
Testing the perception of time, state and causality
to predict programming aptitude

José Paulo Leal
DCC/FCUP & CRACS/INESC-TEC

University of Porto, Portugal
Email: zp@dcc.fc.up.pt

Abstract—The aim of the research presented in this paper is
the development of a novel approach to predict programming
aptitude. The existing programming aptitude tests rely on the
past academic performance of students, on their psychological
features or on a combination of both. The novelty of the proposed
approach is that it attempts to measure student capabilities to
manipulate abstract concepts that are related with programming,
namely time, state and causality. These concepts were captured
in OhBalls - a physical simulation of the path taken by a
sequence of balls through an apparatus of conveyor belts and
levers. An engine for this kind of simulation was implemented
and deployed as a web application, creating a self-contained test
that was applied to a cohort of first-year undergraduate students
to validate the proposed approach. This paper describes the
proposed type of programming aptitude test, a software engine
implementing it, a validation experiment, discusses the results
obtained so far and points out future research.

I. INTRODUCTION

Programming is hard to learn for most people [9], [12].
Although some students seem to learn it without apparent
difficulty, this is not the case of most of them, especially those
majoring in subjects other than computer science or software
engineering. Even students in those areas are not immune to
these problems, as many educators feel that they do not acquire
the necessary programming skills in introductory courses [10].
Probably some students are not cut out to be programmers and
knowing it in advance would a great advantage [7].

Predicting which students are likely to succeed in learning
programming is not easy, some even say it is unfeasible [9].
Nevertheless, this is precisely the goal of the research de-
scribed in this paper: to create a programming aptitude test,
and especially to explore new ways to predict programming
aptitude.

Several studies suggest that the high school performance in
mathematics is the best indicator of a programming aptitude
in college [3], [6], although the correlation between both is
usually small. The standard explanation is that both mathemat-
ics and programing require abstract reasoning, thus a student
with a good performance in mathematics during high school
is bound to succeed also in college programming courses.

It is indisputable that a connection exists between program-
ming and mathematics, at least in a broad sense. Although it is
much more difficult to define mathematics than programming,
if we accept that the realm of mathematics is patterns of
thought them clearly computer science in general, and com-
puter programming in particular, are deeply connected to this

discipline. However, the mathematical knowledge of a high
school student is essentially algebra, calculus and basic logic,
and these fields lack a number of abstract concepts that are
essential in programming, namely time, state and causality.

The concept of time is central to computing. Computers
have an internal clock that regulates how instructions are
executed. Programs are sequences of instructions that are
executed in a flow over a period of time. All the elements of a
computer, or of a program, are in a certain state that evolves
over time. The execution of instructions causes changes to
these states, that are influenced by their previous states.

This type of reasoning, however abstract, is in general
absent from mathematics, especially from the branches of
mathematics taught in high school. Take calculus for instance.
Although the variable of a function may be interpreted as time,
the function itself exists beyond time; it always existed and
never changes. A derivative may be seen as the amount of
change of the function’s value but it has no discernible causes
or consequences. Or take Boolean logic as another instance,
where A implies B that does not mean that A precedes B or
caused by B. If A is true then it has always been true and
will never change. This timelessness exists also in algebra
where “variables” are actually “unknowns”, values that can
and eventually will be determined by a computation, not values
that actually change over time.

It can be argued that some programming languages, namely
declarative languages, are closer to mathematics and above
these concepts of time, state and causality. Although this is
true, these languages are not widely used and certainly not
used as much as Java, C/C++ and Python in introductory pro-
gramming courses [11]. Moreover, although the denotational
semantics of these languages may be independent from time
and state, their operational semantics depends on them and the
programmer must understand them, if not for anything else,
to be able to debug programs.

An algorithm is probably the mathematical concept learned
before college that most closely resembles to a computer
program. However, students learn specific algorithms that
they execute, for instance the division algorithm, rather than
study algorithms as a topic, without actually creating new
algorithms. These differences between mathematics and pro-
gramming are possibly the reason why a student may reveal
aptitude for maths but none for programming and vice versa,
and why math grades are insufficient to predict proficiency in



programming.
The motivation for this research comes from the intuition

that there is a kind of reasoning that is specific to pro-
gramming, that is different from the reasoning required in
mathematics. Based on this insight, the goal of this research
is to develop a new kind of test based on the concepts of time,
state and causality. The test should be self-contained, in the
sense that it should not require a person to administer it and
should not require any previous knowledge of programming
concepts.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related work on predicting programming
aptitude. Section III presents the proposed type of aptitude test
and describes a JavaScript engine implementing it. Section IV
reports on an experiment to evaluate the proposed type of test.
The final section summarizes the research conducted so far and
identifies paths for future research.

II. RELATED WORK

Predicting programming aptitude is still a challenging task,
although this topic is being studied for more than 40 years [1]
and its relevance has been well establish for almost a quarter
of a century [7].

Most of the recent research in the literature attempts to
correlate programming aptitude with factors that are unrelated
with programming, either the student academic record or
psychological features. As part of the academic performance
the most relevant factor is previous math grades [2], [3], [8] al-
though science grades and even average grades have also been
investigated. Other plausible factors were also investigated,
such as creativity, problem solving aptitude, attitude toward
computers, with even lower correlations [6]. None of these
factors has yet provided a good predictor of programming
aptitude.

The test recently proposed by Dehnadi [5] differs from the
previous since it is actually related to programming; it is a
sequence of questions on Java assignment statements. Dehnadi
claims that consistency in the interpretation rather than its
correctness is the main indicator of programming aptitude.
The purpose of the test is not to discriminate students who
answered correctly, which would assume prior knowledge of
programming. The purpose is actually to determine those who
answered consistently according to a single mental model.
This would reveal the ability to create a meaningful rule to
interpreter the assignment command, from which the aptitude
to learn a programming language could be inferred. Unfor-
tunately, this experiment was later repeated by Caspersen [4]
and also by Wray [12] and none was able to reproduce the
results of Dehnadi.

Wray [12] explored the known link between autism and
descendants of mathematicians and scientists. He proposed
an alternative method for predicting programming aptitude
based on mild autistic-spectrum related questionnaires from
the Autism Research Center. These questionnaires tests two
facets of autism: the level of understanding of systems of
objects (SQ) and the level of understanding of other people

emotions (EQ). Individually these tests are moderately corre-
lated, but combined they provide a good correlation (r=.67)
with programming aptitude. However, the test was applied
only to 17 students after they have completed an introduc-
tory programming course, and no subsequent results were
published on the use of this method to predict programming
aptitude.

III. TESTING PROGRAMMING APTITUDE

The goal of this research is to develop a new kind of test
to estimate programming aptitude. This kind of test intends to
estimate the perception of time, state and causality, under the
assumption that these concepts are present in programming
reasoning and should reveal an aptitude to program. Also, the
test must not require any programming knowledge and be self-
contained, in the sense that anyone should be able to take it
alone, without or with minimal supervision.

The test that is being developed is based on a set of
physical simulations with a common scenario called OhBalls.
This name comes both from the blue ball than moves on a
screen, and the interjection that participants pronounce when
it doest not behave exactly as expected. Since it is based on a
simulation the test must taken on a computer, which nowadays
is hardly a difficulty. In its current implementation the OhBalls
test is deployed on the web hence it can be taken virtually
anywhere.

A test with the OhBalls scenario is composed by a sequence
of panels. Each panel presents a physical simulation set in a
room where balls are dropped from a pipe on the ceiling, move
through a system of conveyor belts and eventually fall in one
of several buckets on the floor. The participant must predict
the number of balls that will land on each bucket when the
simulation is executed. Figure 1 depicts a example of those
panels.

Fig. 1. Example of an OhBalls panel

Balls falling from the pipe land on a conveyor belt that
carries them either to the left or to the right. The direction in
which the upper side of the belt is moving and the ball would



be carried is shown by the arrow head in the middle of the
conveyor belt. This direction can be reversed by one of the
levers connected to the wheels of the conveyor belt when a
ball pushes it. For instance, the first ball falling from the pipe
in Figure 1 will be carried to the right by the top conveyor belt
and fall in the rightmost bucket. When falling to the bucket it
will activate the right lever of the top conveyor belt, reversing
its direction, and thus the second ball will go to the left.

The levers have always the same effect – reverse the
conveyor belt to which they are connected – but are activated
in different ways. For instance, the right lever on the top belt
is activated when the ball falls out of the belt, while the left
lever on the same belt is activated when the ball is carried
to the right by the bottom belt. Hence, the second ball will
fall on the second bucket from the right, and will reverses the
direction of both belts.

The levers change the state of the system from one ball
to the other. In the panel of Figure 1, when the third ball
falls from the pipe the top belt will be moving again to the
right, while the bottom one will be moving to the left. Hence,
this ball will eventually land on the rightmost bucket, raising
its count to 2, while reversing the top belt. At this moment
both belts will be moving to the left. Thus, the fourth and last
ball will be carried to the left, and is dropped on the leftmost
bucket. Any subsequent ball would also end in the leftmost
bucket but this simulation stops after 4 balls.

The number initially on the pipe indicates the number of
balls that will fall during the simulation, and each bucket
counts the number of balls that reached it. Under each bucket
there is a selector where the participant predicts the number
of balls that will reach it when the simulation is completed.
The simulation is started by pressing a button (not shown in
Figure 1) that is activated when the sum of these selectors
equals the number in the pipe.

During the simulation balls fall from the pipe on the ceiling
one after another. When a ball is dropped the counter in the
pipe is decreased. When the ball reaches a bucket its counter
is increased. Then a new ball is dropped from the pipe if this
counter has not yet reached 0. When all balls reach a bucket the
simulation stops and the number in each bucket is compared
with the number in the selector beneath it. The participant
is considered to have successfully predicted the outcome of
the simulation if these figures match for all buckets. The
participant may replay each simulation several times but will
not be able to change the answer made before executing the
simulation for the first time.

It should be noted that levers do not stop balls by them-
selves. They are activated by balls and change the direction
of belts that carry them through the apparatus. For instance,
the left lever on the top belt will be activated when a ball is
moving to the right on the lower belt. The lever will not stop
the ball in this belt but will reverse the direction of the top
belt, affecting only the following balls. If this particular lever
(in the left on the top belt) was pointing up instead of down
then it would affect balls coming to the left in the top belt. It
would not stop them but it would reverse the belt before they

reach the point where they would fall.
In summary, the apparatus is composed of one or more

conveyor belts that carry a ball falling from the pipe to the
buckets on the floor. The motion of each belt is given by a pair
of wheels. Levers are always bound to a belt, more precisely
to one of its wheels, and can be in 4 possible directions (left,
right, up and down).

It is obvious that many panels of this kind can be created
with a different number of belt and lever settings. For instance,
with a single belt there are 16 different combinations. On each
side there are 4 possibilities for placing a lever: no lever at
all, pointing up, pointing down, left or right, depending on the
position of the wheel1. More than one lever per wheel would
be possible but would also be too confusing. In a panel with
2 belts these must be arranged so that falling balls go either
to another belt or to a bucket.

The easiest way to achieve this is to use a grid to place
the center of the belts, the buckets and the pipe. The distance
between the wheels of a belt must be set in a way that balls
are dropped in alignment with the center of other belts and
buckets positioned bellow them. Also, the distance between
consecutive rows must take in consideration that a certain gap
between belts, large enough for the ball to move between them,
and small enough for the ball carried by the lower belt to
activate a lever in upper belt. The pipe should be at the center
and have a belt aligned bellow.

With this approach a setup with 2 belts in two different
ways can be created, with the lower belt either to left or to
the right, with a total of 512 possibilities. It would not make
sense to place belts exactly over each other, or any relative
position where balls would not go from one to the other.

An engine to execute this kind of simulation was imple-
mented in JavaScript using the HTML 5 canvas element with
a 2D context. This engine runs on a recent version of all major
web browser. It can be parametrized with any number of panels
following the approach described above. Currently the panels
are limited to a grid of 5 rows by 7 columns, which is large
enough to place 4 belts, a pipe and bottom row of buckets in
each column of the grid.

The current version of engine supports only the prediction
of the simulation outcome. In a future version it should allow
the participant to place levers in order to achieve a certain
configuration. Obviously, this is much closer to the reasoning
involved in programming than the current implementation,
which is comparable to tracing a program for debugging it.
Implementing this feature is not difficult. The main reason for
not having it in the first version was lack of knowledge on
how the participants would react to this kind of test and the
possibility that they would find it too complex as it is.

IV. EXPERIMENT

An experiment was designed to investigate how potential
participants perceive the OhBalls type of test and its effective-
ness in predicting programming aptitude. For this experiment

1a lever pointing inwards would be senseless



a number of students enrolled in an introductory programming
course took an OhBalls test and the outcome was compared
with the grades of their middle term exam. This section
presents the web application developed as the main instrument
for this experiment, analyses the data collected with it and
discusses the obtained results.

The web application developed for the experiment is based
in the simulation engine described in section III. It allows a
considerable number of participants to take the test simulta-
neously, while it collects data for later processing.

The interaction of each participant with the web application
proceeds in four stages: identification, questionnaire, tutorial
and test. The total time of each participation is about 20
minutes. To start the participation each student introduces his
or her ID that is checked against a list previously loaded
into the application, ensuring that each student participates
only once. After being identified, the participant completes a
small questionnaire with demographic data, mathematics and
average grades from high-school, and former experience with
computer and programming.

The OhBalls test is preceded by a tutorial that explains how
it works. The tutorial runs on the same type of interface and
highlights each important part while a text in a message box
provides the necessary details. It explains how the balls are
carried by belts in the simulation, how they activate levers and
these change the direction of belts, how they reach buckets and
new balls repeat the simulation until a predefined number of
balls is processed trough the simulation. This tutorial explains
also that the participant must predict the number of balls
ending in each bucket before running the simulation, and how
to activate it and proceed to the next panel. This tutorial runs
in a loop until the participant decides to start the test. During
the test the participant may rerun this tutorial, if needed.

The OhBalls type of test configured for this instrument con-
sists of a sequence of 30 panels. Each panels is accompanied
by a small text that emphasizes a particular point that was not
present in the previous ones, such as “note that levers may by
activated while balls are falling”.

The first set of panels has a single conveyor belt, and each
panel is increasingly more complex than the previous ones.
The following set of panels has two belts also with increasing
complexity. Nevertheless, the first panels with two belts are
less complex than the last ones with a single belt, since they
have no levers or just a single lever. The following two sets,
with three and four belts, are ordered in the same fashion: the
first panels are fairly easy and the last are more difficult.

After the simulation is run the participant is informed if
she succeeded in predicting the outcome of the simulation, the
time she took to complete it (the number of seconds the panel
was shown before pressing the button to start the simulation)
and the percentage of correct answers.

When the participant proceeds to the next panel the applica-
tion sends the data it collected to the server. The data collected
for each panel includes the time the student took to complete
it, the number of balls the student expected in each bucket
and a Boolean indicating if the outcome of the simulation

was predicted with success or not.
The participants were students enrolled for the first time in

an introductory programming course. This course is common
to the computer science and computer engineering programs
offered by the computer science department of the faculty
of sciences at the university of Porto. The course syllabus
is problem solving oriented and uses C as programming
language.

The experiment took place in September of 2012 during
their first practical class and the participation was optional.
Although no student refused to participate in the experiment,
those that were unable to complete the test due to timetable
constraints were excluded. The students received a brief expla-
nation on the purpose of the experiment and were assured that
their participation would not have any impact on their course
grades.

The number of participants in the OhBalls test was 153
of which 115 where considered valid. Of these students a
considerable number decided they were not ready to take
the middle term exam. Only the data referring to the 57
students that took also the middle term exam was used in this
experiment. Of these 57 students considered in the experiment
the number of females was 10 (17.5%) and 18.16 was the
average age.

OhBalls grade

15 20 25 30

●●● ●●

Fig. 2. Box plot of experiment grades

The time taken in each panel by the participants varied from
1 to 558 seconds, with a mean of 33.25 seconds. A possible
inverse correlation between time spent analysing the panel and
the a correct prediction was investigated, but it was not very
high (c = −0.24).

To measure the outcome of each participant’s test a grade
was computed by assigning 1 point to to each panel correctly
answered and 0 otherwise. Thus, each participant had a grade
with range 0 to 30 (the number of panels) assigned to her.
Considering the series of test grades, the minimum grade was
12, the mean 23.3, the median 24 and the maximum 30. A
5 value summary of the ObBalls grades in the experiment is
shown in Figure 2.

There was a good number of very simple panels, to make
sure the participants understood the test, but most likely this
difficulty was overestimated. In fact, taking 1 for a panel
correctly answered and 0 otherwise, the overall median of was
1 and the mean 0.74; by panel, in 23 out 30 the median was 1.
The data suggests that the OhBalls test used in the experiment



is too simple and more complex panels are needed.
The correlation of the OhBalls grade with the middle term

exam was not high (c = 0.31) and inferior to the correlation
between the high school math grade reported by the students
(c = 0.39). Nevertheless it was possible to identify a subset
of 8 panels for which the correlation is comparatively high
(c = 0.54). Figure IV is a plot of the the grade for this selected
set of panels (as percentage) and the grade in the middle term
exam (also as percentage).

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

50 60 70 80 90 100

0
20

40
60

80
10

0

Selected OhBalls panels (%)

M
id

dl
e 

te
rm

 e
xa

m
 (

%
)

Fig. 3. Scatter Plot of selected panels and mid-term grades

Figure IV shows that the selected OhBalls panels predict
the maximum grade the student will obtain, i.e. the student
grade is almost always lower than the grade obtained in the
selected panel of OhBalls.

The grade in the selected panels was also used in com-
plement with other factors that are known to have influence
in programming aptitude, namely math and other high school
grades. The initial questionnaire collected the average grade
used by Portuguese state universities to rank students applying
to their programs. This average includes in equal parts the high
school average grade and the national exams grades in particu-
lar subjects. In this case these subjects can be either math alone
or math, physics and chemistry. A sum of equal parts of these 2
grades (selected OhBalls panels and average grade) reached a
higher correlation (c=.64). By comparison, the average grade
alone obtained a smaller correlation (c=0.57). The scattered
plot of these combined grades with the mid-term grades, with
the regression line in red, is presented in Figure 4.

In any event, these are just preliminary results suggesting
that there is room for improvement. The OhBalls panels used
in this test were clearly too simple and more complex ones
should be used. The capacity for the participants to understand

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

55 60 65 70 75 80 85 90

0
20

40
60

80
10

0

Selected OhBalls panel + high school average (%)

M
id

−
te

rm
 g

ra
de

 (
%

)

Fig. 4. Scatter plot of selected panels + average and mid-term grades

the test seems to have been underestimated. With the current
implementation of the OhBalls engine it is easy to create
more complex panels. However, new types of panels where
the participant must place levers in order to achieve a certain
outcome (number of balls in each bucket) should also be used.

The experiment showed also that the OhBalls type of test
is able to engage students. They were much more quiet and
focused when they were taking the test than they were in the
rest of the class. This kind of test has a game-like quality that
motivates students to complete it, which is a requirement if
students have to take the test on their own without supervision.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel approach to estimate program-
ming aptitude based on the understanding of the concepts
of time, state and causality. The proposed type of test is
named OhBalls and does not require any prior knowledge
of programming since it is based on physical simulations
displayed on a a web application. The object of the simulation
is the path of a sequence of balls trough an apparatus of
conveyor belts and levers, until they reach a bucket, which
is simple to understand by any undergraduate student. The
test is self-applicable, in the sense that it does not require the
presence of a person supervising its application.

An OhBalls test was applied to a cohort of computer science
and software engineering undergraduate students. The initial
results are promising but reveal that more work is still needed
to fine tune the test. The average results are comparatively
high, suggesting that larger number of panels, and more
difficult panels ones, are necessary. Still, a subset of the panels



from the current version has a reasonably high correlation with
the student intermediary grades.

The main conclusion is that the OhBalls tests must have
more panels and more difficult ones, in order to discriminate
better the students with higher understanding of time, state
and causality. Moreover a new class of panels will be added
with a different type of challenge. Instead of simply predicting
the number of balls reaching each bucket, considering the
influence of the levers, the participant will have to position
levers bound to the belts to achieve a certain configuration of
balls in the buckets. The kind of reasoning involved will be
closer to programming, since currently it can be considered
closer to debugging.

In the continuation of this research the methodology of the
experiments will have also to be changed. In the experiment
presented in this paper only the students that took the middle
term test were considered and the students that dropped out
where ignored. This “negative” information will be taken in
consideration when comparing with the final results.

The current results obtained with the OhBalls test used in
the experiment need to be checked against not only the final
course grades but also with other programming courses that
these students are going to take in the following semesters. To
prove the effectiveness of OhBalls test the kind of experiment
presented in this paper must be repeated in computer science
programs with different pedagogical approaches, in different
universities and countries.

ACKNOWLEDGMENT

The author wishes to thank to the students that voluntarily
participated in the test reported in this paper, as well as
to the lecturer and teaching assistants of the introductory
programming course where it took place. This work is in
part funded by the ERDF/COMPETE Programme and by FCT
within the FCOMP-01-0124-FEDER-022701 project.

REFERENCES

[1] Carol Ann Alspaugh. Identification of some components of computer
programming aptitude. Journal for Research in Mathematics Education,
3(2):pp. 89–98, 1972.

[2] Susan Bergin and Ronan Reilly. Programming: factors that influence
success. SIGCSE Bull., 37(1):411–415, February 2005.

[3] Pat Byrne and Gerry Lyons. The effect of student attributes on success
in programming. In Proceedings of the 6th annual conference on
Innovation and technology in computer science education, ITiCSE ’01,
pages 49–52, New York, NY, USA, 2001. ACM.

[4] Michael E. Caspersen, Kasper Dalgaard Larsen, and Jens Bennedsen.
Mental models and programming aptitude. In Proceedings of the 12th
annual SIGCSE conference on Innovation and technology in computer
science education, ITiCSE ’07, pages 206–210, New York, NY, USA,
2007. ACM.

[5] S. Dehnadi. Testing programming aptitude. In Proceedings of the 18th
Annual Workshop of the Psychology of Programming Interest Group,
pages 22–37, Brighton, UK, 2006.

[6] Yavuz Erdogan, Emin Aydin, and Tolga Kabaca. Exploring the psycho-
logical predictors of programming achievement. Journal of Instructional
Psychology, 35(3):264–270, September 2008.

[7] Gerald E. Evans and Mark G. Simkin. What best predicts computer
proficiency? Commun. ACM, 32(11):1322–1327, November 1989.

[8] Annagret Goold and Russell Rimmer. Factors affecting performance in
first-year computing. SIGCSE Bull., 32(2):39–43, June 2000.

[9] Tony Jenkins. On the Difficulty of Learning to Program. In 3rd annual
Conference of LTSN-ICS,, Loughbourgh, 2002.

[10] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial,
Dianne Hagan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas,
Ian Utting, and Tadeusz Wilusz. A multi-national, multi-institutional
study of assessment of programming skills of first-year cs students.
SIGCSE Bull., 33(4):125–180, December 2001.

[11] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth
Adams, Jens Bennedsen, Marie Devlin, and James Paterson. A survey
of literature on the teaching of introductory programming. In Working
group reports on ITiCSE on Innovation and technology in computer
science education, ITiCSE-WGR ’07, pages 204–223, New York, NY,
USA, 2007. ACM.

[12] Stuart Wray. Sq minus eq can predict programming aptitude. In PPIG
19th Annual Workshop, University of Joensuu, Finland, July 2007.


