TAIA 2018/2019
 Tpicos Avanados em Inteligencia Artificial

March 28, 2019

Knowledge Representation

Graphical Models

Knowledge Representation

Computational Logics

Knowledge Representation

Knowledge Representation

Deep Neural Networks

Probabilistic Models

- Directed Models:
- Hidden Markov Models;
- Bayesian Nets
- Naive Bayes
- Undirected Models
- Markov Networks
- Conditional Random Fields

Key Ideas

- World is described by a set of random variables:

$$
\sum \operatorname{Pr}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=1
$$

- Chain Rule:

$$
\operatorname{Pr}\left(X_{1} \mid X_{2}, \ldots, X_{n}\right) \operatorname{Pr}\left(X_{2} \mid \ldots, X_{n}\right) \ldots \operatorname{Pr}\left(X_{n}\right)
$$

- Key Idea, Conditional Independence:

$$
\operatorname{Pr}\left(X_{1} \mid X_{2}, \ldots, X_{n}\right)=\operatorname{Pr}\left(X_{1} \mid X_{i}, X_{j}\right)
$$

An Example: Markov Models

$$
\begin{gathered}
\operatorname{Pr}\left(t_{0}=I, t_{1}=U_{A}, t_{2}=U_{A}, t_{3}=U_{B}, t_{4}=T\right)= \\
\operatorname{Pr}\left(t_{4}=T \mid t_{0}=I, t_{1}=U_{A}, t_{2}=U_{A}, t_{3}=U_{B}\right)= \\
\operatorname{Pr}\left(t_{3}=U_{B} \mid t_{0}=I, t_{1}=U_{A}, t_{2}=U_{A}\right) \times \\
\operatorname{Pr}\left(t_{2}=U_{A} \mid t_{0}=I, t_{1}=U_{A}\right) \operatorname{Pr}\left(t_{1}=U_{A} \mid t_{0}=I\right) \operatorname{Pr}\left(t_{0}=I\right)= \\
\operatorname{Pr}\left(t_{4}=T \mid t_{3}=U_{B}\right) \operatorname{Pr}\left(t_{3}=U_{B} \mid t_{2}=U_{A}\right) \operatorname{Pr}\left(t_{2}=U_{A} \mid t_{1}=U_{A}\right) \operatorname{Pr}\left(t_{1}=U\right.
\end{gathered}
$$

Hidden Markov Models

$$
\operatorname{Pr}(A A G C, E E 5 I)=\operatorname{Pr}(C \mid A A G . E E 5 I) \ldots
$$

$$
\operatorname{Pr}(C \mid I) \operatorname{Pr}(I \mid 5) \operatorname{Pr}(G \mid 5) \operatorname{Pr}(5 \mid E) \operatorname{Pr}(A \mid E) \operatorname{Pr}(E \mid E) \operatorname{Pr}(A \mid E) \operatorname{Pr}(E \mid S t a r t)=
$$

$$
\Pi \sigma_{i}\left(o_{j}\right) \pi_{i-1 \rightarrow i}
$$

Viterbi: states for max $\operatorname{Pr}($ Observation, States).

Another Example: Naive Bayes Classifier

$$
\operatorname{Pr}\left(Y \mid X_{1}, X_{2}, X_{3}\right)=\frac{\operatorname{Pr}\left(Y X_{1} X_{2} X_{3}\right)}{\operatorname{Pr}\left(X_{1} X_{2} X_{3}\right)}=
$$

$$
\operatorname{Pr}(A A G C, E E 5 I)=\operatorname{Pr}(C \mid A A G . E E 5 I) \ldots
$$

$\operatorname{Pr}(C \mid I) \operatorname{Pr}(I \mid 5) \operatorname{Pr}(G \mid 5) \operatorname{Pr}(5 \mid E) \operatorname{Pr}(A \mid E) \operatorname{Pr}(E \mid E) \operatorname{Pr}(A \mid E) \operatorname{Pr}(E \mid S t a r t)=$

$$
\Pi \sigma_{i}\left(o_{j}\right) \pi_{i-1 \rightarrow i}
$$

Viterbi: states for $\max \operatorname{Pr}($ Observation, States).

Another Example: Naive Bayes Classifier

$$
\begin{gathered}
\operatorname{Pr}\left(Y \mid X_{1}, X_{2}, X_{3}\right)=\frac{\operatorname{Pr}\left(Y X_{1} X_{2} X_{3}\right)}{\operatorname{Pr}\left(X_{1} X_{2} X_{3}\right)}= \\
\frac{\operatorname{Pr}\left(X_{1} \mid Y X_{2} X_{3}\right) \operatorname{Pr}\left(X_{2} \mid Y X_{3}\right) \operatorname{Pr}\left(X_{\mid} Y\right) \operatorname{Pr}(Y)}{\operatorname{Pr}\left(X_{1} X_{2} X_{3}\right)}= \\
\frac{\operatorname{Pr}\left(X_{3} \mid Y\right), \operatorname{Pr}\left(X_{2} \mid Y\right), \operatorname{Pr}\left(X_{3} \mid Y\right) \operatorname{Pr}(Y)}{\operatorname{Pr}\left(X_{1} X_{2} X_{3}\right)} \\
\frac{\operatorname{Pr}\left(X_{3} \mid \neg Y\right), \operatorname{Pr}\left(X_{2} \mid \neg Y\right) \operatorname{Pr}\left(X_{3} \mid \neg Y\right) \operatorname{Pr}(\neg Y)}{\operatorname{Pr}\left(X_{1} X_{2} X_{3}\right)}
\end{gathered}
$$

Probabilities and Logics

- Why logic:
- Understandable Models
- Well-defined meaning
- Repeated Structure (first order)

At the beginning

- Propositional Logic: sentences + connectives
- Deduction: Modus Ponens, Resolution
- applied to Mathematics in the XIX/early XX Century
- many varieties: classical, intuitionistic

Probabilities and Logics

- Prove ϕ is true, given some KB Δ
- : Issues:
- can we always prove truth/falsehood?
- Semantic: often used Closed World Assumption
- Technical: Some logics are undecidable (Peano's Arithmetic)
- Inference: we may not be guaranteed to find a solution in useful time: termination, NP.

Inference in Logic

- Like in BN
- Exact Inference: SAT Solver, Resolution
- Approximate Inference: SAT solvers, similar to MCMC

SAT:

- Equivalence Checking, ie, two circuits the same?
- Model Checking, ie, does property P hold;
- Constraints and OR;
- Planning (but best planners use Machine Learning, see "Delfi: Online Planner Selection for Cost-Optimal Planning"
- Approximate Inference: SAT solvers, similar to MCMC
- Best SAT Solver also uses ML: "MapleSAT: Combining Machine Learning and Deduction in SAT solvers".

SAT Solvers

- Canonical Form: CNF

$$
(a \vee b \vee \neg c) \wedge(\neg \vee \neg a \vee \neg d)
$$

- Intuition: satisfy all the disjoints, clauses;
- Propagation:

1. $a \wedge(a \vee b) \wedge c \rightarrow c$
2. $a \wedge(\neg a \vee b) \wedge c \rightarrow b \wedge c$
3. $a \wedge(\neg a) \wedge c \rightarrow$ False

- SAT Solvers: use these ideas to find satisfibility.

Sat Solving

- While c:

1. Pick a α, set to true or false;
2. Propagate

- Tricks:
- Find the culprit:

$$
(\neg \alpha \vee \theta \vee \neg c) \wedge \ldots(\alpha \vee b) \ldots \wedge(\neg \alpha \vee \neg b \vee \theta) \wedge(\neg \theta \vee \neg b)
$$

- Set $c=1,(\alpha \vee b) \ldots(b \vee \neg \alpha \vee c) \vee(b \vee \neg c)$
- Smart Backtracking: find the root of the conflict,
- Learning: store patterns that caused conflict
- Pre-Compilation: assemble large subsets of the graph.

ODBBs: Ordered Binary Decision Diagrams

- Proposed by Edmond Clarke for symbolic model checking, eg,temporal logics;
- while avoiding deduction
- Each node is a boolean decision node:
- $T=\alpha \wedge L \vee \neg \alpha \wedge R$ and
- $T=\alpha \wedge L \vee \neg \alpha \wedge \neg R$
- Nodes always follow the same ordering from root to branch
- The same variable may have several times, but at the same level
- No duplicated sub-trees: if T is rooted in α, there is no other T^{\prime} rooted in another instance of α

ODBBs: Order is Everything

ODBBs: Great, but why care?

- Excellent for model checking simple languages
- Can they be used for KR?
- Very low-level for propositional only
- But with Probabilities:
- Imagine we know $\operatorname{Pr}\left(\alpha_{i}\right)$ and that the α_{i} are independent.
- Want to know the total probability.
- Base Cases, $\operatorname{Pr}(1)=1, \operatorname{Pr}(0)=0$;
- Induction: $\operatorname{Pr}\left(N_{\alpha}\right)=\operatorname{Pr}(\alpha \wedge L \vee \neg \alpha \wedge(\neg) R)$
- Exclusivity: $\operatorname{Pr}(\alpha \wedge L)+\operatorname{Pr}(\neg \alpha \wedge(\neg) R)$
- Independence: $\operatorname{Pr}(\alpha) \operatorname{Pr}(L)+(1-\operatorname{Pr}(\alpha)) \operatorname{Pr}((\neg) R)$
- Dynamic Programming in action....

ODBBs: Great, but why care?

- ProbLog uses this method to combine Prolog rules and probabilties;
- See ProbLog-II in Leuven
- Bayesian networks can use this, but:
- $\operatorname{Pr}(A \mid B C)$ requires B and C below A, or
- must follow a topological sort of the graph
- also, the BDDs are pretty scary
- People prefer ACs and their descendents...
- What about learning?

ODBBs: parameter learning

- We can do EM, because it uses DP
- More fun to use gradient descent:
- Maximize $M S R=\sum_{E}(\operatorname{Pr}(E)-\overline{\operatorname{Pr}}(E))^{2}$
- that is $\frac{\delta M S R}{\delta \alpha_{i}}=\sum_{E}-2 *(\operatorname{Pr}(E)-\overline{\operatorname{Pr}}(E)) * \frac{\delta \overline{\operatorname{Pr}}(E)}{\delta \alpha_{i}}=0$
- Going back to the DP equations, we get:

$$
\begin{aligned}
& \vee i \neq j \frac{\delta \alpha_{j} * P_{L}+\left(1-a l p h a_{j}\right) * P_{R}}{\delta \alpha_{i}}=\alpha_{j} * \frac{\delta P_{R}}{\delta \alpha_{i}}+\left(1-\alpha_{j}\right) \frac{\delta P_{R}}{\delta \alpha_{i}} \\
& \vee i=j \frac{\delta \alpha_{i} * P_{L}+\left(1-\alpha_{i}\right) * P_{R}}{\delta \alpha_{i}}=P_{L}+\alpha_{i} \frac{\delta P_{L}}{\delta \alpha_{i}}+\left(1-\alpha_{i}\right) \frac{\delta P_{R}}{\delta \alpha_{i}}+\left(1-P_{R}\right)
\end{aligned}
$$

- Done yet?

ODBBs: parameter learning

- We have no guarantee $0 \leq \alpha \leq 1$
- We can clamp them, ugly
- Usual trick, sigmoid function:

$$
\alpha=\operatorname{sigmoid}(\theta)=\frac{1}{1-e^{-\theta}}
$$

- Nice Derivative:

$$
\frac{d \alpha}{d \theta}=\alpha(1-\alpha)
$$

