
AN ARCHITECTURE FOR THE RAPID DEVELOPMENT OF
XML-BASED WEB APPLICATIONS

José Paulo Leal
DCC-FC & CRACS, University of Porto / R. Campo Alegre, 823 – 4150-180 Porto, Portugal

zp@dcc.fc.up.pt

Jorge Braz Gonalves
ESEG, Polytechnic Institute of Guarda / Av. Dr. Francisco S Carneiro, 50 – 6301-559 Guarda, Portugal

jgoncalves@ipg.pt

Keywords: Web application generation, XML transformations, Architectural patterns, Data management applications

Abstract: Our research goal is the generation of working web applications from high level specifications. Based on
our experience in using XML transformations for that purpose, we applied this approach to the rapid devel-
opment of database management applications. The result is an architecture that defines of a web application
as a set of XML transformations, and generates these transformations using second order transformations
from a database schema. We used the Model-View-Controller architectural pattern to assign different roles
to transformations, and defined a pipeline of transformations to process an HTTP request. The definition of
these transformations is based on a correspondence between data-oriented XML Schema definitions and the
Entity-Relationship model. Using this correspondence we were able produce transformations that implement
database operations, forms interfaces generators and application controllers, as well as the second order trans-
formations that produce all of them. This paper includes also a description of a RAD system following this
architecture that allowed us to perform a critical evaluation of this proposal.

1 INTRODUCTION

The work described in this paper is part a research
effort aimed to the automatic creation of web applica-
tions from XML specifications. It builds on previous
work (Leal and Domingues, 2007) focused on the de-
velopment of web interfaces to systems with a loose
coupling to the web server. In this previous work we
develop an XML domain specific language describ-
ing the target system and used XML transformations
to process that description. This domain specific lan-
guage lacks the features to be classified as an Archi-
tectural Description Languages (ADL) (Medvidovic
and Taylor, 2000) but provides a similar level of ab-
straction, focusing on system and interconnection of
its components rather than on lines of code.

The development of prototypes of applications is
the corner stone of the Rapid Application Develop-
ment (RAD). It was proposed by James Martin as
a model of iterative software development (Martin,
1991), aiming to shorten the software development
cycle, producing faster results and reducing costs
without losing quality. The RAD model became pop-

ular and has been used on tools for different database
management systems and/or programming languages.
Some of these RAD tools are used for development of
web applications, as is the case of Omnis, Intraweb,
RAD-Studio, Delphi-forPHP, WebSnap, and Turbo-
Gears, to name a few.

2 OVERALL ARCHITECTURE

The architecture we propose is strongly based on
XML technologies. XML (Bray et al., 2006) was
originally created as a formalism for defining web for-
matting languages, with XHTML – the XML com-
pliant successor of HTML – as the first language to
use this paradigm. Nevertheless, XML was quickly
adopted to transfer and archive data. Being an auto-
descriptive and text-based formalism, XML docu-
ments are easily processed by different systems, inde-
pendently of their platform. Although created also for
web formatting, XSLT (Clark, 1999) have outgrown
its original role of transforming XML documents to
XSL-fo or XHTML, and is routinely used to convert



between any two XML languages. In our approach
all these XML technologies play a role in the config-
uration of automatically generated applications, and
indeed also in its generation.

Applications software and other programs with
graphical interaction are usually structured using
the Model-View-Controller (MVC) architectural pat-
tern (Gamma et al., 1994). This pattern was proposed
by Trygve Reenskaug in 1978 as a design solution for
Smalltalk (Reenskaug, 1979). In this architecture we
used the MVC pattern to structure a set of transforma-
tions that implement the distinct features of the gen-
erated applications.

Model data-to-data transformations implement data
management operations;

View data-to-XHTML transformations produce
forms based interfaces to interact with portions of
the database;

Controller data-to-state transformations manage a
set of parameters that controls all transformations.

Having identified a set of transformations that can
be used to configure a web application, we need to
produce these transformations for a given data man-
agement application. Assuming a fix set of data man-
agement operations, these transformations can be ob-
tained from the schema of the database.

An XML Schema Definition (XSD) is a standard
way to describe the structure and content of XML
documents. In a sense, an XSD is similar to the
schema of a database, although with some limitation
when describing relationships.

Our infrastructure to this transformation-based
RAD system works in two stages: first an XSD doc-
ument is processed and generated a set of transfor-
mations for a specific application; then these trans-
formations are used for running the generated appli-
cations. In the architecture we propose, each stage
corresponds to its own individual component: the ap-
plication generator and the application engine

The application generator is itself a web applica-
tion for generating web applications from XSD docu-
ments and managing applications configurations. The
generation of web applications results from applying
a set of second order transformations to the uploaded
XSD document, to the produce first order transfor-
mations that define the applications; then these first
order transformations are installed in the application
engine.

The application engine, with a set of first order
transformations, is the actual web application gener-
ated by this RAD system. In fact, the application en-
gine is common to a set of web applications generated
by the same application generator.

3 Transformations

The distinctive feature of this RAD architecture is the
use of XSLT transformations to generate and run web
applications. In the applications engine transforma-
tions act as participants of the Model-View-Controller
pattern and are generated from the XML Schema
Document modelling the data. This sections starts
with the database operations that are the model of the
generated application, proceeds with forms interfaces
that provide views to the generated applications an
concludes with the control of model and views.

To implement database operations on data-
oriented XML documents we need to identify a
database schema in its structure, given as an
XML Schema Document (XSD). To represent the
database schema we use the Entity-Relationship
Model (ERM) (Elmasri and Navathe, 2003). It is al-
most straightforward to map the XSD concepts of ele-
ment and attribute type definitions, into the ERM con-
cepts of entity, attribute and relationship. Only the last
- relationships - pose some difficulties since the XML
data model (infoset) is not completely equivalent to
the ERM.

In the ERM, entity types define sets of entities and
is only natural to relate them with elements types with
multiple occurrences. In an XSD, an occurrence in-
dicator specifies the minimum and maximum num-
ber of times an element of a given type can be re-
peated. Thus, we use the indicator maxOccurs with
value ‘‘unbound’’ to identify entities in an XSD.

Given a database schema extracted from a XSD,
each operation-entity pair can be implemented by a
simple XSLT transformation on the database instance,
and a few parameters.

Second order transformations are responsible gen-
erating these transformations from the XSD. For each
entity detected on the XSD (an element type defi-
nitions with unbound repetition) and each supported
operation (insertion, query, modification, deletion) an
XSLT with the appropriated transformation is gener-
ated.

We use a similar approach to create also a forms
based graphical users interface from the XSD, us-
ing also XSLT transformations. To accomplish this,
we started by analysing how RAD systems usually
map ERM concepts into forms based interfaces and
then used the same correspondence between ERM
and XSD.

Entity types are usually mapped to forms in the
GUI and their attributes to visual controls (such as
text boxes, radio buttons, selectors, etc), depending
of their type. There are a few special cases regarding
attributes.



XML Schema Entity-Relationship Users Interface
Model

Repeatable element Entity Form
Nested Repeatable element Entity, Relationship (1:N) Sub-form
ID attribute Primary key Text label
IDREF attribute Relationship (1:1) Selector (single selection)
IDREFS attribute Relationship (1:N) Selector (multiple selection)
Other Attributes Attribute Visual control
Simple element (PCDATA) Attribute Visual control
Complex element Structured attribute Group of controls

Table 1: Correspondence between XSD, ERM and GUIs

Table 1 presents a summary of the correspondence
between XSD, the Entity-Relationship Model (ERM)
and Graphical Users Interfaces (GUIs) components.
This table is the basis to understand how to create
a collection of HTML forms to manage the content
of data-oriented XML document. The transforma-
tions that generate these forms receive as source the
database document and produces an HTML form with
the current entity as initial value. The current entity is
passed to the transformation using parameters.

As in the transformations that implement database
operations, second order transformations process the
XSD for generating these HTML forms. For each en-
tity detected on the XSD is generated and HTML page
with a form containing the controls associated with its
ERM attributes.

The first order transformations discussed previ-
ously fulfil the roles of Model and View in the ap-
plication engine. To extend this approach to the com-
plete MVC pattern we define how the Controller can
be generated from an XSD document.

For each user, there is a set of parameters used
for controlling each and every transformation, and
the transformation pipeline itself, that receives also
HTTP parameters. In this architecture, all these pa-
rameters are grouped in an XML document that re-
sides solely in memory (i.e. is never serialised). Since
this document reflects the users interaction state and
bound to each users’ state, we will refer to it simply
as State. Some parameters are required by the infras-
tructure and for that reason will have reserved names,
with a standard prefix.

The State document is used both for as target of
Model transformations and for extracting parameters
to every transformation. Unlike in the previous par-
ticipants of the MVC pattern, there is a single Con-
trol transformation. This transformation is the first to
be processed in the transformation pipeline, changing
the current values of parameters and thus controlling

the following transformations. The Controller trans-
formation processes both the Data and the State (as
transformation parameters) and generated a new in-
stance of the State. As usual, the second order trans-
formations that generate the Controller transforma-
tion uses the XSD to extract the entities and attributes
required to redefine control parameters.

When an HTTP request is received from a web
browser it triggers three transformations in sequence,
producing an HTML document that is sent back to the
browser in the HTTP response.

Two DOM objects - Data and State – have a cen-
tral role in this process. The former reflects the appli-
cation data as persisted in a XML document file; there
is a Data object for each application managed by the
application engine. The latter is the state of the inter-
action with each user; there is a State object for each
active user session. Both these objects are used in all
three transformations: the Data object is the transfor-
mation data source and the State object contains the
transformation parameters.

4 EXPERIMENTAL EVALUATION

The architecture described in the previous sections
was implemented as a Java web application using the
Tomcat servlet container. In this section we highlight
the main issues encountered in the development.

We managed to implement the infrastructure of
our RAD system with a very simple design: its con-
sists of pair of servlets - one for the application gen-
erator and other for the application engine - and a col-
lection of objects representing applications.

Both servlets manage a set of applications. Each
application instance contains a DOM object and a
collection of preloaded transformations. The main
method of this class invokes a transformation on the



data object that is outputted to different objects ac-
cording to its type: model transformations are copied
to the data object itself and serialized in the file sys-
tem; controller transformations change the DOM ob-
ject representing the state; view transformations pro-
duce HTML outputted to the HTTP response channel.

When the Application class is instanced the cor-
responding data file is loaded to its DOM object as
well as all it’s transformations. As some HTTP re-
quests just change the current view and do not activate
model transformations, the data object is serialised to
its data file only when it is actually changed. This
class is thread safe to ensure data integrity in concur-
rent operations.

As would be expected, the implementation of sec-
ond order transformations was more challenging. The
first issue we has to solve was the different ways in
which an element can be typed in an XSD. Just to
give a few examples:

• types in XML Schema can be either anonymous
or named, and named types can be reuse in several
definitions;

• elements and attributes can be grouped and reused
in several definitions;

• type definitions can be created by extending other
type definitions.

To simplify the detection of entities, attributes
and relationships we start by normalising XSD doc-
uments. As would be expected, the normalisation is
also an XSLT transformation that unfolds all reusable
definitions into an XSD only with anonymous types
without any for of reference.

The templates for identifying entities, attributes
and relationships are imported by all second or-
der transformations that produce the three classes
of XSLT transformations from the normalised XSD.
Note that only the Controller transformations is re-
sumed to a single transformation. In this evaluation
prototype there is a second order transformation for
each database operation The number of view trans-
formations depends on the style of application.

The style of application is a particular set o second
order transformations that can be selected in the appli-
cation generator when an XSD is uploaded to the sys-
tem. We implemented a simple application style that
produces always a form (depending of entity type) for
every operation; this style has a single has a single
second order transformation. We implemented also
an extended application style where search operations
generate a listing with all matching entities, with an-
chors for editing operation on that entity; this style has
two second order transformations, one for each kind
of visualisation. More complex application styles can

also be programed, modifying all the three classes of
transformations.

5 CONCLUDING REMARKS

This article presents an architecture for rapid develop-
ment of web applications based on XML documents
and transformations. Our goal was the generation of a
functional application from an XML specification, in
this case an XML Schema definition.

We used the Model-View-Controller architectural
pattern to structure a set of transformations and identi-
fied different classes of transformations with each par-
ticipant in that pattern. We shown that a data-oriented
XML Schema definition can be corresponded to the
classic Entity-Relationship model used for modelling
databases. Using this correspondence we were able
produce transformations to implement database oper-
ations, forms interfaces and applications control, as
well as the meta transformations that produce them.
We define also a pipeline to process the first order
transformations to process an HTTP request. We
implemented a system following this architecture to
evaluate experimentally the RAD approach we pro-
posed.

REFERENCES

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,
and Yergeau, F. (2006). Extensible markup language
(xml). http://www.w3.org/TR/xml/.

Clark, J. (1999). Xsl transformations (xslt) w3c recommen-
dation. http://www.w3.org/TR/xslt.

Elmasri, R. and Navathe, S. (2003). Fundamentals of
Database Systems. Addison Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1994). Design Patterns - Elements of Reusable
Object-Oriented software. Addison Wesley Profes-
sional.

Leal, J. and Domingues, M. (2007). Rapid development
of web interfaces to heterogeneous systems. In van
Leewen et al., J., editor, SOFSEM 2007: Current
Trends in Theory and Practice of Computer, number
4262 in Lecture Notes in Computer Science, pages
716–725. Springer-Verlag.

Martin, J. (1991). Rapid Application Development.
Macmillan Coll Div, New York.

Medvidovic, N. and Taylor, R. N. (2000). A classification
and comparison framework for software architecture
description languages. IEEE Transactions on Soft-
ware Engineering, 26(1).

Reenskaug, T. (1979). Models - views - controllers. Tech-
nical report, Xerox PARC.


