
Making Programming Exercises
Interoperable with PExIL

Ricardo Queirós1 and José Paulo Leal2
1 CRACS & DI-ESEIG/IPP, Porto, Portugal

ricardo.queiros@eu.ipp.pt

 2 CRACS & DCC-FCUP, University of Porto, Portugal
zp@dcc.fc.up.pt

ABSTRACT
Several standards have appeared in recent years to formalize the metadata of learning objects,
but they are still insufficient to fully describe a specialized domain. In particular, the
programming exercise domain requires interdependent resources (e.g. test cases, solution
programs, exercise description) usually processed by different services in the programming
exercise life-cycle. Moreover, the manual creation of these resources is time-consuming and
error-prone leading to an obstacle to the fast development of programming exercises of good
quality.
This paper focuses on the definition of an XML dialect called PExIL (Programming Exercises
Interoperability Language). The aim of PExIL is to consolidate all the data required in the
programming exercise life-cycle, from when it is created to when it is graded, covering also the
resolution, the evaluation and the feedback. We introduce the XML Schema used to formalize
the relevant data of the programming exercise life-cycle. The validation of this approach is
made through the evaluation of the usefulness and expressiveness of the PExIL definition. In the
former we present the tools that consume the PExIL definition to automatically generate the
specialized resources. In the latter we use the PExIL definition to capture all the constraints of a
set of programming exercises stored in a learning objects repository.

INTRODUCTION
The concept of Learning Object (LO) is fundamental for producing, sharing and reusing content
in eLearning [1]. In essence a LO is a container with educational material and metadata describing
it. Since most LOs just present content to students they contain documents in presentation formats
such as HTML and PDF, and metadata describing these documents using mostly Learning Objects
Metadata (LOM) or other generic metadata format. When a LO includes exercises to be
automatically evaluated by an eLearning system, it must contain a document with a formal
description for each exercise. The Question and Tests Interoperability (QTI) [2] is an example of
a standard for this kind of definitions that is supported by several eLearning systems. However,
QTI was designed for questions with predefined answers and cannot be used for complex
evaluation domains such as the programming exercise evaluation [3]. A programming exercise
requires a collection of files (e.g. test cases, solution programs, exercise descriptions, feedback)
and special data (e.g. compilation and execution lines). These resources are interdependent and
processed in different moments in the life-cycle of a programming exercise.

The life cycle comprises several phases: in the creation phase the content author should have
the means to automatically create some of the resources (assets) related to the programming
exercise such as the exercise description and test cases and the possibility to package and
distribute them in a standard format across all the compatible systems such as learning
management systems (LMS) and learning objects repositories (LOR); in the selection phase the

teacher must be able to search for a programming exercise based on its metadata from a repository
of learning objects and store a reference to it in a learning management system; in the presentation
phase the student must be able to choose the exercise description in its native language and a
proper format (e.g. HTML, PDF); in the resolution phase the learner should have the possibility
to use test cases to test an attempt to solve the exercise and the possibility of automatically
generating new ones; in the evaluation phase the evaluation engine should receive specialized
metadata to properly evaluate the learner’s attempt and return enlightening feedback. All these
phases require a set of inter-dependent resources and specialized metadata whose manual creation
would be time-consuming and error-prone.
This paper focuses on the definition of an XML dialect called PExIL (Programming Exercises
Interoperability Language). The aim of PExIL is to consolidate all the data required in the
programming exercise life-cycle, from when it is created to when it is graded, covering also the
resolution, the evaluation and the feedback. We introduce the XML Schema used to formalize
the relevant data of the programming exercise life-cycle. The validation of this approach is
made through the evaluation of the usefulness and expressiveness of the PExIL definition. In the
former, we use a PExIL definition to generate several resources related to the programming
exercise life-cycle (e.g. exercise descriptions, test cases, feedback files). In the latter, we check
if the PExIL definition covers all the constraints of a set of programming exercises stored in a
learning objects repository.

The remainder of this paper is organized as follows. Section 2 traces the evolution of standards
for LO metadata and packaging. In the following section we present the PExIL schema with
emphasis on the definitions for the description, test cases and feedback of the programming
exercise. Then, we evaluate the definition of PExIL and conclude with a summary of the main
contributions of this work and a perspective on future research.

Learning object standards

The increasing popularity of programming contests worldwide resulted in the creation of several
contest management systems. At the same time Computer Science courses use programming
exercises to encourage the practice on programming. The interoperability between these types
of systems is becoming a topic of interest in the scientific community. In order to address these
interoperability issues several problem formats were developed such as CATS1,
FreeProblemSet (FPS)2, Mooshak Exchange Format (MEF)3 and Peach Exchange Format
(PEF)4. However several issues were found regarding their expressiveness and proliferation
over the Web. The majority of the formats only describe how the program should be compiled
and executed and how the statement is composed. The latter issue is due to the fact that these
formats are deeply related with the contest management systems that adopted them. Thus, they
do not comply with any generic standard for describing, packaging and deployment of the
exercises such as the concept of learning objects.
Current LO standards are quite generic and not adequate to specific domains, such as the
definition of programming exercises. The most widely used standard for LO is the IMS Content
Packaging (IMS CP) [4]. This content packaging format uses an XML manifest file wrapped
with other resources inside a zip file. The manifest includes the IEEE Learning Object Metadata
(LOM) standard [5] to describe the learning resources included in the package. However, LOM
was not specifically designed to accommodate the requirements of automatic evaluation of
programming exercises. For instance, there is no way to assert the role of specific resources,
such as test cases or solutions. Fortunately, IMS CP was designed to be straightforward to

1 http://imcs.dvgu.ru/cats/docs/format.html
2 http://code.google.com/p/freeproblemset/
3 http://mooshak.dcc.fc.up.pt/
4 http://peach.win.tue.nl/

extend, meeting the needs of a target user community through the creation of application
profiles. When applied to metadata the term Application Profile generally refers to "the
adaptation, constraint, and/or augmentation of a metadata scheme to suit the needs of a
particular community" [6]. A well known eLearning application profile is SCORM [7] that
extends IMS CP with more sophisticated sequencing and Contents-to-LMS communication.
The creation of application profiles aims to meet the needs of the target user community, aid
integration and enhance interoperability between tools and services of the community. The
creation is based on one or more of the following approaches [8]:

1- Selection of a core sub-set of elements and fields from the source schema;
2- Addition of elements and/or fields (normally termed extensions) to the source schema, thus

generating the derived schema;
3- Substitution of a vocabulary with a new, or extended vocabulary to reflect terms in

common usage within the target community;
4- Description of the semantics and common usage of the schema as they are to be applied

across the community.

Following this extension philosophy, the IMS Global Learning Consortium (GLC) upgraded

the Question & Test Interoperability (QTI) specification [2]. QTI describes a data model for
questions and test data and, from version 2, extends the LOM with its own metadata vocabulary.
QTI was designed for questions with a set of pre-defined answers, such as multiple choice,
multiple response, fill-in-the-blanks and short text questions. It supports also long text answers
but the specification of their evaluation is outside the scope of the QTI. Although long text
answers could be used to write the program's source code, there is no way to specify how it
should be compiled and executed, which test data should be used and how it should be graded.
For these reasons we consider that QTI is not adequate for automatic evaluation of
programming exercises [3], although it may be supported for sake of compatibility with some
LMS. Recently, IMS GLC proposed the IMS Common Cartridge (CC) [9] that bundles the
previous specifications.

 Fig. 1 Common Cartridge Content Hierarchy.

The IMS Common Cartridge specification defines an open format for the distribution of rich

web-based content. Its main goal is to organize and distribute digital learning content and to
ensure the interchange of content across any Common Cartridge conformant tools. The latest
revised version (1.1) was released in May 2011. The IMS CC package organizes and describes a

learning object based on two levels of interoperability: content and communication as depicted
Figure 1 [10]. In the content level, the IMS CC includes two types of resources:

 Web Content Resources (WCR): static web resources that are supported on the Web such

as HTML files, GIF/JPEG images, PDF documents, etc.
 Learning Application Objects (LAO): special resource types that require additional

processing before they can be imported and represented within the target system.
Physically, a LAO consists of a directory in the content package containing a descriptor
file and optionally additional files used exclusively by that LAO. Examples of Learning
Application Objects include QTI assessments, Discussion Forums, Web links, etc.

In the communication level the cartridge describes how the target tool of the cartridge

(usually a LMS) should communicate with other remote web applications using the IMS Basic
Learning Tools Interoperability (LTI) specification [11]. The LTI is a common interoperability
specification that is increasingly supported by major LMS vendors. It provides a uniform
standards-based extension point in LMS allowing remote tools and content to be integrated into
LMSs. The main goal of the LTI is to standardize the process for building links between
learning tools and the LMS. The IMS launched also a subset of the full LTI v1.0 specification
called IMS Basic LTI. This subset exposes a unidirectional link between the LMS and the
application. However, there is no provision for accessing run-time services in the LMS and only
one security policy5 is supported.

PExIL

In this section we present PExIL - Programming Exercises Interoperability Language - an XML
dialect that aims to consolidate all the data required in the programming exercise life-cycle. This
covers all the programs that receives data from the standard input and, after data process, send the
results for the standard output. This dialect is formalized through the creation of a XML Schema.
In the following subsections we present the PExIL XML Schema organized in three groups of
elements:

Textual – elements with general information about the exercise to be presented to the learner
(e.g. title, date, challenge);
Specification – elements with a set of restrictions that can be used for generating specialized
resources (e.g. test cases, feedback);
Programs – elements with references to programs as external resources (e.g. solution
program, correctors) and metadata about those resources (e.g. compilation, execution line,
hints).

Textual elements

Textual elements contain general information about the exercise to be presented to the learner.
This type of elements can be used in several phases of the programming exercise life-cycle: in
the selection phase as exercise metadata to aid discoverability and to facilitate the
interoperability among other systems such as LMS or even Integrated Development
Environments (IDE); in the presentation phase as content to be presented to the learner (e.g.
exercise description); in the resolution phase as skeleton code to be included in the student’s
project solution.

The following table presents the textual elements of the PExIL schema and identifies the
phases where they are involved.

5 OAuth – http://oauth.net

Table 1. Textual elements.

Element Selection Presentation Resolution Evaluation
title x x
creation/author x x
creation/date x x
creation/event x x
creation/institution x x
context x
challenge x
keywords x x
skeleton x x

The title element represents the title of the programming exercise. This mandatory element
uses the xml:lang attribute to specify the human language of the element’s content. The
definition of this element in the XML Schema has the maxOccurs attribute set to unbound
allowing the same information to be recorded in multiple languages. The creation element
contains data on the authorship of the exercise and includes the following sub-elements:
author with information about the the name(s) of the author(s); date which includes the
date of the generation of the exercise, event which describes the event for which the exercise
was created and institution which describes where the exercise will be used. The
context element is an optional field used to contextualize the student with the exercise. The
challenge element is the actual description of the exercise. Its content model is defined as
mixed content to enable character data to appear between XHTML child-elements. This XML
markup language will be used to enrich the formatting of the exercises descriptions. The
keywords element is used to describe the subject(s) inherent to the exercise. The skeleton
element refers to a resource containing code to be included in the student’s project solution.

Specification elements

The goal of defining programming exercises as learning objects is to use them in systems
supporting automatic evaluation. In order to evaluate a programming exercise the learner must
submit a program in source code to an Evaluation Engine (EE) that judges it using predefined
test cases - a set of input and output data. In short, the EE compiles and runs the program
iteratively using the input data (standard input) and checks if the result (standard output)
corresponds to the expected output. Based on these correspondences the EE returns an
evaluation report with feedback.

In the PExIL schema, the input and output top-level elements are used to describe
respectively the input and the output test data. These elements include three sub-elements:
description, example and specification. The description element includes a
brief description of the input/output data. The example element includes a predefined example
of the input/output test data file. Both elements comply with the specification element
that describes the structure and content of the test data.

Table 2. Specification elements.

Element Selection Presentation Resolution Evaluation
input/specification x x x
output/specification x x x

This definition can be used in several phases of the programming exercise life-cycle as depicted
in Table 2: by 1) the content author to automatically generate an input and output test example

to be included on the exercise description for presentation purposes and others (private) test
cases to be used by the evaluator for evaluation purposes; 2) the learner to automatically
validate his attempt against the public test cases generated previously; 3) the Evaluation Engine
to evaluate a submission using the test cases.

The specification element (Fig. 2) contains two attributes and two top-level elements.
The attributes line_terminator and value_separator define respectively the newline
and space characters of the test data. The two top-level elements are: line which defines a test
data row and repeat which defines an iteration on a set of nested elements. The number of
iterations is controlled by the value of the count attribute.

Fig. 2 The specification element.

The line element defines a data row. Each row contains one or more variables. A variable

in the specification model must have a unique name which is used to refer values from one or
more places in the specification element. A variable is represented in the PExIL schema
by the data element containing the following attributes:

 id - defines the name of the variable. To access a variable one must use the id attribute

preceded by the character $ to enable the further resolution and evaluation of XPath
expressions while processing the specification model;

 type – defines the variable data type (e.g. integer, float, string, enum). In the case of an
enumeration the values are presented as a text child node;

 value – represents the value to be included in the input/output test file. If filled the
variable acts as a constant. Otherwise, the value can be automatically generated based on
a set of constraints - the type, min, max or spec attributes;

 min/max – represents value constraints by defining limits on the values. The semantic of
these attributes depends exclusively on the data type: may represent the ranges of a value
(integer and float), the minimum/maximum number of characters (string) or a range of
values to be selected from an enumeration list;

 spec - regular expression for generating/matching strings of text, such as particular
characters, words, or patterns of characters.

The following XML excerpt shows the specification elements for the input and output

test data of an exercise. The exercise challenge is given three numbers to verify that the last
number is between the first two.

Example of the input test description: “The input begins with a single positive integer on a line
by itself indicating the number of the cases following. This line is followed by a blank line, and
there is also a blank line between two consecutive inputs. Each line of input contains three float
numbers (num1, num2 and num3) ranging values between 0 and 1000. “.

<specification line_terminator=”\n” value_separator=” ”>
 <line><data id=”numTestCases” type=”int” value=”3”/></line>
 <line/>
 <repeat count=”$numTestCases”>
 <line>
 <data id=”num1” type=”float” min=”0” max=”1000”/>
 <data id=”num2” type=”float” min=”0” max=”1000”/>
 <data id=”num3” type=”float” min=”0” max=”1000”/>

 </line>
 <line/>
 </repeat>
 <when condition=”$num1>$num2”>

<feedback xml:lang=”en-GB”>
Numbers can be given in descending order

</feedback>
 </when>

</specification>

Example of the output test description: “The output must contain a boolean for each test case
separated by a blank line between two consecutive outputs. “

<specification line_terminator=”\n” value_separator=” ”>
 <repeat count=”$numTestCases”>
 <line>
 <data id=”result” type=”enum” value=”1”>True False</data>
 </line>
 <line/>
</repeat>
</specification>

As said before, the EE is the component responsible for the assessment of an attempt to solve

a particular programming exercise posted by the student. The assessment relies on predefined
test cases. Whenever a test case fails a static feedback message (e.g. "Wrong Answer", "Time
Limit Exceed", and “Execution Error") associated with the respective test case is generated.
Beyond the static feedback of the evaluator, the PExIL schema includes a when element in the
specification element. This element defines a dynamic feedback message to be
presented to the student based on the evaluation of an XPath expression included in the
condition attribute. This expression can include references to input and output variables or
even dependencies between both. If the expression is evaluated as true then the element child
node (feedback element) is used as the feedback message.

The PExIL definition supports the concept of incremental feedback to control the appearance
of both types of feedback upon a submission of a student’s attempt. The feedbackLevels
element is a top-level child element which defines a set of feedback levels that the exercise
supports and when it is shown to the student. The following XML excerpt shows an example of
a feedbackLevels element.

<pexil:feedbackLevels

levels="simple|count_classifications|test_case_feedback_hint"
incremental="2"
showAllLevels="false"/>

The levels attribute may have one or more feedback levels. The existent levels are:

Simple – a feedback message indicating whether the student’s attempt is correct or incorrect
(e.g. “Wrong answer!”);

Count_worst_classification – a feedback message indicating the worst classification of all
the tests (e.g. “1 test with wrong answer”);
Count_classifications – a feedback message indicating the classifications of all tests (e.g. “3
tests accepted and 1 test with wrong answer”);
Test_case_feedback_hint – a feedback message to be presented to the student based on the
evaluation of a condition defined by the content author. This feedback level is pedagogical
relevant since the teacher can cover common errors of his students and warn them with
useful and contextual feedback (e.g. “Forgot to divide by the number of input elements”);
Test_case_input_result – a feedback message including the input data of an unsuccessful
test case (e.g. “Unexpected output for the test with the input data: ‘5 6’ ”);
Test_case_input_output – a feedback message with the input and the output data of an
unsuccessful test case (e.g. “Unexpected output for the test with the input data: ‘5 6’ and the
output data: ‘5,5’ ”).

The incremental attribute defines a value which is used to control the appearance of the

feedback levels. The showAllLevels attribute defines if the feedback to be presented to the
student should accumulate with previous ones.

In the last example were defined three levels of feedback. Based on the incremental
attribute value the two first students’ unsuccessful attempts will receive a simple feedback, the
next two a count_classification feedback and so on.

Program elements

Program elements contain references to program source files as external resources (e.g. solution
program, correctors) and metadata about those resources (e.g. compilation, execution line,
hints). These resources are used mostly in the evaluation phase of the programming exercise
life-cycle (Table 3) to allow the EE to produce an evaluation report of a students’ attempt to
solve a programming exercise.

Table 3. Program elements.

Element Selection Presentation Resolution Evaluation
solution x x
corrector x
hints x x

A program element is defined with the programType type depicted in

Fig. 3.

Fig. 3 Program elements.

This type is composed by seven attributes: id – an unique identifier for the resource;

language – identifies the programming language used to code the resource (e.g. JAVA, C,
C#, C++, PASCAL); compiler/executer – defines the name of the compiler/executer;
version – identifies the version of the compiler; source/object - defines the name of
the program source/object file; compilation – defines a command line to compile the source
code; and execution– defines a command line to execute the compiled code;

There are two program elements in the PExIL schema: the solution and the corrector
elements. The solution element contains a reference to the program solution file. The
following XML excerpt shows an example of a solution element.

<solution

id=”solution” language=”JAVA”
compiler=”javac” executer=”java”
version=”1.6” source=”solution.java” object=”solution”
compilation=”$compiler $source”
execution=”$executer $object”>

The corrector element is optional and refers to custom programs that change the general

evaluation pattern for a given exercise. The corrector element is optional and refers to
custom programs that change the general evaluation pattern for a given problem. There are two
types of correctors: static and dynamic correctors. The static corrector is invoked immediately
after compilation, before any execution. The corrector can be used to compute software metrics
on the source code, judging the quality of source code; perform unit testing on the program;
check the structure of the program's source code. The dynamic corrector is invoked after each
execution with a test case. Deals with non-determinism (e.g. the solution is a set of unordered
values, in this case the corrector normalizes the outputs before comparing them). A single
programming exercise may use an arbitrary number of correctors. The order in which they are
executed is defined by the depends attribute extending the programType type

The metadata about the program type resources is consolidated in the hints element
aggregating a set of recommendations for the submission, compilation and execution of
exercises. These recommendations can be used by the EE to improve the evaluation and
feedback process. The hints element is composed by three sub-elements: submission,
compilation and execution elements.

The submission element defines guidelines to follow in submission process. It is
composed by the following attributes: time-solve – time limit for solving the exercise;
time-submit – time limit for submitting the exercise; attempts – maximum number of
attempts for submitting the problem; code-lines – maximum number of code lines in the
user's code; length - maximum length in the user's code.

The compilation element defines guidelines to follow in compilation process. It is
composed by the following attributes: time- time limit to compile the exercise;
size - maximum size of the execution code.

The execution element defines guidelines to follow in execution process. It is composed
by the following attributes: time- time limit for executing the exercise.

USING PExIL

In this section we validate the PExIL definition according to: its usefulness while using the
PExIL definition as input of a set of tools related to the programming exercise life-cycle (e.g.
generation of a IMS CC learning object package); and its expressiveness while using the PExIL
definition to capture all the constraints of a set of programming exercises in a repository (e.g.
description of crimsonHex [12] programming exercises).

Generating a IMS CC learning object package

In this subsection we validate the usefulness of the PExIL definition by detailing the generation
of an IMS CC LO package based on a valid PExIL instance. An IMS CC object is a package
standard that assembles educational resources and publishes them as reusable packages in any
system that implements this specification (e.g. Moodle LMS).

A Generator tool (e.g. PexilUtils) uses the PExIL definition to produce a set of resources
related with a programming exercise such as exercise descriptions in multiple languages or
input and output test files. The LO generation is depicted in Fig. 4. The generation of a LO
package is straightforward. The Generator tool uses as input a valid PExIL instance and a
program solution file and generates 1) an exercise description in a given format and language, 2)
a set of test cases and feedback files and 3) a valid IMS CC manifest file. Then, a validation step
is performed to verify that the generated tests cases meet the specification presented on the
PExIL instance and the manifest complies with the IMS CC schema. Finally, all these files are
wrapped up in a ZIP file and deployed in a Learning Objects Repository. In the following sub-
subsections we present with more detail these three generations.

Fig. 4 Learning Object package generation.

Exercise description generation

For the generation of an exercise description (Fig. 5) it is important to acquire the format and the
human language of the exercise description. The former is given by the Generator tool and the
latter is obtained from the total number of occurrences of the xml:lang attribute in the title
element of the PExIL instance.
The Generator tool receives as input a valid PExIL instance and a respective XSLT 2.0 file and
uses the Saxon XSLT 2.0 processor combined with the xsl:result-document element to
generate a set of .FO files corresponding to the human languages values founded in the
xml:lang attribute. The following code shows an excerpt of the Pdf.xsl file. This
stylesheet generates the .FO files based on the textual elements of a PExIL instance:

<xsl:template match="pexil:title">
 <xsl:variable name="uri"

select="concat('desc',@xml:lang,'.fo')"/>
 <xsl:result-document href="resources/{$uri}">
 <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <!—apply templates over the textual elements --> ...
 </fo:root>
 </xsl:result-document>
</xsl:template>

In the next step, the .FO files are used as input to the Apache FOP formatter – an open-source
and partial implementation of the W3C XSL-FO 1.0 standard - generating for each .FO file the
corresponding PDF file.

Fig. 5 Generation of the exercise descriptions.

The use of the PExIL definition to generate exercise descriptions does not end here

since the PExIL definition is included in the LO itself making it possible, at any time of
the LO life-cycle, to regenerate the exercise description in other different formats. The
following figure shows a typical exercise in PDF format.

Fig. 6 A typical exercise statement.

The description also includes a description and an example of a test case. In the case

of the absence of the input/description and input/example the Generator relies on the
specification element to generate the test data and include it in the exercise
description.

Test cases and feedback generation

The generation of test cases and feedback relies on the specification element of the
PExIL definition. The Generator tool can be parameterized with a specific number of test files
to generate. Regardless of this parameter, the tool calculates the number of test cases based on
the total number of variables and the number of feedback messages. In the former, the number
of test cases is given by the formula 2n where the base represents the number of range limits of a
variable and the exponent the total number of variables. Testing the range limits of a variable is
justified since their values are usually not tested by students, thus with a high risk of failure. In
the latter, the tool generates a test case for each feedback message found. The generation will
depend on the successful evaluation of the XPath expression included in the condition
attribute of the when element. The following example helps to understand how the Generator
calculates the test cases.

<line>
 <data id=”n1” type=”float” min=”0” max=”1000”/>
 <data id=”n2” type=”float” min=”0” max=”1000”/>
 <data id=”n3” type=”float” min=”0” max=”1000”/>

 </line>
 <line/>
 </repeat>
 <when condition=”$n1>$n2”>

<feedback xml:lang=”en-GB”>
Numbers can be given in descending order

</feedback>
 </when>

Suppose that the Generator tool is parameterized to generate 10 test cases. Using the previous
example we can estimate the number of test cases and its respective input values as
demonstrated in the Table 4.

Table 4. Specification elements.

Var. T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
n1 0 0 0 0 1000 1000 1000 1000 Min=n2+1 R
n2 0 0 1000 1000 0 0 1000 1000 N2 R
n3 0 1000 0 1000 0 1000 0 1000 R R

The test values are: eight tests to cover the range limits of all variables (23 = 8); one test to
represent the constraint included in the feedback message. Note that this test case will be
executed only if the expression included in the condition attribute was not covered in the
previous eight test cases; the remaining tests are generated randomly. Also note that whoever is
creating the programming exercise can statically define new test cases and use the PExIL
definition for validation purposes.

Manifest generation

An IMS CC learning object assembles resources and metadata into a distribution medium,
typically a file archive in ZIP format, with its content described by a manifest file named
imsmanifest.xml in the root level. The main sections of the manifest are: metadata which
includes a description of the package, and resources which contains a list of references to other
resources in the archive and dependency among them.

Fig. 7 Structure of the IMS CC manifest file.

The metadata section of the IMS CC manifest comprises a hierarchy of several IEEE LOM
elements organized in several categories (e.g. general, lifecycle, technical, educational). In order
to achieve interoperability have defined a binding of the textual elements of the PExIL
definition and the corresponding IEEE LOM elements. The Generator tool uses this binding to
generate the LOM elements through a template pattern. The following table presents a binding
of the PExIL textual elements and the corresponding LOM elements which will be used by the
Generator tool to feed the IMS CC manifest.

Table 5. Binding PExIL to IEEE LOM.

Data Type Schema Element path

Title
LOM lomcc:general/lomcc:title
PExIL exercise/title

Date
LOM lomcc:lifecycle/lomcc:contribute[lom:role=’Author’]/lom:date
PExIL exercise/creation/date

Author
LOM lomcc:lifecycle/lomcc:contribute[lom:role=’Author’]/lom:entity
PExIL exercise/creation/authors/author/v:VCard/v:fn

Event
LOM lomcc:general/lomcc:coverage
PExIL exercise/creation/event

By defining this set of metadata at the LOM side, eLearning systems continue to use the

metadata included in the IMS CC manifest to search for programming exercises, rather than
using a specialized XML dialect such as PExIL.

The resources section of the IMS CC manifest contains a list of references to other files in the
archive (resources) and dependency among them. The resources element identifies a
collection of resource elements. A resource is not necessarily a single file. It may be a
collection of files internally referenced (within the package) or externally referenced through a
URL. Internal files used by the resource are either directly enumerated by file elements or
indirectly enumerated by using the dependency element to reference another resource. The
file element may contain a metadata sub-element allowing content authors to describe
additional metadata meaningful for searching or indexing in a repository (e.g. the file statements
could have a LOM language element identifying the human language of the statement). The
dependency element identifies a single resource (based on the identifierref attribute)
which can be used as a container for several files that this resource depends upon. Rather than
having to list all resources each time they are needed, the dependency element allows content
authors to define a container of resources and to simply refer to that dependency element
instead of individual resources.

In this example (Fig. 7) the resources section starts with a LAO resource (1) pointing to the
PEXIL descriptor. This file is responsible for the automatic generation of all the other files
included in the package (with the exception of the solution program and images). The
description of the exercise is included on the manifest as a WCR resource (2). This type of
resource can be automatically rendered by the browser without any additional processing. The
program solution (3) is associated with metadata since this resource should not be made visible
in player mode to the students and will be used only to regenerate test cases and in the
evaluation phase of the programming life-cycle. The test cases are defined with a pair of input
and output files (and feedback files) as resource objects (4 and 5). Finally, the BLTI link is
included as a LAO resource (6). This link points to a XML file that includes all the data needed
to integrate the cartridge in a LMS-web application communication. This XML file contains
information to create a link in a Tool Consumer (e.g. LMS). Upon the user’s click on the LMS,
the execution flow passes to a Tool Provider along with contextual information about the user
and Consumer. The Basic LTI link is defined in the resource section of an IMS Common
Cartridge as follows:

<resource identifier="MyBLTILink" type="imsbasiclti_xmlv1p0">
 <file href="BasicLTI.xml"/>
</resource>

The href attribute in the resource entry refers to a file path in the cartridge that contains an
XML description of the Basic LTI link. A BLTI link contains several elements. The most
important are: the title and description elements contain generic information about the
link; the custom and extensions elements allow the Tool Consumer to extend the basic
communication data; the launch_url element contains the URL to which the LTI invocation
is sent; the secure_launch_url element is the URL to use if secure HTTP is required.

The LTI message signing is performed by a security mechanism designed to protect POST and
GET requests called OAuth. OAuth 1.0 specifies how to construct a base message string and
then sign that string using a secret. The signature is then sent as part of the POST request and is
validated by the Tool Provider using OAuth. The signing process produces a set of values added
to the launch request:

oauth_consumer_key=b289378-f88d-2929-lmsng.school.edu
oauth_signature_method=HMAC-SHA1
oauth_timestamp=1244834250
oauth_nonce=1244834250435893000
oauth_version=1.0
oauth_signature=Xddn2A%2BjzwjgBIVYkvigaKxCdcc%3D

The value of the oauth_consumer_key depends on which credentials are being used. The
oauth_consumer_key is passed in the message as plain text and identifies which Tool
Consumer is sending the message allowing the Tool Provider to look up the appropriate secret
for validation. The oauth_consumer_secret is used to sign the message. Both systems
(TP and TC) should support and use the HMAC-SHA1 signing method with OAuth fields
coming from POST parameters. Upon receipt of the POST, the TP will perform the OAuth
validation using the shared secret it has stored for the oauth_consumer_key. The
timestamp should also be validated to be within a specific time interval [11]. In order to
validate the IMS CC cartridges previously generated we use the IMS validator6. This service
validates cartridges for conformance with the IMS Common Cartridge v1.0 and/or v1.1
specification. In the validation process the IMS CC Validator tests the whole cartridge (or just
the XML manifest) verifying the following type of constraints:

Static - the parameters (e.g. file names) are fixed in the profile (e.g. imsmanifest.xml must
exist at the root of the package)
Dynamic - the parameters are taken from an instance document in the package (e.g. href
attribute of a resource element must point to a QTI file)
Conditional - the constraint depends on a condition (e.g. if parameter ‘contenttype’ is
‘question’ then the href attribute must point to a QTI file).

The cartridges generated from PExIL instances using the methodology presented in the previous
sub-section passed all tests performed by the validator.

Describing crimsonHex programming exercises

In this subsection we validate PExIL expressiveness by using the PExIL definition to
cover the requirements (e.g. the input/output constraints of the exercise) of a subset of
programming exercises from a learning objects repository.

Fig. 8 Evaluation of PExIL expressiveness.

For the evaluation process we randomly selected 24 programming exercises (1% of a total of
2393 exercises) from a specialized repository called crimsonHex [12]. We checked manually if
the PExIL definition covers all the constraints of the input/output data. The evaluation results,
depicted in the Fig. 8, shows that in most cases (21 – 88%), PExIL was expressive enough to

6 http://validator.imsglobal.org

cover the constraints of the exercise test data. In just one case, we had to make a minor change
in the PExIL definition to capture alternative content models.
Finally, two exercises were not completely covered by the PExIL definition. This means that
using only the standard data types of PExIL we were able to define the input and output files,
and these definitions can be used to validate them. However, these definitions cannot be used to
generate a meaningful set of test data. In these cases the programming exercise author would
have to produce test files by some other means (either by hand or using a custom made
generator). In our opinion, the data types required be these exercises are comparatively rare and
do not justify their inclusion in the standard library. However, PExIL does not restrict data types
and PexilUtils can be extended with generators for other data types, if this proves necessary.

CONCLUSIONS

In this paper we present PEXIL – a XML dialect for authoring LOs containing programming
exercises. Nevertheless, the impact of PExIL is not confined to authoring since these documents
are included in the LO itself and they contain data that can be used in its life-cycle, to present
the exercise description in different formats, to regenerate test cases or to produce feedback to
the student.

For evaluation purposes we validate the PExIL definition by using it as input for the
generation of an IMS CC learning object package through a set of tools and by using it to
capture all the constraints of a set of programming exercises stored in a learning objects
repository called crimsonHex.

In its current status the PExIL schema7 is available for test and download. Our plans are to
support in a near future this definition in the crimsonHex repository. We are currently finishing
the development of the generator engine to produce a LO compliant with the IMS CC
specification. This tool could be used as an IDE plug-in or through command line based on a
valid PExIL instance and integrated in several learning scenarios where a programming exercise
may fit from curricular to competitive learning.

REFERENCES

 Friesen, N.: Interoperability & Learning Objects: Overview of eLearning Standardization". Interdisciplinary
Journal of Knowledge and Learning Objects. 2005.

 IMS-QTI - IMS Question and Test Interoperability. Information Model, Version 1.2.1 Final Specification IMS
GLC Inc., URL: http://www.imsglobal.org/question/index.html.

 Queirós, R. and Leal, J.P.: Defining Programming Problems as Learning Objects. In ICCEIT, October, Venice,
Italy, 2009.

 IMS-CP – IMS Content Packaging, Information Model, Best Practice and Implementation Guide, Version 1.1.3
Final Specification IMS Global Learning Consortium Inc., URL: http://www.imsglobal.org/content/packaging.

 IEEE LTSC LOM Learning Technology Standards Committee. Draft Standards for Learning Object Metadata,
2002. Final 1484.12.1 LOM Draft Standard Document -
http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf

 IMS Application Profile Guidelines Overview, Part 1 – Management Overview, Version 1.0. URL:
http://www.imsglobal.org/ap/apv1p0/imsap_oviewv1p0.html

 ADL SCORM Overview. URL: http://www.adlnet.gov/Technologies/scorm
 Friesen, N.: Semantic and Syntactic Interoperability for Learning Object Metadata. In: Hillman, D. (ed.) Metadata

in Practice. Chicago, ALA Editions, (2004)
 IMS Common Cartridge Profile, Version 1.1 Final Specification. URL: http://www.imsglobal.org/cc/index.html
 Queirós, R. and Leal, J.P.: Using the Common Cartridge profile to enhance learning content interoperability. In

ECEL - 10th European Conference on e-Learning, November, Brighton, UK (to appear)
 IMS BLTI (2010) “IMS Basic Learning Tools Interoperability Specification” – v.1.0 Final Specification, URL:

http://www.imsglobal.org/lti/blti/bltiv1p0/ltiBLTIimgv1p0.html
 Leal, J.P., Queirós, R.: CrimsonHex: a Service Oriented Repository of Specialised Learning Objects. In: ICEIS

2009: 11th International Conference on Enterprise Information Systems, Milan (2009).

7 Available at http://www.dcc.fc.up.pt/~rqueiros/projects/schemaDoc/examples/pexil/pexil.html

