
1

BabeLO - An Extensible Converter of
Programming Exercises Formats

Ricardo Queirós and José Paulo Leal

Abstract—In the last two decades there was a proliferation of programming exercise formats that hinders interoperability in
automatic assessment. In the lack of a widely accepted standard a pragmatic solution is to convert content among the existing
formats. BabeLO is a programming exercise converter providing services to a network of heterogeneous e-Learning systems
such as contest management systems, programming exercise authoring tools, evaluation engines and repositories of learning
objects. Its main feature is the use of a pivotal format to achieve greater extensibility. This approach simplifies the extension to
other formats, just requiring the conversion to and from the pivotal format. This paper starts with an analysis of programming
exercise formats representative of the existing diversity. This analysis sets the context for the proposed approach to exercise
conversion and to the description of the pivotal data format. The abstract service definition is the basis for the design of BabeLO,
its components and web service interface. The paper includes a report on the use of BabeLO in two concrete scenarios: to
relocate exercises to a different repository; and to use an evaluation engine in a network of heterogeneous systems.

Index Terms—Interoperability, Web Services, REST, programming exercise formats, e-learning.

F

1 INTRODUCTION

A SSESSMENT plays a vital role in learning. How-
ever, automatic assessment of exercises other

than multiple choice can be a rather a complex task.
This is certainly the case with assessment of computer
programs in two distinct learning contexts: curricular
and competitive learning.

Introductory programming courses are part of the
curricula of many engineering and sciences programs.
These courses rely on programming exercises, as-
signments and practical examinations, to consolidate
knowledge and evaluate students. The enrolment in
these courses is usually very high, resulting in a great
workload for the faculty and teaching assistants. In
this context the availability of many programming
exercises from different sources is of great importance.

Competitive learning relies on the competitiveness
of students to increase their programming skills. This
is the common goal of several programming contests
where students at different levels compete such as:
the International Olympiad in Informatics (IOI), for
secondary school students; the ACM International
Collegiate Programming Contests (ICPC), for univer-
sity students; and the IEEExtreme, for IEEE student
members. Contest management systems and on-line
judges where students train rely also on automatic as-
sessment. In this context there is also the need for new
programming problems that may come from different
systems. Also, competitive learning is usually a source
or programming exercises for curricular learning that
are recast as learning objects.

In both contexts the lack of a standard – or at
least a widely used format – creates a modern Babel
tower made of Learning Objects, of assessment items

that cannot be shared among automatic assessment
systems. These systems whose interoperability is hin-
dered by the lack of a common format include contest
management systems, evaluation engines, repositories
of learning objects and authoring tools. A pragmatical
approach to remedy this problem is to create a service
to convert among existing formats. A kind of trans-
lation service specialized in programming problems
formats.

To convert programming exercises on-the-fly
among the most used formats is the purpose of
the BabeLO – a service to cope with the existing
Babel of Learning Object formats for programming
exercises. BabeLO was designed as a service to act as
a middleware in a network of systems typically used
in automatic assessment of programs. It provides
support for multiple exercise formats and can be
used by: 1) evaluation engines to assess exercises
regardless of its format; 2) repositories to import
exercises from various sources; 3) authoring systems
to create exercises in multiple formats or based on
exercises from other sources.

The remainder of this paper is organized as fol-
lows. Section 2 analyses several of existing formats
to highlight both their differences and their similar
features. Based on this analysis Section 3 presents an
approach to extensible format conversion and details
the features of PExIL – the pivotal format in which the
conversion is based – and the service functions. The
following section provides details on the design and
implementation of BabeLO, including the service API
and the interfaces required to extend the conversion
to a new format. To evaluate the effectiveness and
efficiency of this approach this paper reports on two
actual uses of BabeLO: to relocate exercises to a dif-

2

ferent repository; and to use an evaluation engine in a
network of heterogeneous systems. The final section
summarizes the main contributions of this research
and plans futures developments of this service.

2 PROGRAMMING EXERCISES FORMATS

The increasing popularity of programming contests
worldwide resulted in the creation of several contest
management systems. At the same time Computer
Science courses use programming exercises to encour-
age the practice on programming. The interoperability
between these type of systems is becoming a topic
of interest in the scientific community. In order to
address these interoperability issues several problem
formats were developed. The next subsections details
four formats: CATS, FreeProblemSet (FPS), Mooshak
Exchange Format (MEF) and Peach Exchange Format
(PEF). Then, their features are synthesize based on a
specific exercises format expressiveness model.

2.1 CATS

CATS1 is a format for programming assignments [1].
The format encoded in XML describes the conditions
of the problem and a set of files with additional tests,
test programs, etc. All these files are wrapped up in
a ZIP file to facilitate deployment. A typical XML file
contains the description of 1) the problem statement
codified in the Simple Text Markup Language (STML)
format - a simplified subset of HTML; 2) the format
of input and output files and samples; 3) the restric-
tions on the input format; 4) references for external
resources such as tests generators, special checkers,
plug-ins and solution programs.

2.2 FreeProblemSet

Freeproblemset (FPS)2 is a transport file format for
the storage of all information about problems. It
aims to provide free problems sets for managers
of ACM/ICPC Online Jugdes by transporting data
from one judge to another. The format uses XML to
formalize the description of a programming problem.
It includes information on problem, test data, special
judger(optional) and answer(optional). Currently, the
FPS format is supported by several online judge sys-
tems including HUSTOJ3, ACM-Server4 and Woj-land
(OJ from Wuhan University)5.

1. http://imcs.dvgu.ru/cats/docs/format.html
2. http://code.google.com/p/freeproblemset/
3. http://code.google.com/p/hustoj/
4. http://code.google.com/p/acm-server/
5. http://code.google.com/p/woj-land/

2.3 Mooshak Exchange Format
Mooshak6 is a web based competitive learning system
originally developed for managing programming con-
tests over the Internet [2]. Recently, it was upgraded
to expose the evaluation functions as services. These
services are expected to integrate in heterogeneous
networks of e-Learning types of systems, including
the Learning Management Systems (LMS), Integrated
Development Environments (IDE) and Learning Ob-
jects Repositories (LOR) [3]. Despite the context where
it is used, Mooshak has its own internal format to
describe problems called Mooshak Exchange Format
(MEF). MEF includes a XML manifest file referring
several types of resources such as problem state-
ments (e.g. PDF, HTML), image files, input/output
test files, correctors (static and dynamic) and solution
programs. The manifest also allows the inclusion of
feedback and points associated to each test.
Currently, Mooshak is being used in several Uni-
versities worldwide to support learning activity. In
the competitive context, it was used as the official
evaluation system for the IEEE programming contests
for some years.

2.4 Peach Exchange Format
Peach7 is a system for the presentation, collec-
tion, storage, management and evaluation (automated
and/or manual) of assignments. The Peach Exchange
Format (PEF) [4] is a specific format for programming
task packages used in Peach. Peach task packages are
stored in a directory tree with a predefined structure.
Currently, Peach is being used by the Eindhoven
University of Technology8.

2.5 Synthesis
Several approaches can be found in literature [4], [1],
[5] to evaluate the expressiveness of programming
assignments formats. This sub-section synthesizes the
formats described previously according to the model
proposed by Verhoeff. This model describes concep-
tually the notion of a task package as an unit for
collecting, storing, archiving, and exchanging all in-
formation concerning with a programming task. The
choice of the Verhoeff model over the alternatives
is due to its more comprehensive coverage of the
required features. This model organizes the program-
ming exercise data in five facets:

1) Textual information - programming task human-
readable texts;

2) Data files - source files and test data;
3) Configuration and recommendation parameters

- resource limits;
4) Tools - generic and task-specific tools;

6. http://mooshak.dcc.fc.up.pt/
7. http://peach3.nl
8. http://peach.win.tue.nl/

3

5) Metadata - data to foster the exercises discovery
among systems.

The textual information facet (Table 1) accommo-
dates all the information (or pointers to such infor-
mation) that the exercise author wants to offer to stu-
dents or contestants about the exercise. It includes, for
instance, the exercise challenge, background informa-
tion, grading information and input/output samples.
These texts may be available in several languages and
formatted in plain text or other open format standards
such as HTML or LATEX. Since this data are encoded
in flexible text data formats they can be transformed
into various (open) presentation formats such as PDF.
Other texts (e.g. grading information and samples)
should ideally be generated from the evaluation data.

TABLE 1
Textual information facet.

Feature CATS FPS MEF PEF
Multilingual - - X X

HTML format X X X X
LATEXformat - - X -

Image X X X X
Attach files X - - X
Description X X X X

Grading - - - -
Samples - - - -

Besides human-readable texts, a programming ex-
ercise can also include several other files, in both text
or binary format. The data files facet (Table 2) covers
the following files: program and skeleton source files
(ideally with support for multiple programming lan-
guages), input/output test data (ideally with support
for grouping and multiple visibility mode), feedback
files associated with a specific test case and others
files.

TABLE 2
Data files facet.

Feature CATS FPS MEF PEF
Solution X X X X
Skeleton - - - -

Multi-language X X - X
Tests X X X X

Test groups X - - X
Sample tests - X - -

Grading X - X X
Feedback - - X -

The description of a programming exercise can
also include parameters related with the submission,
compilation and execution of the student attempts
to solve the exercise. These parameters can be orga-
nized in terms of configuration and recommendation
(Table 3). The former deals with the configuration
of compiler and linkers such as the compilation line
of source files and associated parameters. The latter
includes recommendations usually expressed in terms
of resource limits such as the size and number of lines
of a submission, compilation and execution time and

memory limits. These recommendations depend on
the actual platform used for evaluation runs. Thus,
platform information should be associated for a more
accuracy control.

TABLE 3
Configuration and recommendation parameters facet.

Feature CATS FPS MEF PEF
Compiler - - - -
Executer - - - -

Memory limit X X - X
Size limit - - - -
Time limit X X - -
Code lines - - - -

When creating, solving or evaluating an exercise
several software tools are needed such as editors,
compilers, libraries, linkers, test and feedback gener-
ators, input/output format checkers, evaluators, etc.
The tools facet (Table 4) covers the support of the
formats either by referencing these tools or by formal-
izing data that can be used as input for these tools.

TABLE 4
Tools facet.

Feature CATS FPS MEF PEF
Compiler - - - X
Test gen. X - - -

Feedback gen. - - X -
Skeleton gen. - - - -

Checker X - - X
Corrector - - X -
Library X - X X

The metadata facet (Table 5) comprises all the
data that provide useful information on the exercise
for classification and discovery purposes. There are
several types of metadata that can be included in a
programming exercise such as: exercise metadata (ex-
ercise type, keywords, difficulty level), authors meta-
data (name, contact), event metadata (name, type,
local, date, number of participants, etc.), solver meta-
data (platform, operating system, etc.) and manage-
ment metadata (status of development, version infor-
mation, etc.).

TABLE 5
Metadata facet.

Feature CATS FPS MEF PEF
exercise X X X X
author X - - X
event - X - X

keywords - - X X
license - - - -

platform - - - X
management - - - X

This study confirms the disparity of programming
exercise formats highlighting both their differences
and their similar features. This heterogeneity hinders
the interoperability among the typical systems found

4

on the automatic evaluation of exercises. Rather than
attempting to harmonize the various specifications, a
pragmatic solution is to provide a service for exer-
cises formats conversion. The next section presents an
approach to extensible format conversion and details
the features of PExIL – the pivotal format in which
the conversion is based – and of an abstract view of
the conversion service functions.

3 EXERCISE FORMAT CONVERSION
Data conversion is the conversion of computer data
from one format to another. Data conversion can
typically occur based on two approaches: direct or
pivotal [6].

In the direct conversion the converter receives the
input format and apply transformations according to
the output format. One apt example is the transcoder9

developed by JISC Centre for Educational Technology
and Interoperability Standards (JISC CETIS) that
enables the conversion between e-Learning content
packages. It addresses conversions between the most
common e-Learning content formats in use such as
IMS Content Packaging (IMS CP), Sharable Content
Object Reference Model (SCORM) and IMS Common
Cartridge (IMS CC).

The pivotal conversion is based on an intermediate
format allowing any source format to be converted
to its target. Compared with the previous approach,
this pivotal encoding approach provides several
advantages such as manageability. A data format
converter would have to support a huge number
of mappings for all the permutations of the data
formats supported. Using a intermediate format
scales down this number since only one mapping is
needed for each format supported. Pivotal conversion
is often used in several areas. For instance, Office
applications use the OpenDocument file format as a
pivot for the conversion between office file formats.
Despite its use, the pivotal approach is also subject of
criticism [6] such as the augment of noise due to the
propagation of the translation errors and inaccuracy
or lost of data due to the conversion between formats
that are conceptually different.

3.1 Approach
Based on the current conversion approaches it was
decided to use the pivotal approach regarding the
exercise formats conversion.

Using a pivot format reduces drastically the number
of permutations needed from n×(n−1) to 2×n, where
n is the number of formats supported.

Since one of the design requirements of the Con-
verter is its extensibility it is important to simplify
the support for new formats.

9. http://purl.oclc.org/NET/transcoder

3.2 PExIL - a pivot exercise format

The Programming Exercises Interoperability Lan-
guage (PExIL) [7] is a XML dialect that aims to
consolidate all the data required in the programming
exercise life-cycle.

The life cycle comprises several phases: in the cre-
ation phase the content author should have the means
to automatically create some of the resources (assets)
related with the programming exercise such as the
exercise description and test cases and the possibility
to package and distribute them in a standard format
across all the compatible systems (e.g. learning man-
agement systems, learning objects repositories); in the
selection phase the teacher must be able to search
for a programming exercise based on its metadata
from a repository of learning objects and store a
reference to it in a learning management system; in
the presentation phase the student must be able to
choose the exercise description in its native language
and a proper format (e.g. HTML, PDF); in the solving
phase the learner should have the possibility to use
test cases to test his attempt to solve the exercise and
the possibility to automatically generate new ones; in
the evaluation phase the evaluation engine should
receive specialized metadata to properly evaluate the
learner’s attempt and return enlightening feedback.

The PExIL definition is formalized through the
creation of a XML Schema depicted in Figure 1. The
schema comprises three groups of elements:

• Textual - elements with general information
about the exercise to be presented to the learner.
(e.g. title, date, challenge);

• Specification - elements with a set of restrictions
that can be used for generating specialized re-
sources (e.g. test cases, feedback);

• Programs - elements with references to programs
as external resources (e.g. solution program, cor-
rectors) and metadata about those resources (e.g.
compilation, execution line, hints).

The expressiveness of PExIL was validated accord-
ing to the multi-facet model proposed by Verhoeff.
Table 6 shows the PExIL elements coverage.

Textual elements group (G1) in PExIL can be used
in several phases of the programming exercise life-
cycle: in the selection phase as exercise metadata to
aid discoverability and to facilitate the interoperability
among systems (e.g. LMS, IDE); in the presentation
phase as content to be present to the learner (e.g.
exercise description); in the solving phase as skeleton
code to be included in the student’s project solution.

Specification elements group (G2) in PExIL can be
used in several phases of the programming exercise
life-cycle: by 1) the content author to automatically
generate an input and output test example to be
included on the exercise description for presentation
purposes; 2) the learner to automatically generate new
test cases to validate his attempt; 3) the Evaluation

5

Exercise

Specification

+ LineTerminato r
+ ValueSeparato r

Title

1..*

Creation

Author Date Event Institution

Context Challenge Keywords Input

Description Example

Line

+ Visible

Data

+ Id
+ Typ e
+ Value
+ Min
+ Max
+ Sp ec
+ Visible

Repeat

+ Co unt

When

+ Co nd itio n

Feedback TestCaseVisibility

+ Pub lic

Corrector

+ Depends

Program

+ Id
+ Lang uag e
+ Co mp iler
+ Executer
+ Version
+ So urce
+ Ob ject
+ Co mpilatio n
+ Executio n

Solution SkeletonFeedbackLevels

+ Levels
+ Incremental
+ Sho wAllLevels

Hints

Output

InputOutput

0 ..1

1..* 1. .1 0..* 0..*

0..* 1..* 0..* 1. .1 1. .1

0..* 0..*1. .1

0 ..1 0 ..1 0 ..1

0 ..1

0..*

1..*0 ..1

1..*
1..* 0 ..1

0..* 0..* 0..*0 ..1

Submission

+ Time_So lve
+ Time_Sub mit
+ Attempts
+ Co de_Lines
+ Leng th

Compilation

+ Line
+ Time
+ Size

Execution

+ Line
+ Time

0 ..1 0 ..1 0 ..1

0 ..1

Fig. 1. PExIL data model.

Engine to evaluate a submission using the test cases.
Program elements group (G3) contain references to

program source files as external resources (e.g. solu-
tion program, correctors) and metadata about those
resources (e.g. compilation, execution line, hints).
These resources are used mostly in the evaluation
phase of the programming exercise life-cycle to allow
the Evaluation Engine to produce an evaluation report
of a students’ attempt to solve an exercise.

TABLE 6
PExIL coverage on the Verhoeff model.

Verhoeff / PExIL G1 G2 G3
Text X X -
Data files X X X
Parameters - - X
Tools - - X
Metadata X - X

This analysis asserts the total coverage of PExIL
elements based on the Verhoeff model and guarantees
PExIL as a good candidate to act as a pivot format
for a conversion service of programming exercises
formats. More details about PExIL can be found in
literature [7].

3.3 Abstract Functions

This section describes the generic capabilities of a
Converter service expressed in terms of their be-
haviours, without prescribing how to make them
operational. A service of this genre is responsi-
ble for the conversion of programming exercises
formats. It supports five functions: GetFormats,

Convert, ConvertSets, ConvertFromSet and
ConvertToSet. In the following sub-subsection de-
tail the five service functions.

3.3.1 The GetFormats function
The GetFormats function provides the requester
with a list of all the formats supported by the service.
In order to support a format the service must imple-
ment the format conversion from and to the pivotal
format. In this function, the request may omit the
parameter or have one representing the input format.
In the former the response returns a list of all formats
of the converter. In the latter the response includes
only the formats that can be converted from the input
format given as a parameter. In the response, each
format is described by its name and a list of formats
that can be used as outputs and its corresponding
URL paths. This will allow client systems to automate
the conversion request based on the available formats
returned by the GetFormats function.

3.3.2 The Convert function
The Convert function performs the conversion of a
given programming exercise from an input format
to an output format. The function includes three
parameters: 1) the format of the exercise to convert;
2) the conversion output format; and 3) a reference
(URL based) of the exercise to convert. The function
returns an archive with its contents complying with
the output format.

3.3.3 The ConvertSets function
The ConvertSets function converts a set of pro-
gramming exercises from an input format to an output

6

format. This function is useful with formats that deal
only with exercise sets, or when they are convenient
for a particular task. In a competitive setting a contest
manager may want to feed a new contest based on
a problem set of a existing programming contest.
In a more pedagogical setting a teacher may want
to use in the classroom a set of problems from an
external source. In both cases the request parameters
are similar to the previous function. The function
returns an archive with a set of exercises complying
the given output format.

3.3.4 The ConvertFromSet function
The ConvertFromSet function converts a single pro-
gramming exercise from a set of exercises described
with the input format to a single exercise in the
output format. The exercise to convert is given by
its position within the set as an additional parameter.
The function returns an archive with a single exercise
complying the given output format.

3.3.5 The ConvertToSet function
The ConvertToSet function converts a single pro-
gramming exercise complying with the input format
to a single collection in the output format. The func-
tion returns an archive containing a collection with
only one exercise in the given output format.

4 BABELO
In this section details the design and implementation
of BabeLO on the Tomcat servlet container. Figure 2
shows the architecture of the BabeLO service de-
scribed by an UML component diagram.

Mooshak
Converter

<<interface>> BabeLOCo nverter

+ convertFrom(Data : File) : File
+ convertTo (Data : File) : File
+ convertSetsFro m(Data : File, [po sition: Integ er]) : File
+ convertSetsTo(Data : File) : File
+ g etFormats([Format: String]) : XML

Learning
Objects

Repository

Authoring
System

Automatic
Assessment

System

<< imp lement>>

FPS
Converter

REST API

...

<<use>>

Fig. 2. BabeLO architecture.

In order to allow client systems to use the conver-
sion features of BabeLO its core functions are exposed
as services using a REST web service interface. The

REST implementation uses Jersey10 – the reference
implementation of JAX-RS (The Java API for RESTful
Web Services). In Table 7 each function is associated
with the corresponding operation in the REST flavour.

TABLE 7
BabeLO REST API.

Functions REST API
GetFormats convert[/in]
Convert convert/in/out/ex
ConvertSets convertsets/in/out/ex
ConvertToSet converttoset/in/out/ex
ConvertFromSet convertfromset/in/out/pos/ex

The GetFormats function returns a list of the for-
mats supported by the service. The syntax of the GET
HTTP request is:

GET /convert[/inputFormat] > BRL

The response is formalized using the BabeLO Re-
sponse Language (BRL). The Convert function con-
verts a given programming exercise from an input
format to an output format. The syntax of the GET
HTTP request is:

GET /convert/in/out/ex > Archive

The function includes three parameters: in – the
format of the exercise to convert; out – the conversion
output format; ex – reference (URL based) of the
exercise to convert. The function returns an archive
with its contents complying the output format.

Figure 3 shows a typical conversion between
two formats: Mooshak and FPS. BabeLO uses the
convertFrom() method of MooshakConverter to
transform the programming exercise from mooshak
format to the PExIL format. Then, it is uses the
convertTo() method of the FPSConverter to
transform the exercise from the PExiL format to the
FPS format.

convertFrom(data) convertTo(data)

MooshakConverter

<<artifact>>
fps format

<<artifact>>
mooshak format

<<artifact>>
PExIL

FPSConverter

Fig. 3. The Convert function.

Being an extensible converter BabeLO can be aug-
mented with other classes implementing a specific
Java interface defining the convertFrom() and
convertTo() methods mentioned above, as well as
other similar methods to handle collections.

5 EVALUATION RESULTS
This section focus the evaluation the effectiveness and
efficiency of the proposed approach. It is based on

10. http://jersey.java.net

7

two actual uses of BabeLO: to relocate exercises to a
different repository; and to use an evaluation engine
in a network of heterogeneous systems.

5.1 Case study 1: repositories exchange

In the first case study the BabeLO service is used
to create a repository collection based on a problem
set of an existing programming contest. Figure 4
depicts the interconnection of BabeLO with two other
components to achieve this purpose.

BabeLO

crimsonHex
repository

ACM/ICPC
(Waterlo o local contest)

REST API <<use>>

Fig. 4. Case study 1 - exchanging exercises between
repositories

In order to measure the efficiency of the BabeLO
Service two repositories were used: an installation
of crimsonHex [8] - a repository of programming
exercises created in the scope of an European project
called Edujudge [9] - and the ACM/ICPC contest
system of the University Waterloo. The exercises were
copied from the Waterloo repository to crimsonHex
installation. The former supports the IMS Common
Cartridge (IMS CC) format for describing the exer-
cises. The later uses the FPS format to describe the
contest problem sets.

The time to convert collections with different num-
bers of exercises was measured and compared with a
standard download, i.e using the time of a HTTP GET
as benchmark. The average size of the exercises used
in this experiment was 12KB and time was measured
in milliseconds. Table 8 summarizes the results and
presents the overheads introduced by BabeLO.

TABLE 8
Download time (ms) and overhead of BabeLO

Direct BabeLO Over
ex. Coll. P.Ex. Coll. P.Ex. head

1 7 7 78 78 10.1
10 22 2.2 693 69.3 30.5

100 145 1.45 5,970 59.7 40.2
1000 1,395 1.395 56,348 56.3 39.4

The main conclusion is that BabeLO introduces
an overhead of a factor of 10 when converting an
exercise. This overhead increases with the size of col-
lections when taking as benchmark the direct down-
load of a collection. This fact is understandable since
BabeLO has to process each exercise, one-by-one,
and takes little advantage of collections. Analysing
the columns for direct download one notices that,

although the time for downloading a collection in-
creases with the size of the collection, the average
time per exercise reduces significantly. This is due to
the fact that a collection download avoids the time
of establishing a connection to the repository for each
exercise, which is a significant part of the download.
Analysing the columns for the BabeLO download one
notices something similar; the time per exercise is
reduced but it is not as expressive as in the direct
download. This is due to the fact that the conversion
time is a larger share of the overall time and saving
the time of establishing connection has less impact.

At first sight an overhead factor of 10 may seam
impracticable for on-the-fly format conversion. How-
ever, it should be noted that exercises only need to be
downloaded from a remote site for the first time they
are used. As in any HTTP based system a cache can
and should be used to improve overall efficiency [10],
as describe in next subsection.

5.2 Case study 2: automatic assessment
In this subsection the effectiveness of BabeLO is val-
idated with an evaluation engine in a network of
heterogeneous systems. The architecture depicted by
UML component diagram in Figure 5 is composed by
the following systems and tools:

1) Learning Objects Repository (LOR) to
store/retrieve exercises;

2) Evaluation Engine (EE) to evaluate students’
exercises;

3) Learning Management System (LMS) to present
the exercises to students;

4) Integrated Development Environment (IDE) to
code the exercises.

Evaluation
Engine

Integrated
Development
Environment

Learning
Objects
Repository

Learning
Management
System

Orchestrator
Component

Evaluate (E-F)

Shell

DRI (IMS)

LTI (IMS)

BABELO

REST API

<<use>>

Fig. 5. Case study 2 - automatic assessment.

To start using this network the teacher sets a num-
ber of activities (exercises) in the LMS by selecting
a set of relevant programming exercises from the
LOR. Then, the learner tries to solve the exercises
assigned by the teacher using the pivot component
(launched by the LMS). The pivot component recovers
the exercise description from the LOR and shows it
to the student. After coding the program in the IDE
the student uses the pivot component to send an
attempt to the EE. The first time that the user send
an attempt to the EE, the engine uses the BabeLO

8

service to convert the exercise from its original format
to the Mooshak internal format and then it caches
the BabeLO response for further use. After that the
EE evaluates the student’s attempt and returns an
evaluation report. The student may submit repeatedly,
integrating the feedback received from the EE. In the
end, the EE sends a grade to the pivot component and
reports the LO usage data back to the LOR.

In order to validate the efficiency of this network an
experiment was conducted at ESEIG - a school of the
Polytechnic Institute of Porto. Students from the first-
year of the course Algorithmic and Programming par-
ticipated in a two-month experiment (6 classes) with
several assignments comprising 18 exercises. From
a extensive list of results it should be stressed the
number of times that the EE accessed to BabeLO (18)
comparing it with the number of attempts submitted
by students to solve the exercises (819). These results
show two things: the EE cache mechanism is working
as expected and the BabeLO service made successfully
conversions since no more requests were made.

6 CONCLUSIONS

The goal of the research presented in this paper is
to promote the interoperability among systems that
participate in the automatic assessment of programs.
The heterogeneity of theses systems is the least of the
obstacles to interoperability. The major problem is the
lack of a standard for assessment items, i.e. learning
objects, understood by all the systems involved in
assessment. The proposed approach is a service to
convert programming exercises formats on-the-fly.

The contribution of this research is twofold, the
service abstract definition and its actual implemen-
tation. The abstract definition comprehends the mod-
ular design of the conversion service based on a pivot
format, the data model of this pivotal format and the
definition of the service functions. The actual imple-
mentation of BabeLO is a web service implemented
in a Java servlet container supporting a few formats
and with the ability to be extended to new formats.

The effectiveness and efficiency of the proposed
approach were evaluated with two case studies pre-
sented in this paper.

The BabeLO service is an open source project and
was already deployed in networks of e-Learning sys-
tems that require on-the-fly conversion among learn-
ing object formats.

Currently BabeLO supports only the conversion of
programming exercises from and to Mooshak and FPS
formats and this is its main drawback. As future work
the authors will extend the BabeLO compliance to
other exercise formats. Also rather than maintaining
a single installation of the conversion service, the au-
thors intend to distribute the source code of BabeLO
and promote installations of this service at each site.
With this approach they expect both to reduce the

fear of unauthorized copy of learning objects, and to
encourage users of other formats to contribute with
code to convert to and from the pivotal format.

REFERENCES
[1] A. Klenin, “Common problem description format: Require-

ments.” ACM-ICPC World Final CLIS (Competitive Learning
Institute Symposium), 2011.

[2] J. P. Leal and F. M. A. Silva, “Mooshak: a web-based multi-
site programming contest system,” Softw., Pract. Exper., vol. 33,
no. 6, pp. 567–581, 2003.

[3] J. P. Leal and R. Queirós, “A programming exercise evaluation
service for mooshak,” ACM-ICPC World Final CLIS (Compet-
itive Learning Institute Symposium). ACM-ICPC World Final
CLIS (Competitive Learning Institute Symposium), 2011.

[4] T. Verhoeff, “Programming task packages: Peach exchange
format,” International Journal Olympiads In Informatics, vol. 2,
pp. 192–207, 2008.

[5] S. H. Edwards, J. Börstler, L. N. Cassel, M. S. Hall,
and J. Hollingsworth, “Developing a common format
for sharing programming assignments,” SIGCSE Bull.,
vol. 40, no. 4, pp. 167–182, 2008. [Online]. Available:
http://dx.doi.org/10.1145/1473195.1473240

[6] T. Tsunakawa, “Pivotal approach for lexical translation,” Ph.D.
dissertation, University of Tokyo, 2010.

[7] R. Queirós and J. P. Leal, “Pexil: Programming exercises
interoperability language.” XML: Aplicacoes e Tecnologias
Associadas (XATA), 2011.

[8] J. P. Leal and R. Queirós, “Crimsonhex: a service oriented
repository of specialised learning objects,” in ICEIS 09 - 11th
International Conference on Enterprise Information Systems, Milan,
Italy, ser. Lecture Notes in Business Information Processing,
vol. 24, Springer-Verlag, LNBIP. Springer-Verlag, LNBIP, May
2009, pp. 102–113.

[9] E. Verdú, L. M. Regueras, M. J. Verdú, J. P. Leal, J. P. de Castro,
and R. Queirós, “A distributed system for learning program-
ming on-line,” Computers & Education, Elsevier, vol. 58, pp. 1–
10, January 2012.

[10] R. Fielding and R. Taylor, “Principled design of the modern
web architecture,” in Software Engineering, 2000. Proceedings of
the 2000 International Conference on, 2000, pp. 407 –416.

Ricardo Queirós Assistant professor at the
School of Industrial Studies and Manage-
ment (ESEIG) in Vila do Conde. He is a Ph.D.
student of the Doctoral Program in Computer
Sciences in the Faculty of Sciences of the
University of Porto (FCUP). His scientific ac-
tivity is related with e-Learning standards and
Interoperability. He is an associated mem-
ber of the Center for Research in Advanced
Computing Systems (CRACS).

José Paulo Leal Assistant professor at the
department of Computer Science of the Fac-
ulty of Sciences of the University of Porto
(FCUP) and associate researcher of the
Center for Research in Advanced Comput-
ing Systems (CRACS). His main research
interests are e-learning system implemen-
tation, structured document processing and
software engineering. He has a special in-
terest on automatic exercise evaluation, in
particular on the evaluation of programming

exercises, on the semantic web and on web adaptability.

