
TAIA 2018/2019
Tpicos Avanados em Inteligencia Artificial

March 28, 2019

Knowledge Representation

Graphical Models

Knowledge Representation

Computational Logics

Knowledge Representation

Linear Models

Knowledge Representation

Deep Neural Networks

Probabilistic Models

I Directed Models:
I Hidden Markov Models;
I Bayesian Nets
I Naive Bayes

I Undirected Models
I Markov Networks
I Conditional Random Fields

Key Ideas

I World is described by a set of random variables:∑
Pr(X1,X2, . . . ,Xn) = 1

I Chain Rule:

Pr(X1|X2, . . . ,Xn)Pr(X2| . . . ,Xn) . . .Pr(Xn)

I Key Idea, Conditional Independence:

Pr(X1|X2, . . . ,Xn) = Pr(X1|Xi ,Xj)

An Example: Markov Models

Pr(t0 = I , t1 = UA, t2 = UA, t3 = UB , t4 = T) =

Pr(t4 = T |t0 = I , t1 = UA, t2 = UA, t3 = UB) =

Pr(t3 = UB |t0 = I , t1 = UA, t2 = UA)×
Pr(t2 = UA|t0 = I , t1 = UA)Pr(t1 = UA|t0 = I)Pr(t0 = I) =

Pr(t4 = T |t3 = UB)Pr(t3 = UB |t2 = UA)Pr(t2 = UA|t1 = UA)Pr(t1 = U)

Hidden Markov Models

Pr(AAGC ,EE5I) = Pr(C |AAG .EE5I) . . .

Pr(C |I)Pr(I |5)Pr(G |5)Pr(5|E)Pr(A|E)Pr(E |E)Pr(A|E)Pr(E |Start) =

Πσi (oj)πi−1→i

Viterbi: states for max Pr(Observation,States).

Another Example: Naive Bayes Classifier

Classifier: Pr(Y |X1,X2,X3)
Pr(6Y |X1,X2,X3)

Pr(Y |X1,X2,X3) =
Pr(YX1X2X3)

Pr(X1X2X3)
=

Pr(AAGC ,EE5I) = Pr(C |AAG .EE5I) . . .

Pr(C |I)Pr(I |5)Pr(G |5)Pr(5|E)Pr(A|E)Pr(E |E)Pr(A|E)Pr(E |Start) =

Πσi (oj)πi−1→i

Viterbi: states for max Pr(Observation, States).

Another Example: Naive Bayes Classifier

Classifier: Pr(Y |X1,X2,X3)
Pr(6Y |X1,X2,X3)

Pr(Y |X1,X2,X3) =
Pr(YX1X2X3)

Pr(X1X2X3)
=

Pr(X1|YX2X3)Pr(X2|YX3)Pr(X|Y)Pr(Y)

Pr(X1X2X3)
=

Pr(X3|Y),Pr(X2|Y),Pr(X3|Y)Pr(Y)

Pr(X1X2X3)

Pr(X3|¬Y),Pr(X2|¬Y)Pr(X3|¬Y)Pr(¬Y)

Pr(X1X2X3)

Probabilities and Logics

I Why logic:

I Understandable Models
I Well-defined meaning
I Repeated Structure (first order)

At the beginning

I Propositional Logic: sentences + connectives

I Deduction: Modus Ponens, Resolution

I applied to Mathematics in the XIX/early XX Century

I many varieties: classical, intuitionistic

Probabilities and Logics

I Prove φ is true, given some KB ∆

I : Issues:

I can we always prove truth/falsehood?
I Semantic: often used Closed World Assumption
I Technical: Some logics are undecidable (Peano’s Arithmetic)
I Inference: we may not be guaranteed to find a solution in

useful time: termination, NP.

Inference in Logic

I Like in BN

I Exact Inference: SAT Solver, Resolution
I Approximate Inference: SAT solvers, similar to MCMC

SAT:

I Equivalence Checking, ie, two circuits the same?
I Model Checking, ie, does property P hold;
I Constraints and OR;
I Planning (but best planners use Machine Learning, see “Delfi:

Online Planner Selection for Cost-Optimal Planning”
I Approximate Inference: SAT solvers, similar to MCMC

I Best SAT Solver also uses ML: “MapleSAT: Combining
Machine Learning and Deduction in SAT solvers”.

SAT Solvers

I Canonical Form: CNF

(a ∨ b ∨ ¬c) ∧ (¬ ∨ ¬a ∨ ¬d)

I Intuition: satisfy all the disjoints, clauses;

I Propagation:

1. a ∧ (a ∨ b) ∧ c → c
2. a ∧ (¬a ∨ b) ∧ c → b ∧ c
3. a ∧ (¬a) ∧ c → False

I SAT Solvers: use these ideas to find satisfibility.

Sat Solving

I While c :

1. Pick a α, set to true or false;
2. Propagate

I Tricks:
I Find the culprit:

(¬α ∨ θ ∨ ¬c) ∧ . . . (α ∨ b) . . . ∧ (¬α ∨ ¬b ∨ θ) ∧ (¬θ ∨ ¬b)

I Set c = 1, (α ∨ b) . . . (b ∨ ¬α ∨ c) ∨ (b ∨ ¬c)
I Smart Backtracking: find the root of the conflict,
I Learning: store patterns that caused conflict
I Pre-Compilation: assemble large subsets of the graph.

ODBBs: Ordered Binary Decision Diagrams

I Proposed by Edmond Clarke for symbolic model checking,
eg,temporal logics;

I while avoiding deduction
I Each node is a boolean decision node:

I T = α ∧ L ∨ ¬α ∧ R and
I T = α ∧ L ∨ ¬α ∧ ¬R

I Nodes always follow the same ordering from root to branch
I The same variable may have several times, but at the same

level

I No duplicated sub-trees: if T is rooted in α, there is no other
T ′ rooted in another instance of α

ODBBs: Order is Everything

ODBBs: Great, but why care?

I Excellent for model checking simple languages

I Can they be used for KR?

I Very low-level for propositional only

I But with Probabilities:

I Imagine we know Pr(αi) and that the αi are independent.

I Want to know the total probability.

I Base Cases, Pr(1) = 1, Pr(0) = 0;
I Induction: Pr(Nα) = Pr(α ∧ L ∨ ¬α ∧ (¬)R)
I Exclusivity: Pr(α ∧ L) + Pr(¬α ∧ (¬)R)
I Independence: Pr(α)Pr(L) + (1− Pr(α))Pr((¬)R)

I Dynamic Programming in action....

ODBBs: Great, but why care?

I ProbLog uses this method to combine Prolog rules and
probabilties;

I See ProbLog-II in Leuven

I Bayesian networks can use this, but:

I Pr(A|BC) requires B and C below A, or
I must follow a topological sort of the graph
I also, the BDDs are pretty scary
I People prefer ACs and their descendents...

I What about learning?

ODBBs: parameter learning

I We can do EM, because it uses DP

I More fun to use gradient descent:

I Maximize MSR =
∑

E (Pr(E)− Pr(E))2

I that is δMSR
δαi

=
∑

E −2 ∗ (Pr(E)− Pr(E)) ∗ δPr(E)
δαi

= 0

I Going back to the DP equations, we get:

I i 6= j
δαj∗PL+(1−alphaj)∗PR

δαi
= αj ∗ δPR

δαi
+ (1− αj)

δPR

δαi

I i = j δαi∗PL+(1−αi)∗PR

δαi
= PL + αi

δPL

δαi
+ (1− αi)

δPR

δαi
+ (1− PR)

I Done yet?

ODBBs: parameter learning

I We have no guarantee 0 ≤ α ≤ 1

I We can clamp them, ugly

I Usual trick, sigmoid function:

α = sigmoid(θ) =
1

1− e−θ

I Nice Derivative:
dα

dθ
= α(1− α)

