PETCHA
A Programming Exercises Teaching Assistant

ABSTRACT

This paper presents a tool called Petcha thatascts) automated
Teaching Assistant in computer programming coursEise

ultimate objective of Petcha is to increase the emof

programming exercises effectively solved by stuslemetcha
meets this objective by helping both teachers tdhau
programming exercises and students to solve thémalso

coordinates a network of heterogeneous systemsgrating

automatic program evaluators, learning managemgsterss,

learning object repositories and integrated prognarg

environments. This paper presents the concept lendlesign of
Petcha and sets this tool in a service orientetiitecture for

managing learning processes based on the autoevafication of
programming exercises. The paper presents alaseastudy that
validates the use of Petcha and of the proposéitecture.

Categoriesand Subject Descriptors

D.3.3 [Programming Languages]: K.3.1 [Computer Uses in
Education]: Computer-assisted instruction (CAl), stAnce
learning; K.3.2 [Computer and Information Scienagué&ation]:

Computer science education, Self-assessment.

General Terms
Design, Experimentation, Standardization, Languages

Keywords
Teaching Assistant, Automatic Evaluation,
Exercises, Interoperability, Learning Objects.

Prograngni

1. INTRODUCTION

A teaching assistant (TA) is a person who assisteazher,
typically in practical classes. The task of a TAaiprogramming
course is usually to help students in solving ezesc and
assignments. They must help students to use progratools
(integrated programming environments, compilers, d an
debuggers), check if they have solved the exer@sesprovide
feedback to help them to overcome their difficdtie
Unfortunately, the number of TAs is frequently iffmient for the
number of students enrolled in introductory prograng courses,
and they are only available on computer labs anch arertain
timetable.

This research aims to create an automatic TA sleshin
programming exercises, a tool for bridging betwées teacher
and the students, and providing them with the bgstems for
each task. The automatic TA presented in this paperalled

Petcha an acronym of Programming Exercises TeaCHing

Assistant.

Petcha can be described acaffoldingtool since it complements
existing tools and was designed to be easily reshovee it is no
longer needed. For instance, rather than providisg own
environment for solving exercises Petcha promokes use of
existing Integrated Development Environments (IDEzs)d
different IDEs can be can be used with Petcha, agdBclipse or
Visual Studio.

More than just a scaffolding tool, Petcha is als@f{component
on a network integrating other e-Learning systeffisese e-
Learning systems are used for: 1) automatic evaluabf
programs and feedback generation; 2) authoring stodng of
programming exercises as learning objects; 3) magag
instruction and learning activities. A proper irmaipn of these
tools sets up the necessary foundations for thetipeaof solving
programming exercises and has a great impact oadheisition
of programming skills.

The remainder of this paper is organized as follo8action 2
reviews related work on the authoring of learningeots and
evaluation of programming exercises. In the follogvsection we
present the design of Petcha and its role in theesd of an e-
Learning environment with a service-oriented amttitre. The
paper proceeds with a case study where Petchaugasssfully
used in the practical classes on an introductoggmmming
course. Finally, we conclude with a summary of tmain
contributions of this work and a perspective ofifetresearch.

2. RELATED WORK

Petcha has two facets: it helps the teacher inceseeauthoring

and the students in the exercise solving. To ttst bEauthors’

knowledge, no other tool described in the literatimtegrates
these two facets. Hence, we present in this sesgoeral works
regarding these two facets separately. Firstiyni®duce systems
that automate the exercise authoring. Secondlyresept systems
for the automatic evaluation of programming ex@&sis

2.1 Exercises Authoring

In recent years, a large number of programming oises have
been developed and published mostly for use in raroming
contests. These exercises are generally storedrapriptary
systems (e.g. online judges) for their own use. (awgomatic
submission, grading). Despite some efforts [8, &8]define a
common format to describe programming exercisesh efithese
systems has its own exercise format, hinderinghigming among
instructors and students.

Treetteberg [31], presented a specification-baset tast-driven
exercise support plug-in for Eclipse, named JEsercThe plugin
gives feedback to students about his/hers proghessxercise in
JExercise is based on three elements: 1) a tegpealification of
the Java elements that are required and theiredebghavior; 2) a

set of JUnit tests for checking whether the studecide meets
the specification; 3) a model of the required sohlut The
exercises are wrapped in a Zip-file containing Xlsihd HTML
files describing the exercises and test files dstihg the student’s
code, and may additionally contain Java sourcs filed program
skeletons.

Jena [11] presents a work regarding the authonmsharing of
programming exercises as learning objects. The wees Labrat
as the automatic grading system. The assignmeatsamposed
by an exercise statement, metadata, program solatial tests.
All these resources are described with metadatadbas the
IEEE LOM specification and packaged in a single fi

structure conforming to the format required by labrThe
exercises are stored in a repository called CollabX

2.2 Automatic Evaluation of Exercises

The assessment of programming assignments pose#icsigt
demands on the teachers’ time and other resoufglesThis
demand stimulated the development of automateditearand
assessment systems in many universities [1]. Mdsthese
systems provide other features such as multi-progiag
language support, evaluation type (static or dyngnieedback,
interoperability, learning context, security andgiarism.

Early efforts [10, 20, 24, 26] only support the esssnent of
exercises in a single programming language. Withativent of
the Internet and the increase of platforms hetereie web
interfaces began to play an important role in tissa@mination of
several systems [3, 12, 13, 21]. These systems silaoe the
common feature of supporting the submissions ofrases
written in multi-programming languagesuch as Java, C++ and
the C.

Regarding theevaluation typethe standard way of evaluating a
program is to compile it and then execute it widetof test cases
with input and output files (black-box approachheTprogram is
classified as accepted if compiles without errord the output of
each execution test is the same as the expectquuitouthis
strategy has been shown to bring undesirable peizidssues
such as student frustration and confusion [28, 3®@veral
systems [3, 10, 12, 18, 21, 26] test not only thledvior of single
programs but also analyze the structure of sourde ¢white-box
approach). This approach allows the evaluator systdo
guarantee that whether the program have been wmritie a
particular way, following a particular algorithm @ven using
certain data structures. In the field of the outpotrectness
determination, Edwards [6] and Auffarth [2] useoalmit tests
defined by teachers to validate students’ submissi®ther main
issue lies with the non-determinism of the progmautputs where
different correct (or acceptable) solutions to tleame
programming exercise may not always produce exdctdysame
output [29]. Leal [13], deals with this non-detemism using
dynamic correctors as special evaluators that mveked after
each test case execution. For instance, if thetisnlis a set of
values that can be presented in any order themaneg corrector
can be used to reduce the output to a normal form.

Depending of the learning context (competitive orricular) the
systems must providefeedback to facilitate the students’

comprehension about the correctness of their attémpolve a
particular exercise. The generation of feedbadksan static and
dynamic program analyses [1]. The development dbraatic

program evaluation systems with high quality feed#bde.g.

compilation errors, execution errors, executiorisjeshow good
results [9, 17] and along with visual, incremeraatl personalized
feedback should shape the future regarding this {@7].

The interoperability of the evaluation systems is also a main
issue. An evaluator should be able to participateleiarning
scenarios where teachers can create exercises, thi®m in a
repository and reference them in a Learning ManagerS8ystem
(LMS) and students solve the exercises and sulomévaluators
who delivers an evaluation report back to studesveral
systems [16] try to address this issue allowingiriegration with
course management systems. Nowadays with the adf/satvice
oriented architectures the trend is service ort@marather than
component-based systems. An evaluator system asviges will
automate the existent business logic in distribuéedearning
scenarios allowing more flexibility in the comprisevorkflows
and keeping the systems simple and easy maintainabal [15]
specified a service for programming exercises eigln in a
well-known e-Learning framework called the E-Fraroekwv This
work was used in Edujudge [32] with promising résul

Concerning thesecurity issue, Luck and Joy [16] analyzed this
issue covering robust environments, privacy, anth dategrity.
Security can be handled from ad-hoc solutions totiems based
on Virtual Machines (VM) to execute the programsaosafe and
controlled environment.

Other concerning is the increase ptagiarism [4, 7]. Various
systems [3, 16] analyze the integration of plagmriservices in
the assessment workflow.

Regarding théearning contextevaluation systems can be used in
two contexts: curricular and competitive learnihg.the former,
teachers use practical classes, assignments amdinat@ns to
evaluate students’ evolution. The latter relies dhe
competitiveness of students to increase their arogring skills
mostly in computer programming contests. In thist leontext,
automated judge systems (or online judges) are usecun
programming contests and to practice for such etsiterhese
systems include automatic evaluators and many edettsystems
organize their own contests such as Mooshak [13]ADJ
(University of Valladolid Online Judge), SPOJ (Sgh®nline
Judge), DOMJudge and others.

3. PETCHA

As happens with a human TA, Petcha needs to irteath with
teachers and students. Thus, these two use caee&lgran
overview of Petcha features. Unlike a human TA Patielegates
most of its work to others, as it is fundamentallgoordinator of
e-Learning systems.

The following subsections present the teacher dndest use
cases as well as the architecture of a network-béagning
systems coordinated by Petcha.

| Petcha v1.0 - Teacher mode

L] B [S

Project Options Help

Metadata:

Title: Triangle classificq
Authors: F‘\icardo Queirds
Date: 24/10/2011 I

Context: Triangles can be
In an equilateral t]
polygon with all
In an isosceles tri

Description | Tests | Feedback | Deployment |

r ’ :
5. Petcha v1.0 - Student mode | = | (O] | S|
Exercise: Statistics:
Titlee Triangle classification Total submissions: 0
Total students: 9

Dater 25-10-2011

Authors: Ricardo Queirds

‘ | VISUALIZE

Total students solving: 0

the same measun Test Cases:
i) [#Test Input Expected
= 1 157123111 scalene
Challenge: Write a program g
equal, isosceles, 2 256 256 256 equilateral
3 2311123 isosceles

Obtained Creator
scalene Teacher
equilater Teacher
isosceles Student

Valid test / wrong answer
Feadback of the automatic evaluator:

The input 256 256 256 should return eguilateral

Walid test / accepted answer

LA

Figure 1. The GUI of Petchawith teacher and student modes.

[Cemmier | [
K |
it decision structure:
Validation: <no test cases selected>
I 1nvalicl test / not executed
8
Submission:
Status: UNSOLVED
Submissions: 0
W SUBMIT
3.1 UseCases

Petcha is an automatic TA with two main tasks:dsist teachers
in the authoring exercises and to help studentolwing them.

Although complementary, these two tasks share abeunof

requirements. Both teacher and student need toe eod test
programs in an IDE; send and retrieve learning abjérom a
Learning Objects Repository (LOR); check progrardecagainst
test cases. Thus, although the graphical userfacteof both user
profiles shown in Figure 1 is apparently very diffet, they
actually share many Petcha internal functions. fewing sub-

subsections present both use cases in more detail.

3.1.1 Teacher
To author and deploy a programming exercise inHeteachers
must perform the following three tasks:

Create programming exercisetn the authoring task, teachers

automatically create most of the resources relatéth

programming exercises such as expositive resoufess

exercise description) and evaluation resources {est cases,
correctors, feedback files). The upper left windoiwigure 1

shows an example where the teacher is defininglalgm and
setting related metadata. Other tabs in this windoevused
for defining tests, assigning feedback to errottquas and
publishing the exercise. All the resources defimethese tabs
are encoded using an XML dialect
(Programming Exercises Interoperability Langua@®)[The
aim of PEXIL is to consolidate all the data reqdiia the
programming exercise utilization, from creatioret@luation,

called PExIL

covering also solving, the grading and feedbacle PEXIL
definition supports the concept of incremental sk to
control the appearance of both types of feedbacbnua
submission of a student’s attempt.

Deploy programming exercises in a repositdrythe deployment

task, teachers can package and publish programergrgises

in repositories. The packaging subtask consists tloa
selection of a package format and its generatignd&ault,
Petcha supports the IMS Common Cartridge (IMS CC)
specification as the package format. An IMS CC rewy
object assembles resources and metadata into rébualigtn
medium, typically a file archive in ZIP format, Wwitts content
described by a manifest file. The generation ofids CC
package is performed in two steps. First the manife
generated from a valid PEXIL instance and all tesources
are assembled in a ZIP package. After that, teachmerst
publish the package on a repository. In order tameligible
repository (Petcha uses the crimsonHex repositb4y) [one
must adhere to content (IMS CC) and communication
specifications (IMS Digital Repositories Interopaitiy —
IMS DRI).

Configure programming activity in LMS-or this task teachers

search in repositories for suitable programming@ses and
store a reference to them in a LMS as a LearninglsTo
Interoperability (LTI) activity. The LTI specificatn provides
a uniform standards-based extension point in LM®svang
the integration of remote web tools. Presently, tmeference
LMSs (Petcha is currently being used with Moodle) nibt
offer support for the full LTI specification. Fohis reason,

Petcha uses a subset of the LTI specification knasiMS
Basic LTI (bLTI). With bLTI a unidirectional link &tween
the LMS and Petcha is created. On the invocatioriestual
information is provided to the launched processhsag user
identity, course information and role informatiofihe full
support of this specification will allow the accassrun-time
services on the LMS, enabling Petcha to send etiatua
results back to the LMS grade book, for instance.

3.1.2 Student
To solve programming exercises using Petcha stadmeforms
the following two tasks:

Select an activity in the LM3n this task, students should select
the activity defined by the teacher in the LMS. sTkelection
triggers an LTI launch of Petcha. The launch inekid
student's contextual information that can be used t
presentation purposes (e.g. personalize the P&tafitend) or
for sequencing purposes (e.g. assign an exercempsesce
model). After the selection of the activity Petdhdaunched
as a Java Web Start (JAWS) application on the coenpmf
the student. This approach enables the interactfoRetcha
with the IDE by using shell commands.

Execute the activity using the IDE and Petckéhen a student
starts solving a problem Petcha automatically eseatproject
on the IDE of the student. Currently Petcha suppomo
IDEs: Eclipse and Visual Studio Express. Other IRisld
be used by extending Petcha’s code. Then the studads
the exercise description in Petcha’'s GUI and soives the
IDE. The student should test the code locally byceting the
teachers’ test cases and is encouraged to creat®mes. If
new test cases are created, a validation steprierped to
verify that they meet the specification definedthg teacher
in the authoring phase. The right window on Figlirehows
an example where the student’s code did not pasisealocal
tests (two provided by the teacher and one newctested by
the student). Even so, the student decided to suthmicode
to the evaluator and received a feedback messaligaimg
an input data that generated a wrong answer. Adf&ting, the
student should submit the solution to the Evalumtimgine
(EE) where the submission is checked against timeplie
test set provided by the teacher. The report orettauation
returned by the EE is presented to the student. sthdent
may submit repeatedly, integrating the feedbackived from
the EE. In the end of this cycle, Petcha reporésekercise
usage data back to the repository.

3.2 Architecture

In this subsection we present the overall architecof a network
of e-Learning systems participating in a networkrdinated by
Petcha. In this network Petcha acts as a pivot oot
mediating the communication among all componenthe T
architecture depicted by UML component diagramigufe 2 is
composed by the following systems and tools:

L earning Objects Repository to store/retrieve exercises;
Evaluation Engine to evaluate students’ exercises;

Learning Management System to present the exercises to
students;

Integrated Development Environment to code the exercises.

Petcha coordinates the communication among alttieponents
of the network, from the LMS where students receihe activity
to the IDE where students solve them. In ordeutfillfthis goal,
the integration of the pivot component with the estlsystems
must rely on content and communication standardsidJcontent
and communication standards we can abstract thefusgecific
systems for each type of system. For instance,ameuse on this
network any repository as long it supports the IMSC
specification to formalize the description of pragming
exercises and it implements the IMS DRI specifamatifor
communication with other services.

Evaluation {I

Engine

Evaluste |E-F;

Integrated E

[@)] Development
Environment

=
CRI IMS: Q‘— PETCHA E —{:Q Shell
Learning Learning
Objects A Management
Repository el System
LTI kS

Figure 2. Network component diagram.

Another important point was the choice of the systethat
comprise the current network. Since we made sewdfaits to
address interoperability issues, the selection hef tools was
straightforward. On the LMS side we choose Moodtessit is a
popular and open source LMS, arguably the most lpotMS

nowadays. We used the version 1.9 that support8ésec LTI

specification with the further installation of arM$ bLTI

consumet. Currently, the version 2.2 supports the IMS LTl {a
merge version of basic and full LTI) and import IMSC

packages. The exportation of CC packages will comeersion
2.3. We successfully tested also the Sakai LMShis rietwork
evidencing the interoperable characteristics of freposed
approach.

For the LOR selection, we had more difficultiesfital a system
that supports the defined content and communication
specifications respectively the IMS CC and IMS DRI
specifications. The final choice fell on a home-magstem called
CrimsonHex - a repository of programming exercidescribed as
learning objects and complying with the IMS CC sfieation.
The repository also adheres to the IMS DRI speatifim to
communicate with other systems.

The EE system selected was Mooshak [13] Mooshak ispen
source system for managing programming contesttheriWeb
including automatic judging of submitted progranmbe current
version (1.6a2) supports the Evaluate service (B-5])

On the IDE side we selected Eclipse. Eclipse isea &ind open
source multi-language software development envientm
comprising an IDE and an extensible plug-in systéve. tested
also the Visual Studio Express IDE on this netwwith success
for C# assignments. In this case we need to inktato to run
.NET applications on the Mooshak server. Mono ises and
open source project to create a standard compliBiET-

! http://code.google.com/p/basiclti4moodle/

compatible set of tools including a Common LanguRgatime,
C# compiler and others.

4. CASE STUDY

In order to validate Petcha as automatic TA anddiaator of a
network of e-Learning systems, we conducted an réxpat at
ESEIG - a school of the Polytechnic Institute oftBoFirst-year
Mechanical Engineering students of the course Atlgmics and
Programming participated in this experiment. Tharse aims to
widen the students’ programming skills using
programming language. The course has an averagéremt of

40 students per year divided in two classes. Theer@xent

methodology was the following: only one class (A9ed the

system while the other class (B) kept the tradalokearning

approach. The course is organized in two lectufesne hour

each and one lab session of 4 hours per week. Xberiment

occurred in 6 lab sessions. In each lab sessionléisses (class A
with 21 students and class B with 19 students)adercises to
solve. After each lab session we surveyed bothseta®n the
number of solved exercises and the feedback impadile 1

aggregates the answers given by students.

Table 1. Statistical data of Petcha usage

Questions A B
How many exercises were started in class? 89% 81%
How many exercises were finished in class?g30, | 749
How many exercises solved in class? 82% | 66%
How many exercises got feedback? 50% | 62%

How many exercises feedback was helpful? 55% 62%

The data collected in the surveys of class A waslkbd against
the logs of Petcha and other systems in the netwhmkaverage
discrepancy of 4.6% between these two sets of sal@s found.

The first three lines of Table 1 show that Petaherdases the
number of exercises solved by the students. Thayt stnd

complete more exercises and they have a significdrigher

number of exercises effectively solved. In classhB exercises
were manually assessed by the human TA. This glehdws that
students solve more exercises when helped by P#teinawhen
helped by a human TA.

The last two lines of Table 1 show that the autdeniedback
provided by Petcha is inferior to the feedback e by a
human TA. Not only the students receive less feekllfeom

Petcha but also this feedback is less helpful tthenfeedback
provided by a human TA. Nevertheless on can arga¢ the
automatic feedback provided by Petcha would benzedy in a
situation where the human TA is not available.

5. CONCLUSIONS AND FUTURE WORK
This paper presents Petcha, an automatic teachuisigtant for
programming exercises. This tool was conceived tediaie
between the teacher and the students and act edegnator of
the best-of-bread systems involved in the procdsautomatic
evaluation of programming exercises. Petcha isafiadding tool
in the sense that it works with traditional IDEs]ding student to
start using the tools they need to program effeitivand can be
easily removed when it is no longer helpful. It geelalso the
teacher in authoring programming exercises for raatT
evaluation, including the feedback to provide todsnts on

the C#

common error patterns. To achieve these goals h&etc
coordinates a network of heterogeneous e-Learmialg,tnamely
program evaluators, learning management envirorsnemtd
learning object repositories.

The main contribution of the research describethia paper is
the concept, design and implementation of a todingcas a
teaching assistant for computer programming clasEes tool
was designed to coordinate an ensemble of e-Laarsystems
and the service oriented architecture of the riegulbetwork is
also a relevant contribution of this research.

Petcha is currently being used in the practicabsgda of an
undergraduate programming course. The experiericedjasing

Petcha in this context and the experiments desitmedsess the
impact of this tool were also presented in this ggaprhese
experiments showed an increase in the number otisgs that
the students attempted and successfully solve wRetcha

replaced a human TA, which was the primary object¥ this

project. However, these results show also that gabhtomatic

feedback provided by Petcha is less effective thahof a human
TA. There is clearly room for improving automatieetiback in
Petcha, although it can be argued that automatzthéek is still

a remedy for situations where a human TA is noilabiz.

The current and future work in this line of resbacontemplates
both Petcha itself and the network it manages. Aerac and
students reported a set of minor issues on the ins&face that
are being solved for the next version. There is altong wish list
with features such as: support for Sharable Contehject

Reference Model (SCORM) object, support for MathJax

displaying math expressions, improved visualizatbevaluation
reports, and statistical data on student actigityong others.

Many of the requested improvements are not on Betsklf but
rather on the network of systems and tools it cioateds. To meet
these requests we must either provide new featirethose
system and tools or to integrate new ones in theark. An
intended addition is a sequencing and adaptatiointéoguide the
student through a collection of expository and eaabn
resources. Petcha will report the exercise assessmehis new
tool that will use it to propose the appropriatatemt or exercise
to the student. Features that could be improvedhdited to
existing systems include: a feedback mechanismgustatic
analysis; a plagiarism detection component; theluetian of
languages that are not strictly programming langesaguch as
query languages (e.g. SQL), modeling languages (#vil-) and
user interfaces (e.g. HTML).

6. REFERENCES

[1] Ala-Mutka, K. A survey of automated assessment @ggres
for programming assignment€omputer Science Education
15(2), pp. 83+102, 2005.

[2] Auffarth, B. and Maite, L. System for Automated i&ssnce
in Correction of Programming Exercisda. V International
Congress University Teaching and Innovatipages pp. 104
(2-9)., Lleida (Spain), 2008.

[3] Blumenstein, M., Green, S., Nguyen, A.
Muthukkumarasamy, V. An experimental analysis of NGA
a generic automated marking environméntProceedings of
the 9th annual SIGCSE conference on Innovation and
technology in computer science educatipp 67-71, 2004.

and

[4] Cheang, B., Kurnia, A., Lim, A. and Oon, W. On autded
grading of programming assignments in an academic
institution. In Comput. Edu¢ vol. 41, pp. 121-131,
September 2003.

[5] Douce, C., Livingstone, D. and Orwell J. Automatest-
based assessment of programming: a reviéewurnal of
Educational Resources in Computing (JERI&B), 2005.

[6] Edwards, S. H. and Pugh, W. Toward a common autmmat
grading platform.In SIGCSE '06: technical symposium on
Computer science educatiohCM, 2006.

[7] Engels, S., Lakshmanan, V. and Craig, M. Plagiarism
detection using feature based neural netwdrkSIGCSE pp.
34-38, 2007.

[8] Free Problem Set (FPS), Official
http://code.google.com/p/freeproblemset/, 2010.

[9] Higgins, C. A., Gray, G., Symeonidis, P., TsintsjfaA.
Automated assessment and experiences of
programming. Journal on Educational Resources
Computing (JERIG)5(3), 2005.

[10] Jackson, D. and Usher, M. Grading student programmi
using ASSYST.In Proceedings of 28th ACM SIGCSE Tech.
Symposium on Computer Science Educati®an Jose,
California, USA, pp 335-339, 1997.

[11] Jena, S. Authoring and Sharing of Programming HEsesc
MsC Thesibttp://scholarworks.sjsu.edu/etd_projects/19,
2008.

[12] Juedes, D. W. Experiences in Web-Based Gradidyd
ASEE/IEEE Frontiers in Education Conferend¢ovember
5-8, 2003, Boulder, CO, 2003.

[13] Leal, J.P. and Silva, F. Mooshak: a Web-based rgitéi
programming contest systemn Software—Practice &
ExperienceVolume 33, Issue 6, Pages: 567 - 581, 2003.

[14] Leal, J.P. and Queirés, R. CrimsonHex: a Serviderned
Repository of Specialised Learning Objecls. ICEIS'09:
11th International Conference on Enterprise Infotioa
Systemspages 102-113, ltaly, May 2009, ISBN: 978-3-642-
01346-1.

[15] Leal, José Paulo, Queirés, R. and Ferreira, D. iSjeg a
programming exercises evaluation service on the e-
Framework.In Advances in Web-Based Learning - ICWL
2010 - 9th Internation ConferenceShanghai, China,
December, 2010, LNCS 6483, pp. 141-150, ISBN 9883~
17406-3

[16] Luck, M. and Joy, M. A secure on-line submissiostesn.In
Software - Practice and Experien@9(8), pp721-740, 1999.

[17] Malmi, L., Karavirta, V., Korhonen, A., Nikander,. J
Experiences on automatically assessed algorithnulation
exercises with different resubmission policies.Jburnal on
Educational Resources in Computing (JERIC), 5(BD52

[18] Mandal, A.K., Mandal, C. and Reade, C.M.P. Architee
Of An Automatic Program Evaluation Systertn CSIE
Proceedings2006.

[19] Mandal, C., Sinha, V.L. and Reade, C. M. P. A Wels&l
Course Management Tool and Web Services. In Eleictro
Journal of E-Learning, Vol 2(1) paper no. 19, 2004.

Web site:

in

teaching

[20] Mansouri, F.Z., Gibbon, C.A., Higgins, C.A. PRAMoog
automatic markedn Proceedings of ITICSE'1998.
pp.166~170, 1998.

[21] Pisan, Y., Richards, D., Sloane, A., Koncek, H. Bhtthell,
S. Submit! A Web-Based System for Automatic Program
Critiquing. In Proceedings of the Fifth Australasian
Computing Education Conference (ACE 20Q03Adelaide,
Australia, Australian Computer Society, pp. 59-B803.

[22] Queirds, R. and Leal, J.P. PEXIL: Programming Eges:
Interoperability LanguageXATA 2011 — XML, Aplicagbes e
Tecnologias Aplicadaslunho 2011.

[23] Queirds, R. and Leal, J.P. A Survey on elLearningt€u
Standardizatiordth WSKS2011, Mykonos, Greece.

[24] Reek, K. A. The TRY system or how to avoid testiigdent
programsin Proceedings of SIGCSBp 112-116, 1989.

[25] Rehak, D. R., Mason, R. Keeping the learning innieay
objects.In Littlejohn, A. (Ed.) Reusing online resources: a
sustainable approach to e-Learnirg003. (pp.22-30).

[26] Saikkonen, R., Malmi, L. and Korhonen, A. Fully aunatic
assessment of Programming exercisesProceedings of the
6th Annual Conference o Innovation and Technology i
Computer Science Education (ITICSE0Canterbury, United
Kingdom, pp. 133-136, 2001.

[27] Striewe, M. and Goedicke, M. Visualizing Data Stues in
an E-Learning System.In Proceedings of the 2nd
International Conference on Computer Supported Btlan
(CSEDU) Valencia, Spain, volume 1, pages 172-179, 2010.

[28] Tang, C. M., Yu, Y. T., & Poon, C. K. Automatedsssms
for testing student programs: Practical issues and
requirements.In Proceedings of the International Workshop
on Strategies for Practical Integration of Emergirand
Contemporary Technologies in Assessment and Learnin
(SPECIAL 2009)pp. 1324136, 2009a.

[29] Tang, C. M., Yu, Y. T., & Poon, C. K. An approadwards
automatic testing of student programs using tokattems.In
Proceedings of the 17th International Conference on
Computers in Education (ICCE 2009)p. 188+190, 2009b.

[30] Tang, C.M., Yu, Y.T. and Poon, C.K. A Review of the
Strategies for Output Correctness Determination in
Automated Assessment of Student Progrdm$roceedings
of Global Chinese Conference on Computers in Edoicat
2010.

[31] Treetteberg, H, Aalberg, T. . JExercise: A spediiicabased
and test-driven exercise support plug-in for Ediptn
Proceedings of the 2006 OOPSLA Workshop on Eclipse
Technology eXchange, ETX 20@®06), 70-74.

[32] Verdu, E., Regueras, L.M., Verda, M.J., Leal, J®astro,
J.P. and Queirés, R. A Distributed System for L&wyn
Programming On-lineln Computers & Education Journal
2011, ISSN 0360-1315

[33] Verhoeff, T. Programming Task Packages: Peach HExgha
Format. In Olympiads in Informatics, 2008. Vol. 22t207.

