
Advanced Topics in Artificial Intelligence - (Task I)
Deadline: TBF

A bayesian network represents a joint network distribution over a number of random
variables (RVs). In this task, we ask you to implement inference for such models, and give
two alternatives.

Introduction
The BN representation a joint distribution between RVs. BNs simplify full table repre-
sentation by taking advantage of independence between RVs. We shall assume discrete
boolean RVs next, but most techniques will work well for any discrete networks (but not
for contiguous or hybrid).

Our goal is to answer queries of the form Pr(Ai|B1 . . . Bn), where B1 . . . , Bn are the
evidence variables, that is, variables for which we observed a certain value, and Ai is an
unobserved RV, the marginal. We want to find out the probability of the marginal after
observing the evidence.

The probability of a joint distribution with N RVs is Pr(X1 = x1, . . . , XN = xn) for a
specific value of X1, . . . , XN . Summing over all possible cases:∑

X1

. . .
∑
XN

Pr(X1 = x1), . . . , XN = xN) = 1

A joint probability can be always converted into a product of factors by using the
famous chain rule:

Pr(X1|X2 . . . X1) . . . , XN) . . . P r(XN−1|XN)Pr(XN)

A bayesian network is a graphical depiction of a joint distribution, where:
• we assume an ordering between RVs, and use this ordering to generate the graph;

• for each Pr(Xi|Xi+1 . . . XN) we drop allXk such that Pr(Xi|Xj . . . Xm) = Pr(Xi|XkXj . . . Xm).
The remaining variables are called Xi’s parents;

• we draw edges from parents to children.
The figure below shows an example of AaBN with 6 RVs.
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The chain formula is:

∑
X0,X1,X2,X3,X4,X5

Pr(X0|X1X3)Pr(X1|X5)Pr(X2|X3)Pr(X3|X5)11Pr(X4|X1)Pr(X5)

To cope with evidence, say X1 = t, we just drop summands that requuire ¬V1:

∑
X0,X2,X3,X4,X5

Pr(X0|x1X3)Pr(x1|X5)Pr(X2|X3)Pr(X3|X5)Pr(X4|x1)Pr(X5)

Notice that setting X1 = t halves the number the terms in the summation. Next,
to compute a marginal probability for X3, say Pr(X3|x1), we can use the definition of
conditional probability to obtain the two cases:

Pr(x3|x1) =
Pr(x3, x1)

Pr(x1)
=

∑
X0,X2,X4,X5

Pr(X0|x1x3)Pr(x1|X5)Pr(X2|x3)Pr(x3|X5)Pr(X4|x1)Pr(X5)∑
X0,X2,X3,X4,X5

Pr(X0|x1X3)Pr(x1|X5)Pr(X2|X3)Pr(X3|X5)Pr(X4|x1)Pr(X5)

Normalization If the variables are boolean, we always have two cases, and only two:
Pr(x3|x1) + Pr(x3|x1) = 1. Also:

Pr(x3|x1) =
Pr(x3, x1)

Pr(x1)
=

∑
X0,X2,X4,X5

Pr(X0|x1x3)Pr(x1|X5)Pr(X2|x3)Pr(x3|X5)Pr(X4|x1)Pr(X5)∑
X0,X2,X3,X4,X5

Pr(X0|x1X3)Pr(x1|X5)Pr(X2|X3)Pr(X3|X5)Pr(X4|x1)Pr(X5)

which is very similar to the formula for Pr(x3|x1).
We thus get Pr(x3,x1)

Pr(x1)
+ Pr(x3,x1)

Pr(x1)
= 1, hence

Pr(x3|x1) =
Pr(x3, x1)

Pr(x3, x1) + Pr(x3, x1)

Notice that we can ask questions about any variable in the network. Intuitively, ques-
tions often are:

1. given evidence on root nodes, how do the probabilities for the observed variables
change? An example would be: does forcing X5 to always true makes any difference
on X2?

2. given that X0 is true, does our expectation that X2 = t increases?

These are a few basic concepts of BNs. There are several excellent BN libraries and reposi-
tories of BNs. Examples include the Python packages https://pomegranate.readthedocs.io/en/latest/
and .

We expect you to use existing Input-Output code and existing BNs in this project, and
focus on the algorithms and their limitations.



Alternative I: Gibbs Sampling.
This method is based on MarkovChain Monte Carlo, MCMC. Starting from an initial
sample, we keep on generating samples according to the BN distribution, and stop when
our estimate of the marginal is stable. The algorithm is:

1. Initialize the RVs with a random set of values and store them in a vector, say:
V = {0, 1, 1, 0, 0, 0} your assignment must agree with existing evidence.

2. While not converging, loop through every RV:

(a) for every value xi in the RVXi estimate Pr(xi| . . . , Xi−1 = Vi−1Xi+1 = Vi−+ . . .).

(b) sample a new vi from the xi.

3. generate the estimate for Pr(x5| . . .); the estimator for Xi is just the number of times
Xi = t over the number of iterations.

Key Issues

To implement the algorithm we need to compute Pr(xi| . . . , Xi−1 = Vi−1Xi+1 = Vi+1 . . .).
Using normalization we have:

Pr(x5| . . .) =
Pr(x5, . . .)

Pr(x5, . . .) + Pr(x5, . . . )

This sounds scary, but can be simplified, Imagine the sample is {1, 1, 1, 1, 1, 1, 1} and
we want to process X5. Our formula is:

Pr(x0|x1x3)Pr(x1|x5)Pr(x2|x3)Pr(x3|x5)Pr(x4|x1)Pr(x5)
Pr(x0|x1x3)Pr(x1|x5)Pr(x2|x3)Pr(x3|x5)Pr(x4|x1)Pr(x5) + Pr(x0|x1x3)Pr(x1|x5)Pr(x2|x3)Pr(x3|x5)Pr(x4|x1)Pr(x5)

The three CPTs Pr(X0|X1X3), Pr(X2|X3), and Pr(X4|X1) are independent of the
value of X5. Reordering the formula gives

Pr(x0|x1x3)Pr(x2|x3)Pr(x4|x1)Pr(x1|x5)Pr(x3|x5)Pr(x5)
Pr(x0|x1x3)Pr(x2|x3)Pr(x4|x1)Pr(x1|x5)Pr(x3|x5)Pr(x5) + Pr(x0|x1x3)Pr(x2|x3)Pr(x4|x1)Pr(x1|x5)Pr(x3|x5)Pr(x5)

the red terms can be factored out: this gives

Pr(x1|x5)Pr(x3|x5)Pr(x5)
Pr(x1|x5)Pr(x3|x5)Pr(x5) + Pr(x1|x5)Pr(x3|x5)Pr(x5)

or graphically:
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Hence, for each variable Xi, we just need to multiply the probabilities in the factors
Xi that include Xi. The value can be precomputed. This set of variables is known as
the Markov Blanket, M(X〉): it is the smallest set that, if instantiated, determines the
probability of the RV Xi. In other words, if we have complete evidence on M(Xi) and
M(Xi) ⊂ RV s, then Pr(X|V s) = Pr(Xi|M(Xi)).

Implementation

The one remaining problem is how to detect convergence (the algorithm is not guaranteed
to converge). A sequence of steps is called a chain. We can stop the process if:

• we exceeded a maximum number of steps;

• the maximum/average change in probabilities is under a threshold.

Last, two important techniques are:

• warm-up: drop the first 100-1000 iterations, as they may depend too much on the
initial guess;

• multiple chains: just run the algorithm several times, using independent samples. If
all the chains converge for the same estimates, you are most likely converging.

Variable Elimination
The other algorithm we consider here is Variable Elimination (VE). The idea is simply to
remove RVs until only the marginal remains. This is straightforward for evidence, but can
be expensive for other variables.

The algorithm is:

1. for every VE Xi with evidence xi, assign all entries Pr(Xi = v, v 6= xi) must be set
to 0, and Pr(Xi = xi) = 1.

2. eliminate every other remaining variable, one by one.

3. normalize the final result.



0.1 Factors

Throughout the process, we shall multiply and sum conditional probabilities. The results
will be numbers, but we will only have probabilities at the very end, when we normalise.
As intermediate terms will be part of a product, we shall call them factors. Initially,

φ(Xi, Xj, Xk) = Pr(Xi|XjXk)

that is, CPTs are the factors.
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φ(X0, X1, X3)
φ(X1, X5)

φ(X2, X3)

φ(X3, X5)

φ(X1, X4)

φ(X5)

The graph above shows the
network in terms of factors. Notice that factors are undirected: they just relate variables.
Every variable must belong to a factor: there are three variables that belong to a single
factor, and three variables that belong to 3 factors. Notice also that we have a factor with
a single variable, φ(X5).

0.2 Complete Example

Let us estimate Pr(X4|x3), that is, how do probabilities change if X3 = t

First step, we “purge” X3: we simply remove all entries such thatX3 = f. The remaining
entries will have X3 = t, so we can just drop X3 of the factor. We get:



X0 X1

X2

X4

X5

φ(X0, X1)
φ(X1, X5)

φ(X2

φ(X5)

φ(X1, X4)

φ′(X5)

Notice X2 is now independent of the remaining variables: we can forget about it. We
are left with X0, X1 and X5. Eliminating X0 corresponds to merging all factors that share
X0 into a single X0 and the same for X1, X5. In detail:

• X0 is in a single factor with X1, so the result will be a factor φ(X1);

• X1 is in three factor with all remaing variables, so the result will cover all remaining
variables.

• X5 is in three factors, but only shares with X5.

Using the smaller factors first heuristic, X0 and X5 are equally best. Choosing X5 we need
to multiply φ(X1, X5), φ′(X5), φ(X5).After doing that we can project on X1, and the result
is:

X0 X1

X4

φ(X0, X1)

φ(X1, X4)

Next step, we can eliminate X0:

X1

X4

φ(X1)

φ(X1, X4)



and X1:

X4

φ(X4)

We can now use the factor φ(4) = [α, β] to compute our probability
distribution as Pr(X4|X3 = t) =

α

α + β
,

β

α + β

0.3 The Algorithm

Given a graph G, evidence EV , and query Q:

1. : Initialise

(a) propagate evidence, as described above ;

(b) RV = V ARS(G)

(c) for every V add a factor φV (...)

(d) for every V compute the size of the factor generated by eliminating V , amd only
V . Order these numbers in a queue.

2. while RV 6= {EV }:

(a) eliminate best G.

(b) add new factor.

3. Normalise.

To eliminate V :

• colllect all factors with V ,
∑

.

• Let rv be the ser of all RV s in
∑

:

• replicate every factor until all have the same size;

• multiply factors element by element;

• sum out V by adding the true and false cases.

To understand elimination, let us study the first step of the example in detail. we have
the following product:

φ(X0, X1)φ(X1|X5)φ(X2)φ(X5)φ(X4|X1)φ(X5)

The product must be summed over all the values of the unknown variables.



∑
X1,X2,X4,X5

φ(X0, X1)φ(X1|X5)φ(X2)φ(X5)φ(X4|X1)φ(X5)

We can separate the summands into a sum for X2 and the sum for the rest. We also
can move the factors left or right, so we have:∑

X1,X2,X4,X5

∑
X2

φ(X2)φ(X0, X1)φ(X1|X5)φ(X5)φ(X4|X1)φ(X5)

and apply distributivity:

(
∑
X2

φ(X2))(
∑

X1,X2,X4,X5

φ(X0, X1)φ(X1|X5)φ(X5)φ(X4|X1)φ(X5))

We can see (
∑

X2
φ(X2)) as a constant, and let it multiply the denominator Z. Nor-

malization will deal it.
We would like to do something similar with X5. In this case, we would send the

φ(. . . X5) to the left and spllt X5:∑
X1,X2,X4

∑
X5

φ(X1|X5)φ(X5)φ(X5)φ(X0, X1)φ(X4|X1))

The first three factors depend on X5, but the last two do not, so we can:∑
X1,X2,X4

φ(X0, X1)φ(X4|X1)
∑
X5

φ(X1|X5)φ(X5)φ(X5))

Multiplying and adding over X5 we get:∑
X1,X2,X4

φ(X0, X1)φ(X4|X1)φ(X1)

To multiply, we need to consider every possible case of X5 and X1: we need to have
the same dimensions and then we just aply the Hadamard product. X5 is removed by
summing the two cases.
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