
Welcome to TensorFlow!
CS 20: TensorFlow for Deep Learning Research

Lecture 1
1/12/2018

1
Thanks Danijar Hafner for the logo!

2

Agenda

Welcome

Overview of TensorFlow

Graphs and Sessions

3

What’s TensorFlow™?

“Open source software library for
numerical computation using data flow graphs”

4

Launched Nov 2015

5

Why TensorFlow?

● Many machine learning libraries

6

Why TensorFlow?

● Flexibility + Scalability
Originally developed by Google as a single infrastructure for machine learning
in both production and research

7

Why TensorFlow?

● Flexibility + Scalability
● Popularity

8

Companies using TensorFlow

9

Demand for tutorials on TensorFlow

10

Some cool projects using
TensorFlow

11

Classify skin cancer

12Dermatologist-level classification of skin cancer with deep neural networks (Esteva et al., Nature 2017)

WaveNet: Text to Speech

13Wavenet: A generative model for raw audio (Oord et al., 2016)

It takes several hours to synthesize 1 second!

Drawing

14Draw Together with a Neural Network (Ha et al., 2017)

Neural Style Translation

15Image Style Transfer Using Convolutional Neural Networks (Gatys et al., 2016)
Tensorflow adaptation by Cameroon Smith (cysmith@github)

I hope that this class will give you
the tool to build cool projects like

those!
16

Goals

● Understand TF’s computation graph approach
● Explore TF’s built-in functions and classes
● Learn how to build and structure models best suited for a deep learning

project

17

CS20

18

Staff

Chip Huyen
huyenn@stanford.edu

19

Michael Straka
mstraka2@stanford.edu

Pedro Garzon
pgarzon@stanford.edu

Logistics

● Piazza: piazza.com/stanford/winter2018/cs20
● Staff email: cs20-win1718-staff@lists.stanford.edu
● Students mailing list: cs20-win1718-students
● Guests mailing list: cs20-win1718-guests

20

https://mailman.stanford.edu/mailman/listinfo/cs20-win1718-students
https://mailman.stanford.edu/mailman/listinfo/cs20-win1718-guests

Grading

● Assignments (3)
● Participation
● Check in

21

Resources

● The official documentations
● TensorFlow’s official sample models
● StackOverflow should be your first port of call in case of bug
● Books

○ Aurélien Géron’s Hands-On Machine Learning with Scikit-Learn and TensorFlow (O’Reilly,
March 2017)

○ François Chollet’s Deep Learning with Python (Manning Publications, November 2017)
○ Nishant Shukla’s Machine Learning with TensorFlow (Manning Publications, January 2018)
○ Lieder et al.’s Learning TensorFlow A Guide to Building Deep Learning Systems (O’Reilly,

August 2017)

22

https://www.tensorflow.org/api_docs/
https://github.com/tensorflow/models

Permission Number

Link

23

https://docs.google.com/spreadsheets/d/1HZQUOQBs_hbdll5zOE_4ClFjlxLK79Juf_eUg8S2slI/edit?usp=sharing

Many of you are ahead of me in
academia so I probably need more

of your help than you do mine
24

Getting Started

25

import tensorflow as tf

26

Graphs and Sessions

27

Data Flow Graphs

TensorFlow separates definition of computations from their execution

Graph from TensorFlow for Machine Intelligence 28

Data Flow Graphs

Phase 1: assemble a graph

Phase 2: use a session to execute operations in the graph.

29Graph from TensorFlow for Machine Intelligence

Data Flow Graphs

Phase 1: assemble a graph

Phase 2: use a session to execute operations in the graph.

30Graph from TensorFlow for Machine Intelligence

This might change in the
future with eager mode!!

What’s a tensor?

31

What’s a tensor?

An n-dimensional array

0-d tensor: scalar (number)

1-d tensor: vector

2-d tensor: matrix

and so on

32

Data Flow Graphs

import tensorflow as tf

a = tf.add(3, 5)

Visualized by TensorBoard

33

Data Flow Graphs

import tensorflow as tf

a = tf.add(3, 5)

Why x, y?

TF automatically names the nodes when you don’t
explicitly name them.
x = 3
y = 5

Visualized by TensorBoard

34

Data Flow Graphs

import tensorflow as tf

a = tf.add(3, 5)

Interpreted?

5

3

a

35

Nodes: operators, variables, and constants
Edges: tensors

Data Flow Graphs

import tensorflow as tf

a = tf.add(3, 5)

Nodes: operators, variables, and constants
Edges: tensors

Tensors are data.
TensorFlow = tensor + flow = data + flow
(I know, mind=blown)

36

Interpreted?

5

3

a

Data Flow Graphs

import tensorflow as tf

a = tf.add(3, 5)

print(a)

>> Tensor("Add:0", shape=(), dtype=int32)
(Not 8)

37

5

3

a

How to get the value of a?

Create a session, assign it to variable sess so we can call it later

Within the session, evaluate the graph to fetch the value of a

38

How to get the value of a?

Create a session, assign it to variable sess so we can call it later

Within the session, evaluate the graph to fetch the value of a

import tensorflow as tf

a = tf.add(3, 5)

sess = tf.Session()

print(sess.run(a))

sess.close()

The session will look at the graph, trying to think: hmm, how can I get the value of a,
then it computes all the nodes that leads to a. 39

How to get the value of a?

Create a session, assign it to variable sess so we can call it later

Within the session, evaluate the graph to fetch the value of a

import tensorflow as tf

a = tf.add(3, 5)

sess = tf.Session()

print(sess.run(a))

sess.close()
>> 8

8

The session will look at the graph, trying to think: hmm, how can I get the value of a,
then it computes all the nodes that leads to a. 40

How to get the value of a?

Create a session, assign it to variable sess so we can call it later

Within the session, evaluate the graph to fetch the value of a

import tensorflow as tf

a = tf.add(3, 5)

sess = tf.Session()

with tf.Session() as sess:

print(sess.run(a))

sess.close()
8

41

tf.Session()

A Session object encapsulates the environment in which Operation objects are
executed, and Tensor objects are evaluated.

42

tf.Session()

A Session object encapsulates the environment in which Operation objects are
executed, and Tensor objects are evaluated.

Session will also allocate memory to store the current values of variables.

43

More graph

x = 2

y = 3

op1 = tf.add(x, y)

op2 = tf.multiply(x, y)

op3 = tf.pow(op2, op1)

with tf.Session() as sess:

op3 = sess.run(op3)

Visualized by TensorBoard

44

Subgraphs

Because we only want the value of pow_op and pow_op doesn’t
depend on useless, session won’t compute value of useless
→ save computation

useless

add_op mul_op

pow_op

45

x = 2

y = 3

add_op = tf.add(x, y)

mul_op = tf.multiply(x, y)

useless = tf.multiply(x, add_op)

pow_op = tf.pow(add_op, mul_op)

with tf.Session() as sess:

z = sess.run(pow_op)

Subgraphs

tf.Session.run(fetches,
 feed_dict=None,

 options=None,
 run_metadata=None)

fetches is a list of tensors whose values you want 46

useless

add_op mul_op

pow_op
x = 2

y = 3

add_op = tf.add(x, y)

mul_op = tf.multiply(x, y)

useless = tf.multiply(x, add_op)

pow_op = tf.pow(add_op, mul_op)

with tf.Session() as sess:

z, not_useless = sess.run([pow_op, useless])

Subgraphs
Possible to break graphs into several
chunks and run them parallelly
across multiple CPUs, GPUs, TPUs,
or other devices

Example: AlexNet

Graph from Hands-On Machine Learning with Scikit-Learn and TensorFlow 47

Distributed Computation
To put part of a graph on a specific CPU or GPU:

Creates a graph.

with tf.device('/gpu:2'):

 a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name='a')

 b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name='b')

 c = tf.multiply(a, b)

Creates a session with log_device_placement set to True.

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

Runs the op.

print(sess.run(c))

48

What if I want to build more
than one graph?

49

You can
but you don’t need more than one graph

The session runs the default graph

50

But what if I really want to?

51

URGH, NO

52

● Multiple graphs require multiple sessions, each will try to use all available
resources by default

● Can't pass data between them without passing them through
python/numpy, which doesn't work in distributed

● It’s better to have disconnected subgraphs within one graph

53

BUG ALERT!

I insist ...

54

tf.Graph()
create a graph:

g = tf.Graph()

55

tf.Graph()
to add operators to a graph, set it as default:

g = tf.Graph()

with g.as_default():

x = tf.add(3, 5)

sess = tf.Session(graph=g)

with tf.Session() as sess:

sess.run(x)

56

tf.Graph()
To handle the default graph:

g = tf.get_default_graph()

57

tf.Graph()
Do not mix default graph and user created graphs

g = tf.Graph()

add ops to the default graph

a = tf.constant(3)

add ops to the user created graph

with g.as_default():

b = tf.constant(5)

Prone to errors

58

tf.Graph()
Do not mix default graph and user created graphs

g1 = tf.get_default_graph()

g2 = tf.Graph()

add ops to the default graph

with g1.as_default():

a = tf.Constant(3)

add ops to the user created graph

with g2.as_default():

b = tf.Constant(5)

Better
But still not good enough because no more than
one graph!

59

60

Why graphs

1. Save computation. Only run subgraphs that lead
to the values you want to fetch.

61

Why graphs

1. Save computation. Only run subgraphs that lead
to the values you want to fetch.

2. Break computation into small, differential pieces
to facilitate auto-differentiation

62

Why graphs

1. Save computation. Only run subgraphs that lead
to the values you want to fetch.

2. Break computation into small, differential pieces
to facilitate auto-differentiation

3. Facilitate distributed computation, spread the
work across multiple CPUs, GPUs, TPUs, or other
devices

63

Why graphs

1. Save computation. Only run subgraphs that lead
to the values you want to fetch.

2. Break computation into small, differential pieces
to facilitate auto-differentiation

3. Facilitate distributed computation, spread the
work across multiple CPUs, GPUs, TPUs, or other
devices

4. Many common machine learning models are
taught and visualized as directed graphs

A neural net graph from Stanford’s
CS224N course

64

Next class

Basic operations

Constants and variables

Data pipeline

Fun with TensorBoard

Feedback: huyenn@stanford.edu

Thanks!

65

mailto:huyenn@stanford.edu

