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Knowledge Representation
Graphical Models
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Knowledge Representation

Computational Logics




Knowledge Representation

Linear Models
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Knowledge Representation

Deep Neural Networks
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Probabilistic Models

» Directed Models:
» Hidden Markov Models;
» Bayesian Nets
» Naive Bayes

» Undirected Models

» Markov Networks
» Conditional Random Fields



Key ldeas

» World is described by a set of random variables:

> Pr(Xi, Xa, ..., Xn) =1
» Chain Rule:

Pr(X1|Xa, ..., Xa)Pr(Xa| ..., X5) ... Pr(X,)

» Key Idea, Conditional Independence:

Pr(Xl‘X2, Ce ,Xn) = Pr(XllX,-, )<J)



An Example: Markov Models

Invocation
State . 1
~,( UsageState | __—
B

Pr(to=1,t1 = Ua,th = Up, t3 =Ug, ta = T) =
Pr(ta=Tlto=1,t1 = Up,to = Ua, t3 = Ug) =
Pr(ts = Ug|to = I,t1 = Ua, trp = Ua) X
Pr(ty = Ualto = I, t1 = Ua)Pr(t1 = Ualto = )Pr(to = 1) =
Pr(ta = T|ts = Ug)Pr(tz3 = Ug|ta = Ua)Pr(to = Ua|ti = Ua)Pr(t1 = U




Hidden Markov Models

03 03

/ / \us

~—,( UsageState \ _—
B

Pr(AAGC, EE51) = Pr(C|AAG.EE5I) ...

Pr(C|1)Pr(1|5)Pr(G|5)Pr(5|E)Pr(A|E)Pr(E|E)Pr(A|E)Pr(E|Start) =

MNoi(oj)mi—1-i

Viterbi: states for max Pr(Observation, States).



Another Example: Naive Bayes Classifier

Pr(Y|X1,X>,X3)

C|aSSIf|er. W

Pr( YX1X2X3) .
Pr(X1XaX3)

Pr(Y|X1, Xz, X3) =
Pr(AAGC, EE51) = Pr(C|AAG.EES5]). ..

Pr(C|1)Pr(1|5)Pr(G|5)Pr(5|E)Pr(A|E)Pr(E|E)Pr(A|E)Pr(E|Start) =

Noj(oj)mi—1-i

Viterbi: states for max Pr(Observation, States).



Another Example: Naive Bayes Classifier

Pr(Y‘Xl,X27X3)
Pr(Y|X1,X2,X3)

Classifier:
Pr(YXiX2X3)
Pr(X1X2X3)
Pr(Xy|YXoX3) Pr(Xa| YX3)Pr(X|Y)Pr(Y) _
Pr(X1X2X3)
Pr(X3|Y), Pr(X2|Y), Pr(Xs|Y)Pr(Y)

Pr(X1X2X3)

Pr(X3|=Y), Pr(Xa|=Y)Pr(Xs|=Y)Pr(=Y)
Pr(X1X2X3)

Pr(Y’Xl,Xg, X3) =




Probabilities and Logics

» Why logic:

» Understandable Models
» Well-defined meaning
» Repeated Structure (first order)



At the beginning

Propositional Logic: sentences + connectives

v

v

Deduction: Modus Ponens, Resolution
applied to Mathematics in the XIX/early XX Century

v

» many varieties: classical, intuitionistic



Probabilities and Logics

> Prove ¢ is true, given some KB A

> : |ssues:

vV vy vVvYy

can we always prove truth/falsehood?

Semantic: often used Closed World Assumption

Technical: Some logics are undecidable (Peano's Arithmetic)
Inference: we may not be guaranteed to find a solution in
useful time: termination, NP.



Inference in Logic

» Like in BN

» Exact Inference: SAT Solver, Resolution
» Approximate Inference: SAT solvers, similar to MCMC

SAT:

Equivalence Checking, ie, two circuits the same?

Model Checking, ie, does property P hold;

Constraints and OR;

Planning (but best planners use Machine Learning, see “Delfi:
Online Planner Selection for Cost-Optimal Planning”

» Approximate Inference: SAT solvers, similar to MCMC

» Best SAT Solver also uses ML: “MapleSAT: Combining
Machine Learning and Deduction in SAT solvers”.

vV vy vy



SAT Solvers

Canonical Form: CNF

v

(avbV-—c)A(=V-aV-d)

v

Intuition: satisfy all the disjoints, clauses;

v

Propagation:

1. an(avb)Ac—c
2. aN(maVb)Ac—bAc
3. aA(—a) A c — False

v

SAT Solvers: use these ideas to find satisfibility.



Sat Solving

» While c:
1. Pick a «, set to true or false;
2. Propagate

» Tricks:

» Find the culprit:

(maVOV=c)A...(aVb)...A(-aV=bVO)A(-0V -b)

Setc=1, (aVb)...(bV-aVc)V(bV-c)

Smart Backtracking: find the root of the conflict,
Learning: store patterns that caused conflict
Pre-Compilation: assemble large subsets of the graph.

vV vy Vvyy



ODBBs: Ordered Binary Decision Diagrams

» Proposed by Edmond Clarke for symbolic model checking,
eg,temporal logics;
» while avoiding deduction
» Each node is a boolean decision node:
» T=aALV-aARand
» T=aALV-aA-R
> Nodes always follow the same ordering from root to branch
» The same variable may have several times, but at the same
level
» No duplicated sub-trees: if T is rooted in «, there is no other
T’ rooted in another instance of «



ODBBs: Order is Everything




ODBBs: Great, but why care?

» Excellent for model checking simple languages

» Can they be used for KR?

> Very low-level for propositional only

» But with Probabilities:

» Imagine we know Pr(c«;) and that the «; are independent.
> Want to know the total probability.

Base Cases, Pr(1) =1, Pr(0) =0;

Induction: Pr(N,) = Pr(a ALV -aA(—-)R)
Exclusivity: Pr(a A L) + Pr(—a A (—)R)
Independence: Pr(a)Pr(L) + (1 — Pr(a))Pr((—)R)

vV vy vVvYy

» Dynamic Programming in action....



ODBBs: Great, but why care?

» ProblLog uses this method to combine Prolog rules and
probabilties;
» See ProblLog-Il in Leuven

v

Bayesian networks can use this, but:

Pr(A|BC) requires B and C below A, or
must follow a topological sort of the graph
also, the BDDs are pretty scary

People prefer ACs and their descendents...

vV vy vy

v

What about learning?



ODBBs: parameter learning

v

We can do EM, because it uses DP

More fun to use gradient descent:

Maximize MSR = 3" c(Pr(E) — Pr(E))?

that is SMSR — S~ _2 4 (Pr(E) — Pr(E)) « 2P1E) — ¢

ooy

v

v

v

v

Going back to the DP equations, we get:
> 7é.léocJ*PL—}—(l alpha;)*Pg =q; 5PR + (1 _ aJ) 5P

daj

JW PL +0415PL+(1_O") daj +(1 - Pr)

> | =

v

Done yet?



ODBBs: parameter learning

v

We have no guarantee 0 < a <1

v

We can clamp them, ugly

» Usual trick, sigmoid function:
. d(0) 1
= sigmoi = —
@ & 1—e?
» Nice Derivative: J
e a(l —a)

0=



