liver, known as a liver metastasis.




Gene Expression

* Gene expression is the process by which
information from a gene is used in the synthesis
of a functional gene product.

 These products are often proteins, but in non-
protein coding genes such as ribosomal RNA
(rRNA) genes or transfer RNA (tRNA) genes, the
product is a functional RNA.

 The process of gene expression is used by all
known life - eukaryotes (including multicellular
organisms), prokaryotes (bacteria and archaea)
and viruses - to generate the macromolecular
machinery for life.




Gene Expression

e Several steps in the gene expression process may
be modulated:

— Transcription (the process of creating a
complementary RNA copy of a sequence of DNA)

— Splicing (a modification of an RNA after
transcription, in which introns are removed and
exons are joined)

— Translation (the cellular process in which proteins
are produced by decoding, or translating, particular
genetic information of the DNA using a messenger
RNA (mRNA) intermediate as the template)

— Post-translational modification (the chemical
modification of a protein after its translation)




Bayesian Networks

* These graphical structures are used to
represent knowledge about an uncertain
domain.

* Bayesian Networks became extremely
popular models in the last decade.

* They have been used for applications in
various areas, such as machine learning,
text mining, natural language processing,
speech recognition, sighal processing,
bioinformatics, error-control codes, medical
diagnosis, weather forecasting, and cellular
networks.




Bayesian Networks

* A Bayesian network ( also called belief
network) is an augmented directed acyclic
graph, represented by the pair V, E where:
— Vis a set of vertices

— E is a set of directed edges joining vertices. No
loops of any length are allowed

* Each vertex in V contains the following
information:
— The name of the random variable

— A probability distribution table indicating how
the probability of this variable’s values depends
on all possible combinations of parental values




Bayesian Networks

e Steps for building a Bayesian Network:

Choose a set of relevant variables
Choose an ordering for them

Assume they are called X1 .. Xm (where X1 is
the first in the ordering, X2 is the second, etc)

Forl=1tom:
— (a) Add the Xi node to the network

— (b) Set Parents(Xi) to be a minimal subset of X1...Xi-1
such that we have conditional independence of Xi and all
other members X1...Xi-1 given Parents(Xi)

— (c) Define the probability table of P(Xi = k — Assignments
of Parents(Xi))




Bayesian Networks
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Step One: add variables.

« Just choose the variables you'd like to be included in the
net.




Bayesian Networks
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Step Two: add links.

* The link structure must be acyclic.

+ If node X is given parents Q,,Q,,..Q, you are promising
that any variable that's a non-descendent of X is
conditionally independent of X given {Q,,Q,,..Q.}




Bayesian Networks
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Step Three: add a probability table for each node.

* The table for node X must list P(X|Parent Values) for each
possible combination of parent values




Bayesian Networks

T: The lecture started by 10:35

Making a Bayes net hsmame e .

M: The lecurer is Manueh

A ' S: Itis sunny
P(s)=0.3 | M08 |
P(RIM)=0.3
P(L|M*$)=0.05 PR|~M)=06
P(L| MA~S)=0.1
P(L| ~MS)=0.1 P(T }L)=°-3
P(L| ~M*~S)=0.2 P(Ti~L)=08

Two unconnected variables may still be correlated

Each node is conditionally independent of all non-
descendants in the tree, given its parents.




Module Networks

 Methods for learning Bayesian Networks
can discover dependency structure
between observed variables

e Although these methods are very useful,
they run into statistical and computational
problems in domains that involve a large
number of variables
— i.e. modeling the dependencies among

expression levels of all the genes in a cell, or
even among changes in stock prices




Module Networks

* One of the more important problems is that
in complex domains, the amount of data is
almost always not enough to robustly learn
a model of underlying distribution

* Generaly in these situations it will lead to
spurious dependencies, due to the
statistical noise, resulting in models that
significantly overfit the data

 For these reasons and some other, there
was a need for a new approach to address
these issues




Module Networks

V) * |n many large domains, the variables can be
partitioned into sets, so that, to a first
approximation, the variables within each set
have a similar set of dependencies and
therefore exhibit a similar behavior

* A new representation called module
network was defined, it explicitly partitions
the variables into modules

 Each module represents a set of variables
that have the same statistical behavior (i.e.
they share the same set of parents and local

probabilistic model)




Module Networks

B By enforcing this constraint on the learned
network, the complexity of the model space
reduces significantly as well as the number
of parameters

e These reductions lead to more robust
estimation and better generalization on
unseen data

* By making the modular structure explicit,
the module network representation
orovides insight about the domain that are
often obscured by the intricate details of a
arge Bayesian Network structure




Module Networks

A module network can be seen as a
Bayesian Network in which variables in the
same module share parents and parameters

* Results show that the learned module
network (the one used for the tests)
generalizes to unseen test data much better
that a Bayesian Network. It also ilustrates
the ability of the learned module network
to reveal high-level structure that provides
important insights.




Module Networks
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(a) A simple Bayesian network over stock price variables; the stock price of
INTL is annotated with a visualization of its CPD, described as a different
multinomial distribution for each value of its influencing stock price MSFT. (b)
A simple module network; the boxes illustrate modules, where stock price
variables share CPDs and parameters. Note that in a modul
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Module Networks

A module network is defined by:
— a specified number of modules

— an assignment of each variable to a module
— a shared CPD for the variables in each module

* The learning task thus entails:

— determining the assignment of variables to
modules

— inducing a CPD for each module



Decoding global gene expression programs
in liver cancer by noninvasive imaging

V) * Non invasive imaging to study the physical and
molecular composition of living matter has been
used for already a long time now

* Gene expression patterns of cancer can reveal its
etiology, prognosis and response to therapy

 The downside of current methods of molecular
profiling is that these methods require invasive
surgeries for tissue procurement and specialized
equipment, leading to a limitation in their
routine use

e Current profiling methods provide only single
snapshots in time because they are destructive




Decoding global gene expression programs
in liver cancer by noninvasive imaging

A\,

* Human tissues also exhibit diverse distinctive
traits on non invasive radiographic images

* To relate gene expression to imaging there are
two challenges:

— the need to define ‘units of distinctiveness’ (traits),
from qualitative imaging features, and likewise
define coherent patterns of variation from gene
expression profiles

— imaging traits are likely to correlate with gene
expression patterns in a complex manner, and
methods of relating imaging to gene expression
need to account for combinatorial and conditional
logic relationships such as AND and OR



Decoding global gene expression programs
in liver cancer by noninvasive imaging

 Athree step strategy was created in order to address these
challenges

* This strategy consists of creating an association map’
between imaging features on CT scans and gene expression
patterns of 28 HCC's

* The first thing done in this strategy was to define and
guantify 138 distinctive imaging traits present in one or
more HCC's

 The second thing was to adapt the module networks
algorithm to systematically search for associations between
expression levels of 6732 well-measured genes determined
by microarray analysis and combinations of imaging traits

e Third, the validation of the statistical significance of the
association map in an independent set of tumors
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Decoding global gene expression programs
in liver cancer by noninvasive imaging

“  The association map of imaging traits and gene

expression revealed that a large fraction of the
gene expression program can be reconstructed
from a small number of imaging traits

 The expression variation in 6732 well-measured
genes was captured by 116 gene modules, each
of which was associated with specific
combinations of imaging traits

* The combination of relevant imaging traits are
seen in decision trees: each split in the tree is
specified by variation of an imaging trait

— each terminal leaf in the tree is a cluster of samples

that share a similar expression pattern of module
genes
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Decoding global gene expression programs
in liver cancer by noninvasive imaging

Wy * The association map allowed to
reconstruct the relative expression level
of a gene in a given HCC sample

* The combination of only 28 imaging traits
was enough to reconstruct the variation
of all 116 gene modules

* For each gene, the number of traits
needed to predict its variation is on

average three and no more than four in
any instance
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Ty * Comparison of the observed association
map of imaging traits and gene expression
with maps derived from data sets with
permuted sample labels confirmed that it
was highly unlikely that the predictive
power of imaging traits for expression
patterns was due to chance alone

* Once identified, such ‘coding” of imaging
traits can be used to translate visual images
into global gene expression programs



Decoding global gene expression programs
in liver cancer by noninvasive imaging

“ * To further validate the association map, the
predictive power of the map was tested in an
independent group of 19 prospectively collected
patients with HCC

* |t was found that 71 out of 116 gene modules,
comprising 4996 out of 6732 genes of the
transcriptome under consideration, were
significantly predicted by their cognate imaging traits

 These results provide additional support that the
association map of imaging traits and gene modules
is robust and can be used to predict the global
expression profiles of a large fraction of the
transcriptome in independent sets of patients
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Ty * Itwasalso found that the 91 genes in the
‘venous invasion signature’ were enriched in
seven modules and associated with two
predominant imaging traits - the presence
of ‘internal arteries’ and absence of
"hypodense halos’

* |In 30 patients with HCC, tumors with this
combination of imaging traits had a 12 fold
increase risk of microscopic venous invasion
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V)  The predicted value of the two-trait predictor of
venous invasion was validated in an independent
set of 32 patients that were not used for training
the association map

* The presence of the trait ’internal arteries’ in the
preoperative CT scan of HCCs was a significant
univariate predictor of overall survival in both
groups of patients

e So it can be said that the association map can
identify novel imaging traits corresponding to
gene expression signatures and provide useful

information to guide clinical decision making



Conclusion

* The results demonstrate that existing imaging
technology may be used to reconstruct the
molecular anatomy of human liver cancer and
potentially other diseases in a noninvasive way.

* The algorithm for associating imaging features
and gene expression is generalizable, and in
principle may be applied to any disease state and
imaging modality.

* This method potentially provides gene
expression profiling that is noninvasive, fast,

repeatable and in the native anatomic context of
the patient.
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