
Your personal archival: Repository Server

José Paulo Leal1 and Ricardo Queirós2
1 CRACS & DCC-FCUP, University of Porto, Portugal

2 CRACS & DI-ESEIG/IPP, Porto, Portugal

1 Overview
The architecture of eLearning platforms is moving from centralised, component-

based systems to decentralised platforms assembling multiple services [1]. These
services can participate in several learning processes that are easily reconfigured to
meet changing requirements and demands. The Learning Objects Repositories
(LOR) are an essential part of these service oriented platforms since they provide
content to several types of services.

The crimsonHex system is a specialised and interoperable repository of
programming problems defined as learning objects. The repository is one of several
separate components of the EduJudge network and plays a main role on its overall
architecture, since it acts as a service provider for the other e-Learning systems
such as Learning Management Systems (LMS) and Evaluation Engines (EE).

Figure 1: EduJudge Network

The main feature of an interoperable repository is the support for automatic
communication with other systems. Hence the architecture of crimsonHex is driven
by the need for interoperability. An API is the heart of its architecture, defining
functions implemented by a Core component and required both by other
crimsonHex components (Web Manager and Importer) and external consumers
of crimsonHex's services (LMS and EE) as depicted in Figure 2.

Figure 2: Stack diagram of crimsonHex

The architecture of crimsonHex repository is divided in three main components:

• the Core exposes the main features of the repository, both to external
services, such as the LMS and the EE, and to internal components - the Web
Manager and the Importer;

• the Web Manager allows the creation, revision, versioning,
uploading/downloading of LOs and related meta-data, enforcing compliance
with controlled vocabularies;

• the Importer populates the repository with existing legacy repositories. In
the remainder we focus on the Core component, more precisely, its
functions, communication model and implementation.

The core component of crimsonHex provides a minimal set of functions based
on the IMS DRI specification. This specification prescribes a list of basic functions
exposed by SOAP web services. We extended this specification both with a
RESTfull interface and with new functions, for reporting learning objects' usage
data and managing the structure of the repository. The latest type is intended
mostly for the user interface layer (Web Manager).

The repository is implemented over other software layers depicted as grey
rectangles in Figure 2 that must be installed prior to the installation of crimsonHex
itself. In the remainder of this chapter we enumerate these system requirements and
explain how they can be installed. Finally we present configuration options for
securing the repository.

2 System Requirements
The crimsonHex repository is a web system with both a user and an application

interfaces. This means that the system itself is deployed to a host server but it also

requires client software in order to use. As a rule, servers and clients will run on
different machines. However, at least for testing purposes, a single machine can act
simultaneously as client and server.

The hardware, operating system and software configurations to host the
repository are listed in Table 1.

 Minimum Recommended Test with

Hardware
RAM 256MB 512MB 4GB

Hard Disk1 1GB 4GB 2GB

Operating
System

Windows XP XP XP and Vista

Linux Linux 2.6 Linux 2.6 Mandriva 2009.1

Software

JRE/JDK 1.5 1.6 1.6

Servlet
Container

support to JSP 2.0
and Servlet 2.4

support to JSP 2.1
and Servlet 2.5

Tomcat 6

Table 1: Server requisites

The remainder of this section focuses exclusively on the server installation. On
client side a modern web browser is enough to access the user interface. The
application interface will depend on the programming platform and thus is out of
the scope of this handbook. The client requisites are summarized in Table 2.

 Minimum Recommended Tested with

Web
browser

IE 6.0 8.0 7.0

Firefox 1.0 3.5 3.0

Safari 2.0 4.0 4.02

Opera 9.0 9.0 9.0

Screen Resolution 1024x768 1280x768 1440x900

Web service
clients

REST HTTP/1.0 HTTP/1.1 HttpURLConnection

SOAP SOAP 1.1 Axis 1.0

Table 2: Client requisites

3 JAVA installation
First you must check your server has a Java Runtime Environment (JRE) to

execute JAVA applications. The Java web site has detailed instruction on how to
download and install Java on Linux, Windows, Solaris and Apple (OS X) operating
systems. These instructions are available from the following URL:
http://www.java.com/en/download/manual.jsp.

After installing Java on your computer you may be asked to restart it.

1 Excluding the Operating System
2 Windows version

4 Servlet Container installation
Servlets are Java objects that dynamically process Web requests. A servlet is

managed by a servlet container, (also known as Web container) which is essentially
a specialized Web server that maps certain URLS to specific servlets and is
responsible for managing their lifecycle. The servlet processes each request for its
associated URLs and produces a response that is sent back to the client.

If you do not have a container installed on your host system, you need to install
one that implements the Java Servlet 2.5 and the JavaServer Pages 2.1 (JSP)
specifications from Sun Microsystems. There are several containers available, such
as: Apache Tomcat, Sun GlassFish, Red Hat JBoss, BEA WebLogic Server,
Caucho's Resin Server, IBM WebSphere Server or Apple WebObjects. From the
previous list, the one that has been tested was the Apache Tomcat, but according to
the JAVA specifications supported by the other containers the repository should
work in any of them.

 Apache Tomcat is an open source servlet container developed by the Apache
Software Foundation (ASF). Tomcat version 6.0 implements the Java Servlet 2.5
and the JavaServer Pages 2.1 (JSP) specifications and provides an HTTP web
server environment for Java code to run. To install Tomcat you should follow the
following instructions:

1. Locate the latest production version of Tomcat from
http://tomcat.apache.org/download-60.cgi .

2. Choose the format type of the core binary distribution: zip (Windows) or
tar.gz (Unix)

3. Save the file (named something like apache-tomcat-6.0.20.zip) to your
computer

4. Unzip the file into a directory of your choice such as c:\ (windows) or
/usr/local (Unix). The program is contained in a subdirectory named
something like apache-tomcat-6.0.20

5. Open a command shell and change your directory to the Tomcat directory
such as c:\apache-tomcat-6.0.20 (Windows) or /usr/local/apache-
tomcat-6.0.20 (Unix)

6. Change to the bin subdirectory

7. Type startup.bat (Windows) or startup.sh (Unix) followed by ENTER

Point your web browser to http://localhost:8080 . You should get the
default Tomcat home page, similar to Figure 3:

Figure 3: Default Tomcat home page

At this moment Tomcat is successfully installed and the HTML source of the
page presented in Figure 3 can be found on the local file system at:
$CATALINA_HOME/webapps/ROOT/index.html, where "$CATALINA_HOME" is
the root of the Tomcat installation directory. To stop the Tomcat server, type
shutdown.bat (Windows) or shutdown.sh (Unix) followed by ENTER.

The default Tomcat home page presents four sections named Administration,
Documentation, Tomcat Online and Miscellaneous. For security reasons, using the
administration webapp is restricted to users with role "admin". The manager
webapp is restricted to users with role "manager". Users are defined in
$CATALINA_HOME/conf/tomcat-users.xml . The default content of this file
includes a user with the previous two rules:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 <role rolename="manager"/>
 <role rolename="admin"/>
 <user username="admin" password="" roles="admin, manager"/>
</tomcat-users>

 The Administration section provides a Status link to inform the Administrator
about relevant Server information (e.g. software versions, memory status, and
thread statistics). The Tomcat Manager link allows you to list all the applications in
the servlet container and allows the Administrator to start/stop, reload and
undeploy an existent application.

Figure 4: Managing applications in Tomcat

Using the Manager (Figure 5), you can also deploy your application to the
servlet container as a Web application archive (WAR) file. You can either deploy
a WAR file already on the server or upload a WAR file from the computer running
your web client. Alternatively, you can just drop the WAR file on the
$CATALINA_HOME/webapps directory of your tomcat server.

Figure 5: Deploying WAR files in Tomcat

A WAR file contains a complete Java web application,, including server-side
classes, static Web content (HTML, image, and sound files). A WAR has a specific
directory structure. The top-level directory is where JSP pages, client-side classes
and static Web content are stored. The top-level directory contains a special
subdirectory called WEB-INF, which contains the following files and directories:

• web.xml: Web application deployment descriptor

• classes: directory with server-side classes (servlets and other classes)

• lib: directory that contains JAR archives of libraries

The web.xml describes how to deploy a web application in a servlet container. If
the web application uses servlets, then the servlet container uses this file to map an
URL request to a specific servlet. Here is a short example:

<?xml version="1.0" encoding="UTF-8"?>
<web-app …>
 <display-name>MyCompany App</display-name>

<description>Details of MyCompany App</description>
<servlet>
 <servlet-name>MyServlet</servlet-name>
 <servlet-class>MyCompany.MyServlet</servlet-cl ass>

</servlet>

<servlet-mapping>
 <servlet-name>MyServlet</servlet-name>
 <url-pattern>/logic/*</url-pattern>
</servlet-mapping>

<welcome-file-list>
 <welcome-file>index.htm</welcome-file>
 <welcome-file>index.jsp</welcome-file>
</welcome-file-list>

</web-app>

web-app Elements Description

display-name
Application short name (displayed in Tomcat
Manager).

description Optional description tag (not used by Tomcat).

servlet/servlet-name Symbolic servlet name.

servlet/servlet-class Fully qualified class name for the servlet class

servlet-
mapping/servlet-name

 Symbolic servlet name linking this URL mapping to
a servlet definition

servlet-mapping/url-
pattern URL patterns which will trigger the servlet

welcome-file-
list/welcome-file

Define, in order of preference, the default file name
for the web application and its sub-directories.

Table 3: Main elements in the web.xml file

The information in Table 3 can be complemented reading the full schema of the
Web application deployment descriptor file [2].

Included in the distribution of Tomcat are sample Servlets and JSPs (with source
code), extensive documentation and an introductory guide to developing Java web
applications.

5 crimsonHex installation
The crimsonHex repository is distributed under a GNU-GPL v2 License. For

more details we advise you to read the GNU General Public License on the GNU
web site [3].

 The repository is distributed as a single package, including the Core and the
Web Manager. To install it follow these instructions:

1. Open a web browser and locate the latest version of crimsonHex from the web
address http://mooshak.dcc.fc.up.pt/~edujudge/crimsonHex/distrib/

2. Download the latest version of the repository as a single WAR file;

3. Deploy the WAR file to the servlet container (e.g. Tomcat: use the Tomcat
Manger to upload the WAR file to the server or just drop the WAR file in
webapps directory of Tomcat installation);

4. Open your favourite web browser and type http://localhost:8080/crimsonHex.

You should get the home page of the web interface of the crimsonHex repository
called Web Manager as illustrated in Figure 6.

Figure 6: Web Manager home page

The Web Manager allows users to browse the repository and access learning
objects using a web interface. This component of the crimsonHex repository is
detailed in the section “Feeding the beast: Managing your collections of problems”.
The Web Manager contains also a tutorial on accessing the repository using web
services.

6 Web service security
Security is a major concern in a repository of learning objects. The architecture

of crimsonHex defines two access points to the repository: using the Web Manager
or interacting directly with the Core. User authentication and authorization in the
Web Manager is based on access credentials and in detailed in the chapter entitled

“Feeding the beast: Managing your collections of problems”. Web services security
(e.g. LMS, EE) is described in the remainder of this section.

Following the design principles of simplicity and efficiency we decided to avoid
the management of users and access control in the Core. This decision does not
preclude the security of this component since we can control these features in the
servlet container (e.g. Tomcat). By default, you do not need to authenticate to
access Tomcat resources. To authenticate users accessing Tomcat resources we can
use the following mechanisms:

• HTTP Basic Authentication: allow a web browser to provide credentials
(username and password) when making a request. If SSL is not used, then
the credentials are sent as plaintext and could be intercepted easily;

• HTTP Digest Authentication: is also performed by the browser upon
request by the web server. However, in this case the password is digested
with the secure MD5 algorithm before it is sent by the browser;

• HTTPS Client Authentication: secure the channel using HTTPS (HTTP
over SSL - Secure Sockets Layer). The authentication is achieved through
the verification of client certificates provided by SSL. To implement this
approach it’s necessary to configure the servlet container (e.g. Tomcat) to
support HTTPS requests with authorized certificates.

Authenticated clients can be granted access to resources by configuring the
web.xml referred on section 4. However, you can authorize access to resource
based on client identification rather than on user authentication. This approach does
not require user management and provided a reasonable security, although without
ensuring the confidentiality of the exchanged data.

Client identification based authorization in Tomcat uses valve components. A
Valve is a component inserted in the request processing pipeline of Tomcat. The
following valves can be used for client identification:

• Remote Address Filter - allows you to compare the IP address of the
client that submitted this request against one or more regular expressions,
and either allow the request to continue or refuse to process the request
from this client;

• Remote Host Filter - allows you to compare the hostname of the client
that submitted this request against one or more regular expressions, and
either allow the request to continue or refuse to process the request from
this client.

To exemplify the use of valves for this purpose we present the configuration
steps to restrict the access to a crimsonHex deployed application in Tomcat using
the Remote Address Filter:

1. Open the server.xml file located on the local file system at
$CATALINA_HOME/conf, where "$CATALINA_HOME" is the root of
the Tomcat installation directory.

2. Inside the existent host element put the following code:

<Context path="/crimsonHex">

<Valve

className="org.apache.catalina.valves.RemoteAddrVal ve"

allow="192.168.40.190"/>

</Context>

3. Start Tomcat

The previous example sets the access of the crimsonHex repository to the
computer with the IP defined in the allow attribute of the Valve element. Note that
the Valve element is surrounded by a Context element representing a web
application, which is run within a particular virtual host (defined in the host

element). The valve has a className attribute that must be set to the specific filter.
The request client address will be checked against a configured list of "accept"
and/or "deny" filters, which are defined using the Regular Expression syntax
supported by the Jakarta Regexp regular expression library. Requests that come
from locations that are not accepted will be rejected with an HTTP "Forbidden"
error.

References
[1] Dagger, D., O'Connor, A., Lawless, S., Walsh, E., Wade, V.: Service Oriented

eLearning Platforms: From Monolithic Systems to Flexible Services. In: IEEE
Internet Computing Special Issue on Distance Learning, (2007)

[2] Sun Microsystems: XML Schema for the Servlet 2.5 Web ARchive (WAR) File

[3] GNU General Public License http://www.gnu.org/copyleft/gpl.html.

