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ABSTRACT
The ability to have an automated real time detection of user
interest during a web session is very appealing and can be
very useful for a number of web intelligence applications.
Low level interaction events associated with user interest
manifestations form the basis of user interest models. How-
ever such data sets present a number of challenges from a
machine learning perspective, including the level of noise
in the data and class imbalance (given that the majority
of content will not be of interest to a user). In this paper
we evaluate a large number of machine learning techniques
aimed at learning from class imbalanced data using two data
sets collected from a real user study. We use the AUC, re-
call, precision and model complexity to compare the relative
merits of these techniques and conclude that useful models
with AUC above 0.8 can be obtained using a mix of sam-
pling and cost based methods. Ensemble models can provide
further accuracy but make deployment more complex.

Keywords
modeling, user interaction, user interest, machine learning,
imbalanced classification

1. INTRODUCTION
The automatic detection of user interest while browsing

is a very appealing ability of a web client. The browser may
not only detect when the user is interested but also in what
region of the page (where) the user is interested in. This
opens up to many possible applications such as triggering
recommendations when the user seems to be interested in a
particular portion of text or image. The observation of the
user behavior is based on low level client side interaction
events with the mouse and keyboard. The browser keeps
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collecting these events as the user interacts. Such a stream
is fed to a classification model, embedded in the code of
the web page, which decides whether the user is showing
interest or not. The result of the model can then be used on
the client side or transmitted to a remote server for a more
demanding request.
In our approach we use machine learning for obtaining the

classification models automatically. Detecting user interest
is modeled as a binary classification problem: interested/not
interested. As expected, the proportion of classes is very im-
balanced, given that interest events are relatively rare. Most
of the time the user is simply browsing or is in an idle state.
Therefore, one important challenge is how to robustly deal
with the class imbalance. Other challenges, not addressed
in this paper, are: how to collect the training data and how
to pre-process the data in order to favor prediction.
In this paper we study the applicability of a large number

of machine learning techniques for addressing class imbal-
ance bearing in mind two aims. One is to have models that
can detect a good number of interest situations with a pro-
portion of false alarms as low as possible and the other is to
obtain models that are lightly embeddable in the page and
can run on the client side. The methods are evaluated on
two data sets collected by us from real interaction data. We
use 10-fold cross-validation and estimate the performance of
the models using metrics such as the Area Under the Curve
(AUC) [1], recall, precision and model size. From the em-
pirical results we can rank the methods to be used for the
purpose of detecting user’s interest.

2. MODELING USER INTERACTION
As soon as web browsers and hypertext became popu-

lar, researchers started trying to model interaction behav-
ior. Letizia, for example, was a browser agent proposed by
Lieberman [2]. It observed the browsing behavior of a par-
ticular user and learned to anticipate which pages would be
of interest. It recorded actions on the document such as sav-
ing or hyperlink clicking and scored words in it. These were
used to recommend pages containing highly scored words to
be followed next. Letizia was implemented as what would
nowadays be an applet.
Others have also exploited the recordable interaction pro-

vided by the new media. Claypool et al. [3] would see some
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human identified patterns of activity as implicit interest in-
dicators. The user would provide, without noticing, infor-
mation about his/her interest on pages solely by browsing.
Not explicitly asking the user’s opinion is also called unob-
trusive observation by Goecks and Shavlik [4] who built a
browser agent that collected interaction data and trained a
neural network to predict the amount of interaction activ-
ity given the words of a page. This model can be used to
automatically look for pages of interest to the user. These
approaches for modeling user behavior do not rely on the tra-
ditional server-side clickstream data, but rather follow the
philosophy of the curious browser [3] by collecting client-side
data [5], also called subsymbolic user-behavior [6].

Browsing models may also attempt to determine, at any
given instant a browsing state. Syeda-Mahmood and Pon-
celeon [7] have proposed 10 di↵erent states for users brows-
ing videos, such as: curious, aimless browse, found some-
thing interesting, undetermined, etc. These authors have
also exploited the interdependence of subsequent states us-
ing Hidden Markov Models.

Most of the above mentioned works studied or modeled
user’s interest on whole web pages or documents. Hijikata [8]
tried to improve the user interest model on pages/words by
focusing on parts of the browsed pages. These relevant parts
were identified through specific interaction events such as
text selection, link clicking and pointing, moving the mouse
over the text while reading, etc. Although some of these
actions are not necessary for browsing, they were uncon-
sciously performed by users and carried interesting informa-
tion. Hauger and Velsen [5] collected client-side interaction
events for trying to identify which parts of a page had been
read. They organized a controlled experiment with 53 users
who had to fill in a questionnaire saying which parts of the
page they actually read. This data was then used to train
machine learning classification methods. Yang et al. [9]
used a similar approach on small screen devices for iden-
tifying what they call interest blocks. Later, Hauger et al.
proposed the use of eye-tracking, in addition to interaction
data, and concluded that interactive behavior can be used
to approximately determine gaze position [10].

2.1 Our approach
This paper is part of a larger endeavour for designing an

end-to-end process for modeling user interest and deploying
such models so that they can be used in real time. The
process has two phases: learning and deployment. In the
first phase we collect data and obtain a model. In the second
we embed the model in the page and use it.

The learning phase has the following steps:

1. Select a web page as target;

2. Define an area of interest;

3. Define a question whose answer is in the defined area
of interest;

4. Invite users to open the page and answer the question
(as in a quiz) - users are not given any other informa-
tion;

5. Collect user client-side interaction data (mouse and
keyboard) during the quiz sessions;

6. Associate each interaction event (e.g. click or mouse-
move) to an x, y location in the page, if possible;

7. Label each event location as in the area of interest
(“INT”) or outside of it (“BROWSE”):

8. Aggregate events in time contiguous segments;

9. Aggregate labels in the same segment to obtain a seg-
ment label;

10. Setup a classification data set from segments;

11. Build a classification model from the data set.

After learning we deploy the model embedded in the page.

1. Embed the model in the page as JavaScript;

2. Aggregate user interaction events on the client side as
a sliding active segment;

3. Invoke the model upon every event using the active
segment and obtain an interest label;

4. Use the interest label for recommendation or for col-
lecting high level interaction events.

We currently have a complete solution for the whole pro-
cess but many parts of the process present interesting chal-
lenges.

2.2 Data Collection
The data to collect will be made of pairs < Bhv, St >,

where Bhv represents the behavior of the user, captured
as an account of interaction events and St is the browsing
state. An important problem is how to obtain such data.
So far, this has been solved by setting up a controlled user
experiment or by assuming a simplified user interest model.
In the first case, after browsing, users are directly asked to
declare their explicit interest in a page or part of page [5, 3,
8, 7] or users are monitored using a eye-tracking device [10].
Simplified manual user interest models have been used for
labeling in [2] and in [9].
The “tell me what you’re thinking” approach greatly re-

duces the potential for acquiring data from a large number
of users. In this setting, the labeling e↵ort is high and user
must complete the tedious task of answering “Did you like
it?” questionnaires. One of our contributions in this paper is
an experiment that enables the indirect gathering of labelled
interaction data.
We have setup web based quizzes that were publicized in

social networks and through email. As a result we had a very
relevant number of users providing data without knowing
exactly what it was for, which minimized biased behavior.
In particular, we mirrored 2 relatively long web pages: one
from Wikipedia on the Olympic Committee and the other
from Facebook on Soccer. For each of them we proposed
a question. Upon entering the page the user would read
the question in a pop-window, minimize the pop-up, look
for the answer in the page (text find was not particularly
useful since we avoided searchable words in the question),
reopening the pop-up, and choose the right option as an
answer. Fig 1 illustrates one of the quizzes.
The interaction data collected included the usual graph-

ical interface events as detailed in Table 1. All the low
level events are recorded during the experiment. It is also
recorded the answer given to the quiz. This generates a lot
of tra�c that is totally avoided at production time, as will
be later detailed.
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Figure 1: Screenshot of one of the pop-up quizzes
as it appears to the user.

2.3 Data pre-processing
Raw interaction data is divided as a set of sessions. Each

session is a stream of events of a certain type (e.g. mouse
click, scroll) and at a certain time. Some events also occur
at coordinates < x, y >. These coordinates are absolute
with respect to the whole page but may di↵er from session
to session. Some events also generate specific information
(e.g. which key was stroke) which is also stored. In Fig.
2 we can see that the most frequent interaction events are,
by far, mousemove, scroll, mouseover and mouseout. These
statistics were calculated from the whole set of sessions.

dblclick
error
blur

focus
focusout
keyup
focusin

keypress
click

mouseleave
mouseup
keydown

mousedown
mouseenter
mouseout
mouseover

scroll
mousemove

Frequency

0 50000 100000 150000 200000 250000

Figure 2: Frequency of events per type.

Since we know where the region of interest is (this infor-
mation is automatically stored for each particular session)
we can label each event as being in the region of interest
(INT) or not (BROW). This can only be done, however,
for the events with a defined location. In that case we
compare the < x, y > coordinates of the event with the
defining points of the bounding box of the region of interest
< x

top�left

, y

top�left

> and < x

bottom�right

, y

bttom�right

>.
Events without a spatial location are also labeled as“BROW”,
since there is no immediate evidence that they are in the re-
gion of interest. We have divided the sessions according to
the two quizzes which will originate two data sets.

Next, for each session, we divide the time line in chunks

Table 1: Type of interaction events collected. “Y”
means that the x, y location of the event is recorded.
Some event types have the same description plus a
(*) mark but there may be di↵erences which are not
detailed in this paper.
Event type x, y Description

mouseover Y mouse enters an element.
mouseenter Y mouse enters an element(*).
mousemove Y mouse is moved.
mouseout Y mouse leaves an element.
mouseleave Y mouse leaves an element(*).
blur element loses the focus.
focusout element loses the focus(*).
focus element receives the focus.
focusin element receives the focus(*).
scroll something is scrolled.
mousedown Y mouse button pressed.
mouseup Y mouse button released.
click Y mousedown and mouseup events

occur on the same element OR
an element is activated by
the keyboard.

keydown Y key is pressed.
keypress Y keystroke leads to a character

being added to an HTML element.
keyup Y key is released.
error browser encounters a JavaScript

error or a non-existing image file.
dblclick Y two click events take place on the

same element within a reasonable
timeframe.

of fixed length. For each chunk we aggregate the events of
each type by counting the occurrences. For example, for
the type of event “mouseclick” we have have an attribute
for the chunk whose value is the number of mouseclicks in
the chunk. We also measure the xrange and the yrange as
the maximal di↵erence in the normalized (with respect to
the page size) x and y coordinates, respectively, in the time
chunk. Therefore, we have 20 variables (attributes): one for
each event type and the two ranges. Finally, we label each
chunk as “INT” if at least one of the events in the chunk is
labeled as such. All other chunks are labeled as “BROW”.
In our experiment the duration of the chunk was set to 5
seconds. Alternative values can be considered, though.
The x and y spatial coordinates that are associated with

some of the events are session dependent and must be nor-
malized. So, instead of using the recorded coordinates we
use relative values calculated as x/pagewidth and y/pagelength.
The two resulting data sets“Olympic”and“Soccer”are sum-
marized in Table 2.

Table 2: The two resulting data sets.
Data set Size #BROW #INT %BROW %INT

Olympic 1994 1789 205 90% 10%
Soccer 1610 1564 46 97% 3%

3. IMBALANCED CLASSIFICATION
In this paper we specifically focus on step 11 of the learn-
ing phase (building a classification model). Our purpose
here is to study robust machine learning methods that can
cope with the generated data. One very distinct feature of
this data is its class imbalance. The number of segments
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where the user is going to show interest is relatively low
(10% and 3% in our experiments). This requires the use of
algorithms for imbalanced data as well as an adequate eval-
uation methodology. In this section we describe the tech-
niques used in our study.

Class Imbalance is typically addressed by data sampling.
The simplest approach is to randomly undersample the ma-
jority class or randomly oversample (with replacement) the
minority class. The amount of under(over)sampling depends
on the domain being modeled and often does not simply
translate to the generation of a uniformly distributed class
label. Hence, Chawla et al. [11] proposed the use of cross-
validation to determine the optimal amount of sampling.

As opposed to simple under(over)sampling, more “intel-
ligent” sampling approaches have also been proposed. The
most significant such oversampling method is Synthetic Mi-
nority Over-sampling TEchnique (SMOTE) [12]. The re-
moval of redundant negative instances and tomek links was
proposed as an alternative to undersampling [13]. In SMOTE,
synthetic examples are generated from each positive train-
ing instance along the (hyper-)plane joining the positive in-
stance to one of its k nearest positive instance neighbours. In
SMOTE, synthetic examples are generated from each pos-
itive training instance, t

i+, (the seed instance) as follows.
First the k nearest neighbours, n

it

’s of t

i+ are retrieved.
Next r of these nearest neighbours are chosen through sam-
pling by replacement, where r is the number of synthetic
examples that each of the positive training instances will
contribute to the new oversampled training data set. For
example, if 300% oversampling is to be carried out then r
= 3. The synthetic data instance s

ij

is then generated as
~s

ij

= ~

t

i+ + q.(~n
ij

� ~

t

i+) where q is a random number be-
tween 0 and 1. Note that Oversampling with replacement
is a special case of SMOTE where q is set to 0. Kubat and
Matwin [13] proposed a method for undersampling the neg-
ative examples by removing redundant instances and tomek
links as opposed to random undersampling. The new train-
ing set is seeded with all positive instances and a randomly
selected negative instance. Using the seed instances as the
model, the remaining negative instances are classified using
the 1-Nearest Neighbour algorithm and misclassified neg-
ative instances are added to the new training set. Finally
those negative instances with a positive instance as the near-
est neighbour (referred to as tomek links) are removed.

Both, undersampling and oversampling have drawbacks.
First, undersampling leads to loss of information as negative
instances not used in learning could impact model perfor-
mance on unseen examples. On the other hand, oversam-
pling can result in over-fitting and an increase in learning
time as the training data can increase substantially in size
as a result.

More recently, repetitive sampling-based ensemble mod-
els have also been proposed. Sei↵ert et al. applied Ad-
aBoost [14] to class imbalance problems and showed it to be
e↵ective in increasing the AUC [15]. Chawla et al. [16] ap-
plied SMOTE before each Adaboost iteration while Sei↵ert
et al. [17] used undersampling, both showing positive results.
Liu et al. [18] proposed EasyEnsemble that builds multiple
models using di↵erent subsamples of the majority class and
then computes the sum of the posterior probability of the
class label assigned by the base classifiers. use of clustering
to partition the majority class and then build a model for
each partition along with all the instances of the minority

class. Experimental validation of clustering approaches to
the imbalance problem, by Molinara [19], however, suggest
that random partitioning is actually superior to clustering
based methods. While ensemble models address the short-
comings of undersampling by resampling the data, and hence
minimizing information loss, the models generated are larger
and more complex as they consist of a set of models and, po-
tentially, a weighting associated with the base models.

4. ALGORITHMS
We evaluate six methods for dealing with class imbalance

in our data. Four of these methods are sampling-based, one
is cost-based and one uses a rather novel genetic program-
ming based approach.

4.1 Sampling-based Methods
Random Over Sampling (ROS): This method generates
a sample of the minority class by sampling with replacement,
e↵ectively making multiple copies of the existing instances.
An r% oversample results in a data set consisting of all the
majority class instances and (1 + r/100)⇥ n minority class
instances, where n is the number of minority class instances
within the original data set. In our experiments we varied
the oversampling parameter r from 100% to 1500% in step
sizes of 200%.
Random Under Sampling (RUS): RUS reduces the num-
ber of majority class training instances by randomly remov-
ing instances belonging to the class from the training in-
stances. The final number of instances used for training
when using r% under sampling is r ⇥ n/100, where n is the
number of majority class instances within the original data
set. In our experiments we varied the value of r from 5% to
100% in steps of 5%.
SMOTE: This is an implementation of Synthetic Minority
Over-sampling TEchnique as proposed by Chawla et al [12].
It takes two parameters, the level of oversampling r and the
number of neighbours, k, used for generating the synthetic
instances. We experimented with values of r ranging from
100% to 1500% with step size of 200% and k taking integer
values in the interval [1, 15].
Tomek: This is an implementation of Kubat and Matwin’s [13]
approach to one-sided selection.

4.2 Genetic Programming
The Genetic Programming (GP) approach to evolution-

ary computing breeds a population of candidate programs
to solve a problem [20]. These programs are typically rep-
resented as tree structures that are evolved over multiple
iterations (generations). The initial population is generated
at random while future generations are evolved through the
measurement of fitness of the candidates programs and sub-
sequently selecting candidates for reproduction with a prob-
ability proportional to their fitness. The candidate parent
programs generate o↵springs through the application of the
crossover and mutation genetic operators.
We use a GP to generate a projection of the original data

set to a feature space that is more amenable to learning a
classification model in the presence of a skewed class dis-
tribution. Hence given a training data set, D ⇢ <n, de-
fined using a set of n attributes A, labelled using one of two
class labels {L1, L2}, we aim to learn a set of k features,
where each feature is a function of a subset of attributes in
A and constants within some continuous range. Hence an
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Figure 3: Example Chromosome

individual (chromosome), in our case, consists of a set of k
programs, each representing a new dimension in the feature
space. The function set, F , used to construct these fea-
tures are the ordinary arithmetic functions {+,-,*,/} where,
as is common in GPs, ’/’ is the protected division function
that returns a value 1 when the denominator is 0. The ter-
minals (nodes within a program tree with no children) are
either attributes or constants. An example chromosome is
shown in Figure 3, representing a three-dimensional feature
space defined by the features IXY K3

IXZ
, I2

XY

+ Weight

2 � 3

and IXY +IXZ
Weight+IXY

�K3 � (Weight+ I

XY

).
To evaluate the fitness of a chromosome, a learning algo-

rithm is applied to the data projected to the feature space
using projections as defined by the chromosome. 10-fold
cross validation is used to compute a composite confusion
matrix. The confusion matrix is then used to compute the
chromosomes’ fitness defined as the area under the ROC
curve (AUC).

The population is initialized using the Ramped half-and-
half method [21]. Chromosomes with an above average fit-
ness within the current population are chosen to produce
the next generation. This is acchieved through crossover
and mutation. Subtree and gene crossover and subtree mu-
tation are used to generate the new generation.

4.3 Cost-Based Methods
Cost-based methods assume the availability of a cost ma-

trix defining the cost of misclassification of an instance be-
longing to class C

i

into class C

j

. Class imbalance can be
viewed as a misclassification cost minimization problem by
assigning a higher cost to misclassification of a positive in-
stance as a negative instance. MetaCost [22] is a popular
method for dealing with cost minimization problems. Its at-
tractiveness stems from the fact that it can be used with any
base classifier. It works by estimating the posterior proba-
bility of the class labels given a training instance and then
relabels the instance so as to minimize the expected misclas-
sification cost. The final model is learnt from the relabelled
training instance.

We experimented with a number of cost matricies. For
the Olympic data set we evaluated a cost of misclassifying
a positive instance as a negative one of 2 through to 10 in
steps of 2. For the Soccer data that have a higher skew we
experimented with values ranging from 5 to 55 in steps of 5.

With each of the methods above, we used J48 (the imple-
mentation of C4.5 [23] in WEKA), JRip (the WEKA imple-
mentation of Ripper [24]), PART [25] and AdaBoost [14] to
build models.

5. RESULTS

To find the optimal parameters for the individual sampling
methods and estimate the expected quality of the model
learnt, 10-fold cross validation was used to generate the con-
fusion matrices for each of the four algorithms.
The cross validation was run ten times using di↵erent ran-

dom seeds to account for the stochastic nature of the genetic
algorithm and random sampling. The average AUC was
used for selecting the best parameters for each model/sampling
method.
Tables 3 and 4 summarize the results obtained. For each

of the seven methods used to build models (four using sam-
pling, 1 using the GP, 1 using MetaCost and 1 using a com-
bination of sampling and ensemble learning), the precision
and recall, using a threshold of 0.5 on the posterior prob-
ability of the class labels given an instance, estimated by
the models learnt, area under the ROC curve (AUC) and
the model complexity are shown. For each base algorithm
(J48, Ripper and PART), we also compare the performance
of the models with a base model (No Sampling) that does
not apply any approach to address class imbalance.
The AUC gives us a summary of the model performance

for all possible thresholds used on the posterior probability
of the class labels to classify an instance as positive or neg-
ative. From the tables it is apparent that all methods for
addressing the class imbalance with the exception of Ran-
dom Oversampling (ROS) improve the AUC considerably
over the base value (no sampling). On the whole, AdaBoost
outperforms all other classifiers. The only exception being
MetaCost when applied to the Soccer data with the base al-
gorithm PART. Note however that there is no consensus as
to which class imbalance method produces the best model
when applied to AdaBoost,although SMOTE seems to per-
form better than the other approaches in general. With
regard to the oversampling methods, SMOTE appears to
outperform random oversampling. The latter appears to
overfit both data sets and often performs worse than “No
Sampling”. When considering only classifiers consisting of
a single model, the GP based approach using J48 performs
best on the Olympic data set while MetaCost outperforms
all classifiers on the Soccer data, including AdaBoost. Of
the sampling based methods SMOTE and undersampling
build models comparable in their AUC values and produce
more accurate models than the GP or MetaCost when using
Ripper on both data sets.

xrange <= 0.244042: BROWSE
xrange > 0.244042
| yrange <= 0.593379
| | mouseout <= 6: BROWSE
| | mouseout > 6
| | | scroll <= 0
| | | | mouseout <= 10: BROWSE
| | | | mouseout > 10: INT
| | | scroll > 0: BROWSE
| yrange > 0.593379
| | keyup <= 0
| | | mousemove <= 12
| | | | mouseleave <= 0: INT
| | | | mouseleave > 0: BROWSE
| | | mousemove > 12: INT
| | keyup > 0
| | | mousemove <= 44: BROWSE
| | | mousemove > 44
| | | | click <= 0: INT
| | | | click > 0: BROWSE

Figure 4: Decision tree for the Olympic data set.
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Model complexity represents the size of the obtained mod-
els. It is measured as the number of conditions in the model.
In the case of trees, it is the number of nodes (Fig. 4). In
rules it is the number of conditions used (Fig. 5). With
respect to model complexity we can see that some of the
best models are relatively small. This is important since,
as we have mentioned, we intend to embed our classifica-
tion model as JavaScript in the web page. The results for
AdaBoost are not shown in the tables because the result-
ing model is an ensemble of ten base classifiers and hence
would be overly complex for our purposes. The results of
the PART method do not include model complexity due to
WEKA not providing these through its API. We, however,
expect PART models to show similar patterns to those of
J48 and Ripper in that we would expect the GP and Meta-
Cost to build smaller and more accurate model than the
other methods studied in the paper. Random oversampling
and SMOTE tend to build more complex models suggesting
their susceptibility to overfitting.

xrange <= 0.244042 AND yrange <= 0.741614 AND
mouseout <= 10: BROWSE

mousemove <= 12 AND mousemove <= 6: BROWSE

keyup > 1 AND keydown > 3: BROWSE

mousemove > 12 AND click <= 0 AND xrange > 0.304487 AND
focusin <= 0 AND yrange > 0.609193: INT

scroll <= 0 AND click <= 0 AND focusout <= 0 AND
mousemove > 16 AND xrange > 0.258339: INT

scroll > 0 AND yrange <= 0.567992: BROWSE

keyup <= 0 AND mouseout <= 0 AND focusin <= 0: BROWSE

keydown <= 1 AND focus <= 0 AND blur <= 0 AND
mousedown <= 1 AND scroll <= 1 AND yrange > 0.024307: INT

keyup <= 0 AND xrange > 0.221064 AND mousemove > 14 AND
mousedown <= 2 AND focusout <= 0 AND yrange > 0.577115: INT

blur <= 0 AND scroll <= 14: BROWSE

focus <= 0: INT

: BROWSE

Figure 5: Rule based model (decision list) for the
Olympic data set.

With regard to Precision and Recall, the Olympic data
set seems to represent an easier problem than the Soccer
data set, perhaps because it is less imbalanced. Precision is
in general quite low for the Soccer data (between 0.1 and
0.3) but higher for the Olympic data (0.3 to 0.53). Recall
is also higher in general for the Olympic data set. Low val-
ues of precision are not very practical for the application
we have in mind. An interest model with a precision of
0.2 will fire wrongly 80% of the time. We must note, how-
ever, that at deployment time, the models can be used with
higher thresholds, which increases precision (but lowers re-
call). Figures 6 and 7 show the precision and recall curves
for the best performing models, MetaCost and AdaBoost.
As shown in Figure 6 for all base algorithms AdaBoost has
the ability to deliver higher precision models than MetaCost.
When using PART as the base algorithm, higher precision
models are obtained by MetaCost when high recall is desir-

able. However, the di↵erence in precision is rather small.
Figure 7 shows the corresponding precision-recall curves for
the Soccer data set. When using PART or Ripper as the
base algorithm, MetaCost can learn models of higher pre-
cision when recall is in the range 0.2 to 0.6 in the case of
PART and 0.1 to 0.4 in the case of Ripper. However, Ad-
aBoost once again can provide higher precision models in
general.

6. CONCLUSION
In this paper we have studied a large number of machine

learning techniques for modeling user interest. We have used
two data sets and assessed the techniques using a demanding
experimental evaluation methodology. All these techniques
(with the exception of random oversampling) are adequate,
in principle, for dealing with imbalanced classification prob-
lems, as is the case in user interest data sets. We conclude
that a few techniques can be quite useful for dealing with
these data sets. The most interesting compromise in terms
of model complexity and AUC is MetaCost using PART as
the base classification algorithm. AdaBoost yields higher
AUC values but high complexity models. Therefore, our
advice for this kind of user interest modeling application
would be to use MetaCost and PART unless high precision
at the cost of lower recall is desirable in which case it may
be worth handling the additional complexity of AdaBoost
models built using SMOTE. The accuracy of the AdaBoost
based models seems fairly independent of the base classifi-
cation method used.
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Algorithm Parameters Precision Recall AUC Model Com-
plexity

J48

No Sampling 0.516±0.031 0.286±0.023 0.74±0.012 67.66±1.38
RUS 15% 0.446±0.027 0.456±0.022 0.774±0.012 43±3.79
ROS 1100% 0.339±0.005 0.432±0.01 0.67±0.009 255.38±2.61
SMOTE 100% N:14 0.42±0.014 0.43±0.016 0.77±0.008 106.88±3.03
Tomek 0.455±0.016 0.445±0.03 0.74±0.002 75.74±1.34
GA Wrapper M:10 0.536±0.033 0.259±0.015 0.816±0.005 20.76±1.77
MetaCost C: 5 M:10 0.378±0.009 0.622±0.014 0.802±0.003 20.28±1.453
AdaBoost SMOTE 1300%
N:13

0.391±0.012 0.493±0.023 0.834±0.008 -

PART

No Sampling 0.423±0.017 0.219±0.013 0.745±0.014 -
RUS 25% 0.408±0.009 0.37±0.006 0.771±0.009 -
ROS 100% 0.357±0.022 0.335±0.022 0.714±0.008 -
SMOTE 1300% N:3 0.365±0.014 0.516±0.006 0.802±0.008 -
Tomek 0.409±0.008 0.383±0.017 0.768±0.003 -
GA Wrapper 0.469±0.025 0.222±0.03 0.805±0.009 -
MetaCost C: 7 M:4 0.306±0.006 0.671±0.014 0.809±0.009 -
AdaBoost Tomek 0.424±0.012 0.444±0.021 0.831±0.002 -

Ripper

No Sampling 0.443±0.015 0.259±0.014 0.618±0.009 11.56±1.24
RUS 10% 0.442±0.008 0.413±0.015 0.777±0.001 4.51±0.019
ROS 500% 0.331±0.01 0.532±0.013 0.717±0.009 144.83±3.9
SMOTE 900% N:3 0.324±0.006 0.547±0.011 0.792±0.004 94.22±2.06
Tomek 0.448±0.013 0.423±0.014 0.697±0.006 15.33±0.66
GA Wrapper 0.317±0.017 0.487±0.033 0.65±0.099 9.025±0.694
MetaCost C: 8 M:2 0.365±0.007 0.56±0.012 0.742±0.009 32.89±2.826
AdaBoost RUS 20% 0.413±0.013 0.394±0.013 0.837±0.004 -

Table 3: Summary of Results for Olympic Data

Algorithm Parameters Precision Recall AUC Model Com-
plexity

J48

No Sampling 0.0 0.0 0.527±0.037 1.82±0.55
RUS 30% 0.025±0.049 0.004±0.008 0.6±0.003 4.88±0.119
ROS 100% 0.102±0.045 0.111±0.007 0.655±0.016 53.48±2.75
SMOTE 100% N:7 0.131±0.058 0.15±0.019 0.744±0.015 38.34±1.37
Tomek 0.05±0.098 0.02±0.004 0.561±0.029 3.72±0.955
GA Wrapper 0.278±0.073 0.082±0.027 0.776±0.014 13.32±1.12
MetaCost C:45 M:5 0.068±0.0003 0.915±0.008 0.775±0.006 3.86±0.165
AdaBoost RUS 65% 0.223±0.028 0.147±0.023 0.799±0.018 -

PART

No Sampling 0.162±0.045 0.058±0.016 0.687±0.02 -
RUS 80% 0.15±0.015 0.065±0.006 0.73±0.014 -
ROS 100% 0.227±0.023 0.193±0.025 0.606±0.046 -
SMOTE 1300% N:5 0.127±0.009 0.308±0.029 0.722±0.032 -
Tomek 0.145±0.02 0.065±0.006 0.708±0.021 -
GA Wrapper 0.257±0.065 0.074±0.023 0.729±0.02 -
MetaCost C: 20 M:5 0.145±0.012 0.584±0.028 0.852±0.01 -
AdaBoost SMOTE 1300%
N:6

0.191±0.016 0.16±0.014 0.807±0.02 -

Ripper

No Sampling 0.297±0.096 0.045±0.018 0.52±0.012 2.9±0.4
RUS 5% 0.258±0.045 0.074±0.032 0.73±0.032 3.36±0.325
ROS 1100% 0.1512±0.015 0.247±0.028 0.621±0.013 63.89±1.96
SMOTE 500% N:14 0.219±0.021 0.35±0.042 0.686±0.013 39.63±1.40
Tomek 0.214±0.047 0.041±0.018 0.528±0.014 2.94±0.68
GA Wrapper 0.31±0.046 0.083±0.13 0.544±0.011 4.233±0.462
MetaCost C: 40 M:5 0.155±0.017 0.27±0.031 0.643±0.01 13.17±0.779
AdaBoost SMOTE 1100%
N:13

0.157±0.008 0.152±0.006 0.806±0.025 -

Table 4: Summary of Results for the Soccer Data
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(c) Ripper

Figure 6: Recall-Precision Curves for select models
for the Olympic Data Set
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(c) Ripper

Figure 7: Recall-Precision Curves for select models
for the Soccer Data Set
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