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Agenda

Welcome

Overview of TensorFlow

Graphs and Sessions
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What’s TensorFlow™?

“Open source software library for 
numerical computation using data flow graphs”
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Launched Nov 2015
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Why TensorFlow?

● Many machine learning libraries
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Why TensorFlow?

● Flexibility + Scalability
Originally developed by Google as a single infrastructure for machine learning 
in both production and research
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Why TensorFlow?

● Flexibility + Scalability
● Popularity
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Companies using TensorFlow
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Demand for tutorials on TensorFlow
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Some cool projects using 
TensorFlow
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Classify skin cancer

12Dermatologist-level classification of skin cancer with deep neural networks (Esteva et al., Nature 2017)



WaveNet: Text to Speech

13Wavenet: A generative model for raw audio (Oord et al., 2016)

It takes several hours to synthesize 1 second!



Drawing

14Draw Together with a Neural Network (Ha et al., 2017) 



Neural Style Translation

15Image Style Transfer Using Convolutional Neural Networks (Gatys et al., 2016)
Tensorflow adaptation by Cameroon Smith (cysmith@github)



I hope that this class will give you 
the tool to build cool projects like 

those!
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Goals

● Understand TF’s computation graph approach
● Explore TF’s built-in functions and classes
● Learn how to build and structure models best suited for a deep learning 

project
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CS20
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Staff

Chip Huyen
huyenn@stanford.edu
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Michael Straka
mstraka2@stanford.edu

Pedro Garzon
pgarzon@stanford.edu



Logistics

● Piazza: piazza.com/stanford/winter2018/cs20
● Staff email: cs20-win1718-staff@lists.stanford.edu
● Students mailing list: cs20-win1718-students
● Guests mailing list: cs20-win1718-guests
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https://mailman.stanford.edu/mailman/listinfo/cs20-win1718-students
https://mailman.stanford.edu/mailman/listinfo/cs20-win1718-guests


Grading

● Assignments (3)
● Participation
● Check in
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Resources

● The official documentations
● TensorFlow’s official sample models
● StackOverflow should be your first port of call in case of bug
● Books

○ Aurélien Géron’s Hands-On Machine Learning with Scikit-Learn and TensorFlow (O’Reilly, 
March 2017)

○ François Chollet’s Deep Learning with Python (Manning Publications, November 2017)
○ Nishant Shukla’s Machine Learning with TensorFlow (Manning Publications, January 2018)
○ Lieder et al.’s Learning TensorFlow A Guide to Building Deep Learning Systems (O’Reilly, 

August 2017)
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https://www.tensorflow.org/api_docs/
https://github.com/tensorflow/models


Permission Number

Link
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https://docs.google.com/spreadsheets/d/1HZQUOQBs_hbdll5zOE_4ClFjlxLK79Juf_eUg8S2slI/edit?usp=sharing


Many of you are ahead of me in 
academia so I probably need more 

of your help than you do mine
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Getting Started
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import tensorflow as tf
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Graphs and Sessions
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Data Flow Graphs

TensorFlow separates definition of computations from their execution

Graph from TensorFlow for Machine Intelligence 28



Data Flow Graphs

Phase 1: assemble a graph

Phase 2: use a session to execute operations in the graph.

29Graph from TensorFlow for Machine Intelligence



Data Flow Graphs

Phase 1: assemble a graph

Phase 2: use a session to execute operations in the graph.

30Graph from TensorFlow for Machine Intelligence

This might change in the 
future with eager mode!!



What’s a tensor?
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What’s a tensor?

An n-dimensional array

0-d tensor: scalar (number) 

1-d tensor: vector

2-d tensor: matrix

and so on 
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Data Flow Graphs

import tensorflow as tf

a = tf.add(3, 5)

Visualized by TensorBoard
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Data Flow Graphs

import tensorflow as tf

a = tf.add(3, 5)

Why x, y?

TF automatically names the nodes when you don’t 
explicitly name them. 
x = 3
y = 5

Visualized by TensorBoard
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Data Flow Graphs

import tensorflow as tf

a = tf.add(3, 5)

Interpreted?

5

3

a
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Nodes: operators, variables, and constants
Edges: tensors



Data Flow Graphs

import tensorflow as tf

a = tf.add(3, 5)

Nodes: operators, variables, and constants
Edges: tensors

Tensors are data.
TensorFlow = tensor + flow = data + flow 
(I know, mind=blown)
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Interpreted?

5

3

a



Data Flow Graphs

import tensorflow as tf

a = tf.add(3, 5)

print(a)

>> Tensor("Add:0", shape=(), dtype=int32)
(Not 8)
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How to get the value of a?

Create a session, assign it to variable sess so we can call it later

Within the session, evaluate the graph to fetch the value of a
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How to get the value of a?

Create a session, assign it to variable sess so we can call it later

Within the session, evaluate the graph to fetch the value of a

import tensorflow as tf

a = tf.add(3, 5)

sess = tf.Session()

print(sess.run(a))

sess.close()

The session will look at the graph, trying to think: hmm, how can I get the value of a, 
then it computes all the nodes that leads to a. 39



How to get the value of a?

Create a session, assign it to variable sess so we can call it later

Within the session, evaluate the graph to fetch the value of a

import tensorflow as tf

a = tf.add(3, 5)

sess = tf.Session()

print(sess.run(a))

sess.close()
>> 8

8

The session will look at the graph, trying to think: hmm, how can I get the value of a, 
then it computes all the nodes that leads to a. 40



How to get the value of a?

Create a session, assign it to variable sess so we can call it later

Within the session, evaluate the graph to fetch the value of a

import tensorflow as tf

a = tf.add(3, 5)

sess = tf.Session()

with tf.Session() as sess:

print(sess.run(a))

sess.close()
8
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tf.Session()

A Session object encapsulates the environment in which Operation objects are 
executed, and Tensor objects are evaluated.
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tf.Session()

A Session object encapsulates the environment in which Operation objects are 
executed, and Tensor objects are evaluated.

Session will also allocate memory to store the current values of variables.
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More graph

x = 2

y = 3

op1 = tf.add(x, y)

op2 = tf.multiply(x, y)

op3 = tf.pow(op2, op1)

with tf.Session() as sess:

op3 = sess.run(op3)

Visualized by TensorBoard
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Subgraphs

Because we only want the value of pow_op and pow_op doesn’t 
depend on useless, session won’t compute value of useless
→ save computation

useless

add_op mul_op

pow_op
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x = 2

y = 3

add_op = tf.add(x, y)

mul_op = tf.multiply(x, y)

useless = tf.multiply(x, add_op)

pow_op = tf.pow(add_op, mul_op)

with tf.Session() as sess:

z = sess.run(pow_op)



Subgraphs

tf.Session.run(fetches,
    feed_dict=None,

 options=None,
 run_metadata=None)

fetches is a list of tensors whose values you want 46

useless

add_op mul_op

pow_op
x = 2

y = 3

add_op = tf.add(x, y)

mul_op = tf.multiply(x, y)

useless = tf.multiply(x, add_op)

pow_op = tf.pow(add_op, mul_op)

with tf.Session() as sess:

z, not_useless = sess.run([pow_op, useless])



Subgraphs
Possible to break graphs into several 
chunks and run them parallelly 
across multiple CPUs, GPUs, TPUs, 
or other devices

Example: AlexNet

Graph from Hands-On Machine Learning with Scikit-Learn and TensorFlow 47



Distributed Computation
To put part of a graph on a specific CPU or GPU:

# Creates a graph.

with tf.device('/gpu:2'):

  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name='a')

  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name='b')

  c = tf.multiply(a, b)

# Creates a session with log_device_placement set to True.

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

# Runs the op.

print(sess.run(c))
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What if I want to build more 
than one graph?

49



You can
but you don’t need more than one graph

The session runs the default graph
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But what if I really want to?
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URGH, NO
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● Multiple graphs require multiple sessions, each will try to use all available 
resources by default

● Can't pass data between them without passing them through 
python/numpy, which doesn't work in distributed 

● It’s better to have disconnected subgraphs within one graph
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BUG ALERT!



I insist ...
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tf.Graph()
create a graph:

g = tf.Graph()
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tf.Graph()
to add operators to a graph, set it as default:

g = tf.Graph()

with g.as_default():

x = tf.add(3, 5)

sess = tf.Session(graph=g)

with tf.Session() as sess:

sess.run(x)
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tf.Graph()
To handle the default graph:

g = tf.get_default_graph()
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tf.Graph()
Do not mix default graph and user created graphs

g = tf.Graph()

# add ops to the default graph

a = tf.constant(3)

# add ops to the user created graph

with g.as_default():

b = tf.constant(5)

Prone to errors
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tf.Graph()
Do not mix default graph and user created graphs

g1 = tf.get_default_graph()

g2 = tf.Graph()

# add ops to the default graph

with g1.as_default():

a = tf.Constant(3)

# add ops to the user created graph

with g2.as_default():

b = tf.Constant(5)

Better
But still not good enough because no more than 
one graph!
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Why graphs

1. Save computation. Only run subgraphs that lead 
to the values you want to fetch.
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Why graphs

1. Save computation. Only run subgraphs that lead 
to the values you want to fetch.

2. Break computation into small, differential pieces 
to facilitate auto-differentiation
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Why graphs

1. Save computation. Only run subgraphs that lead 
to the values you want to fetch.

2. Break computation into small, differential pieces 
to facilitate auto-differentiation

3. Facilitate distributed computation, spread the 
work across multiple CPUs, GPUs, TPUs, or other 
devices
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Why graphs

1. Save computation. Only run subgraphs that lead 
to the values you want to fetch.

2. Break computation into small, differential pieces 
to facilitate auto-differentiation

3. Facilitate distributed computation, spread the 
work across multiple CPUs, GPUs, TPUs, or other 
devices

4. Many common machine learning models are 
taught and visualized as directed graphs

A neural net graph from Stanford’s 
CS224N course
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Next class

Basic operations

Constants and variables

Data pipeline

Fun with TensorBoard

Feedback: huyenn@stanford.edu

Thanks!
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mailto:huyenn@stanford.edu

