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CRACS & INESC-Porto LA, Faculty of Sciences,
University of Porto

Porto, Portugal
zp@dcc.fc.up.pt up201001961@fc.up.pt

Abstract. This paper proposes a structure driven approach to assess
graph-based exercises. Given two graphs, a solution and an attempt of
a student, this approach computes a mapping between the node sets of
both graphs that maximizes the student’s grade, as well as a description
of the differences between them. The proposed algorithm uses heuristics
to test the most promising mappings first and prune the remaining when
it is sure that a better mapping cannot be computed.
This algorithm is applicable to any type of document that can parsed into
its graph-inspired data model. This data model is able to accommodate
diagram languages, such as UML or ER diagrams, for which this kind
of assessment is typically used. However, the motivation for developing
this algorithm is to combine it with other assessment models, such as
test case model used for programming language assessment.
The proposed algorithm was validated with thousands of graphs with
different features produced by a synthetic data generator. Several exper-
iments were designed to analyse the impact of different features such as
graph size, and amount of difference between solution and attempt.

Keywords: automatic assessment, graph comparison, graph-based ex-
ercises

1 Introduction

Graphs are mathematical structures that model relationships among objects.
They can be used in a wide range of domains such as network topology, software
architecture, digital circuit design, just to mention a few. Diagrams are an apt
example of a document type with a graph-based representation that requires au-
tomatic assessment. However, graphs can be used for assessing exercises where
the relationship among parts is important but not determinant. Finite Deter-
ministic Automata (FDA) and even programming languages are examples of this
kind of assessment.

The assessment of an FDA should be twofold [2], based on the recognized
strings and on the structure of the state automaton. If an FDA recognizes all
strings it should, and only those, then it must be correct. Otherwise, examples
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of the strings that should be recognized but are not, and vice versa, can be au-
tomatically generated. However, these examples seldom contribute to overcome
the error. An helpful feedback must pinpoint what is wrong. For instance, what
nodes are missing or what transitions must be removed. This can be achieved
using graph assessment since the structure of an FDA can be represented by a
state automaton [2].

Programming language assessment would also benefit from a similar ap-
proach. The standard way of assessing a program [4] is to compile and then
execute it with a set of test cases. A program is considered correct if it com-
piles without errors and the output of each execution is what is expected. If
it is incorrect then the most this approach can provide are examples of input
that generates wrong output. It cannot pinpoint the errors in the code of the
program. An attempt to make this kind of assessment should be based on the
structure of the program, specifically its abstract semantic graph.

The ultimate goal of the research presented in this paper is to define a gen-
eral methodology for assessing graph-based exercises, applicable in a wide range
of domains including FDAs, programming languages but also diagrams. The ob-
jective of this paper is to propose a graph assessment algorithm and to evaluate
its efficiency for graphs with the size typically used in automated assessment.

The proposed assessment algorithm is based on the graph structure, meaning
that it actually computes the mapping that achieves the best grade. To avoid
checking a large number of mappings it iterates over them considering first the
most promising. The mappings are iterated in an order that allows the algorithm
to prune the majority of them, when it can ensure that the remaining mappings
cannot produce a grade higher than the best one computed so far. The iteration
order is driven by the types and properties of nodes.

The remainder of this paper is organized as follows. Section 2 surveys the
existing literature on assessment of graph-based exercises. Section 3 describes
the proposed algorithm, including the definition of the data structures to repre-
sent graph based exercises and their assessment. This approach is validated in
Section 4 using a graph generator to test the limits of the applicability of the
proposed methodology. Finally, Section 5 highlights both the main contributions
of this paper and the work ahead to apply this form of assessment in different
scenarios.

2 Related work

This section surveys the existing literature on automatic diagram assessment. To
the best of the authors’ knowledge, no general algorithm for assessment of graph-
based documents has yet been proposed. The existing proposals are targeted
solely to diagrams, and focus mostly their labels rather than their structure.

Most of the available automatic diagram assessment systems were designed
for a specific diagram type, Examples of these single types addressed by existing
systems are deterministic finite automata (DFA) [2, 5], UML class diagrams [1,
6], UML use case diagrams [9], Entity-Relationship diagrams [3], among others.
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All these systems determine a mapping between nodes of solution graph and
nodes the student’s answer. The easiest approach is to use a fix set of labels in
both graphs. For instance, the exercise descriptions used in assessment system
proposed by Soler [6] for UML class diagrams must fix the class names used
by students. Finding a mapping between the node sets of both graph is thus
straightforward. A variant of this approach is the assessment in stages that Ali et
al. [1] proposed. This system will not advance to the next stage until the current
one is completely correct, otherwise it reports feedback on what is wrong or
missing. The considered stages are: structural analysis, verification process and
a language checking. The first stage compares the number of nodes, attributes
and operation and their types. The second stage checks if connections have the
correct type source and target. Knowing that the graph structure is correct (by
the two stages above), the system checks if the labels in nodes and attributes
are nouns and in the operations are verbs.

The automata-base graph analyser of Shukur and Mohamed [5] works in
a way that is similar to that presented above. The system does two types of
evaluation: a static one and a dynamic one. The static analysis is made by
comparing the global number of states, the number of initial and final states and
the number of connections. The dynamic analysis is made by testing two sets
of strings. One of the sets is composed by strings that the model should accept.
If any of it is rejected, the graph is not correct. The second set is composed by
strings that should be rejected by the system. So, by opposition, if any string is
accepted the graph is not correct.

The work of Thomas, Smith and Waugh [8, 7] describes a system with simi-
larities with the approach presented in this paper. It is a generic system able to
handle different diagram types. Elements can be represented as boxes or circles
and each connections as lines. The system tries to match those elements from
students’ answer to the elements of the solution. For each pair of nodes and edges
is computed a similarity measure and with that value the system can assume
what is (or not) a valid match. If the similarity is high, the system assumes it
as correct. On the other hand, if the similarity is low the system is marked as
not correct. The approach that will be presented in here describes a way how to
find the best match without these assumptions.

3 Graph assessment algorithm

The objective of the algorithm described in this section is to assess an exercise
represented as an extended graph by comparing it with a standard solution,
represented also as an extended graph. The assessment consists in determining
a set of differences between both extended graphs. These differences can be
summarized in a grade, a numerical value within a fixed range (e.g. 0 to 100).
If the set of differences is empty then the attempt of the student reaches the
maximum grade; otherwise each difference introduces a penalty according to its
type. For instance, a missing node may have a higher impact on the grade than
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a missing edge. Wrong types, missing or wrong properties have also their own
penalties, depending on the language.

The basic approach is to determine the mapping between the node sets of
both extended graphs that maximizes the grade. This can be solved by a simple
generate and test strategy. If one generates all the possible mappings between
both extended graphs, for each mapping one can determine the differences be-
tween graphs and synthesize a grade. After iterating through all possible map-
ping one can select the one that produces the highest grade.

The problem with this approach is the number of mappings. If both extended
graphs have n nodes then the number of mappings is n!, rending this approach
unfeasible for graphs with more than 12 nodes. The proposed solution is to gen-
erate mappings if a particular order, with a decreasing contribution of the nodes
to the final grade. The heuristic is that a node mapping with a high contribu-
tion to the grade has higher chances of being selected for the best mapping. Of
course that this heuristic is only helpful if it is combined with the pruning of
a significant number of mappings. That is, if alter testing a reasonably small
number of mappings one can discard most of the remaining mappings.

A solution and and attempt with equal sizes, i.e. with an equal number of
nodes, is a particular case. In general these graphs have different sizes since the
student may have omitted nodes or edges, or introduced unneeded ones. In this
case the approach is to reduce the number of nodes in one graph until both
have the same size; edges connecting the removed nodes are also removed. If
one graph has n nodes and the other has m modes, with n > m, then there are
n!/m! different ways to make them equal. Again, the approach is to delete first
the nodes that are least expected in the mapping, and pruning the tail of the
node deletion list once it is certain that those alternatives cannot contribute to
improve the best mapping determined so far.

This section details several parts of the proposed algorithm. Subsection 3.1
introduces the definitions of extended graph and graphs differences, and defines
the computation of a grade from a set of graph differences. Subsection 3.2 ex-
plains how two generate node mappings with a decreasing node contribution to
the grade.

3.1 Data structures

The proposed algorithm processes two extended graphs, a standard solution and
a student attempt. A simple graph G = (N,E) is defined by a set of nodes and a
set of edges, where an edge is a pair of nodes. In an extended graph both nodes
and edges have a type and a set of properties. An extended graph is a multigraph,
in the sense that a pair of nodes may have more than a one edge, possible with
different types.

Node and edge types capture the essential features of a graph-based lan-
guage. Take UML diagrams for instance. Each kind of diagram combines nodes
and edges of particular kinds. A use case diagram has as node types actor and
use case, and as edge types associations, dependencies and generalizations. The
features that are not captured by types are encoded as properties. Properties
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are simply name value-pairs. Consider an association in an UML class diagram;
it may have a navigability, multiplicities, roles and other kinds of properties.

The assessment of an extended graph against another is a set of differences.
The most relevant differences are detected when both graphs are made of the
same size, such as insertion and deletion of nodes. The rest of the differences are
computed based on a mapping between the nodes set of both extended graphs.
Consider a mapping m : N → N ′ and the nodes a ∈ N from the extended graph
used as solution. If a and m(a) are indistinguishable then not difference is added
to the set. Otherwise, a differences of a certain kind is signaled: if the types of
a and m(a) differ, m(a) has a wrong type; if a property of a and m(a) differs, a
property insertion, deletion or wrong value is signaled.

The assessment restricted to nodes plays an important role in the proposed
algorithm, since it is quicker to compute. However, the a complete assessment
must also consider edges. When nodes are removed to make force graph to have
the same size, the insertion and deletion of arcs connecting then is also detected.
The rest of the arcs depends on the mapping. For each (a, b) ∈ E is expected an
(m(a),m(b)) ∈ E′ and vice versa. Otherwise edge insertions, omissions, wrong
type, as well as edge property differences, are also signaled.

Given a set of differences it is possible to compute a grade. The empty differ-
ence set has the maximum grade (e.g. 100). Each kind of difference has a certain
penalty and these a grade is computed by subtracting these penalties to the
maximum grade. Penalties depend on their kind and the size of the graph. In
general a difference in a node should have a higher impact that a difference on a
edge, but ultimately this depends on the graph language. There are a number of
weights that have to be tuned for a particular language, using actual grades given
by experts as benchmark. The same penalty has different impacts according to
the solution graph size. For instance, a missing node will have higher impact on
a small graph than on a large graph.

Grades computed from set of differences are much more than just the final
output of the assessment algorithm. They are essential to control it, in partic-
ular the grade restricted to the node contribution, as is explained in the next
subsection.

3.2 Node mappings

The general strategy of assessing an extended graph against another is to deter-
mine a mapping between then that produces the higher grade. Due to the large
number of possible mappings it is important to have heuristics to consider the
most promising first and to have a criteria to prune most of them all.

The node component of the assessment outweighs the edge component, al-
though its computational complexity is much smaller. In a graph with n nodes,
there are n2 pairs or nodes, although these can be combined in n! mappings. If
one iterates over the set or mappings by decreasing order of their node contribu-
tions to the grade (i.e. with less penalties), then the first mappings have higher
chance of being the best than those appearing afterwards.
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The first step for generating these mappings is to compute the contribution
for the grade of individual node mappings. The initial mapping candidate is
constructed from the individual mappings with best grade (less differences) for
each node in the standard node set. Note that this is a mapping candidate, it
may not be a valid candidate if two different nodes are mapped in the same
node. The rest of the individual mappings are sorted by decreasing order of the
difference of their contributions

4 Validation

The graph assessment algorithm described in the previous section was imple-
mented in Java 1.8. This implementation was used in a number of experiments
to validate the applicability of the proposed approach in the assessment exercises
on graph-based languages.

The validation was conducted using synthetic graphs. This approach is dif-
ferent from the validations described in the existing literature on diagram as-
sessment systems, surveyed in section 2. Most of the referred authors use actual
exercises and student attempts, or a corpus with a large number of diagrams.

The reason for choosing synthetic data to validate this approach is twofold.
Firstly, it is not intended for a specific graph-based language and should be
adjustable to any graph-based languages that fits in the extended graph data
model. Hence, its is important to test it with a wide range of settings, varying
the number of types and properties, as will happen with different graph-based
languages. Secondly, it is important to test the limits of the proposed approach,
in terms of graph sizes and amount of difference between and attempt graphs,
for which a large number of graphs pairs is required.

4.1 Graph generator

The graph generator is a component that produces synthetic graphs for testing
and validating the proposed graph assessment algorithm. This component is used
to generate both a solution graph and attempts near to a given solution. The
attempt graph cannot be another random graph, it must be close enough to the
solution to be able to produce a meaningful correction.

The graph generator follows the builder design pattern. It has a number
of setting that control of the minimum and maximum number of nodes, types
and properties. The number of edges for a graph with n nodes are n − 1 and
n(n + 1)/2 since these are the minimum and maximum number of edges for a
connected graph with n nodes. When a new graph is requested, its nodes and
arcs with respective types and properties are randomly generated within these
boundaries.

Graphs used in graph-based languages are typically connected graphs. Thus,
the generator ensures that generated graphs are connected. It computes the con-
nected components of the graph and, while it has more then one, it replaces a
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redundant edge in one component with an edge to a node in a different compo-
nent. A redundant edge in a connected component is one that can be removed
without breaking connectivity.

As explained above, the graph generator can also be used to produce graphs
within the vicinity of a given graph, i.e. with a given number of variations, in
number of nodes, edges, types and parameters. Within these boundaries the
generator: inserts or removes nodes; changes types; inserts, removes or changes
properties. Since the graphs produced this way are modelling student attempts,
they may be disconnected graphs.

When producing a graph variant to model a student attempt, the generator
produces also a set of differences. This set of differences uses the same type of
data structure returned by the assessment method. Hence it is straightforward to
compare the differences detected by the assessment method with those produced
by the generator. This comparison validates the algorithm and its implementa-
tion.

Not all student attempts are wrong. Some may be equivalent to the standard
solution, and this situation must also be tested. Nevertheless, it would be highly
improbable for the two graphs to have nodes and arcs exactly in the same order.
Comparing two exactly equal graphs could have an influence of the performance
of the algorithm. Thus, the nodes and arcs of variant graphs are always shuffled,
independently of the difference between the original and the variant graph.

4.2 Experiments

The implementation of the proposed graph assessment algorithm and synthetic
graph generator described in the previous subsection were used in a series of ex-
periments that are reported in this sub-section. These experiments were designed
to answer the following questions.

Up to what graph size can this algorithm be used? The complexity of
the graph homeomorphism problem is unknown, but most likely it is high
enough to prevent the use of this approach on graphs above a certain size.

Do heuristics have a significant impact on performance? The heuristics
were designed to explore the most promising mappings first, but they have
an initial cost and depend of the effectiveness of the pruning criteria.

What is the impact of weights in performance? The algorithm is driven
by grades and heuristics reply on the contribution of nodes to grades. The
balance between the weight of node and edge grades is bound to influence
performance.

What is the impact of domain specific data? The algorithm was designed
to take advantage of the types and properties assigned to nodes and edges.
This data makes node and edge easier to identify and the algorithm should
perform better as more of it is available.

How dissimilar can solutions and attempts be? If the attempt and the
solution are completely dissimilar then it makes no sense to compute differ-
ences between then and the grade should be zero. However, the assessment
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algorithm should perform well for attempts within a certain range of the
solution.

The experiments that answered these questions ran on a computer with 4
cores and 8 i7-3630QM CPU at 2.40GHz, with 8 GByte of RAM . For each
setting the experiment was repeated with 100 different random pairs of graphs.
On most cases the assessment of a pair of graphs was executed well bellow 1/2 a
second. Occasionally some pairs of graphs take a longer time hence a timeout of
2 seconds was. In these case the assessment was considered incomplete, although
the result obtained within the allotted time may actually be correct.

The first experiment addressed the size of graphs that can be assessed with
the proposed algorithm. Alur et al. argue that graphs in used exercises are usually
small [2] and thus this complexity is not a serious problem. This appears to be
the case in DFA, the domain they studied, and also many other domains, such as
UML class and use case diagrams. However, an Entity-Relationship exercise to
model a simple database may have have more than 20 nodes. The results obtained
with hundreds of equivalent graphs pairs show that the proposed algorithms deals
with orders of up to 30.

Another addressed the impact of pruning. For that purpose a variant of map-
pings iterator was implemented. This iterator returns all the possibles mappings,
without the initial overhead required by the iterator of the proposed algorithm.
The rest of the algorithm was maintained unchanged. This algorithm was tested
with equivalent graphs but could only complete the assessment of graphs of
grade 6 or lower. Pairs of graphs with a larger number of nodes produce always
an incomplete assessment. This compares with the use of the optimized iterator
that can assess graph pairs up to order 30.

The third experiment addressed the impact of weights, in particular the bal-
ance between the node and edge contribution to assessment. Since the heuristics
rely on the node contributions to prune, a larger contribution of edges decreases
efficiency. It should be noted that the actual weights will depend of the specific
graph-based language and on particular grading criteria defined by the teacher.
In any event, it is expected that nodes contribute at least with half of the grade
and in general with less than that. In fact, an equal weight of nodes and edges
produces an assessment in less than 200ms for graph pairs with up to 28 nodes,
and the results improve as the weight of nodes is higher, as expected. The per-
centage of incomplete assessments is always less than 5% and lowers as the weight
of edges lowers.

The impact of the domain specif data, i.e. the information provided by types
and properties was also tested. Although the proposed algorithm is based on
structure of the graphs, their nodes and edges, the heuristics use types and
properties to distinguish them and improve efficiency. However, it should be
noted that the number of types and properties depends the graph-based language
and cannot be controlled by the algorithm. As expected, the worst results were
obtained with just one or two different types (a single type is equivalent to no
types). With three to five types graph pairs of up to an order of 30 are assessed
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in 50 ms. The incomplete assessments reached 8% for graphs with order 28 with
3 types, but was less than 2% for all orders up to 30 with 4 or 5 types.

The experiments described above were performed with pairs of equivalent
graphs to determine the impact of features. In these experiments it was checked
that the algorithm found no differences between the graphs. The rest of the
experiments were performed with different graphs and was validated that the
algorithm recovers the differences introduced by the generator. The algorithm
was testes with solutions graphs with sizes up to 30 and attempt graphs with
a size variation of up to 8 nodes. The execution time un these assessments is
bellow 40 ms, with a tendency to increase with for larger size differences. The
number of incomplete assessments is bellow 5% for solution graphs with up to
25 nodes and a different in number of nodes of less than 7.

5 Conclusions and future work

The main contribution of this paper is an algorithm for assessing graphs driven
by their structure. It computes both a grade an an explanation, a data object
that can be serialized into a natural language text, or used as input for other
systems. The assessment algorithm determines the best mapping between nodes
in a solution graph and nodes in attempt graph. The mapping is the best in the
sense that it maximizes the student’s grade.

The algorithm validation ensured its efficiency for connected graphs with up
to 30 nodes, which should cover the needs of exercise assessment. It suggests that
automatic assessment systems for diagrams can be easily implemented based on
this algorithm.

The next step is to validate assessment systems, rather than just the assess-
ment algorithm, by using them with actual graph-based languages and actual
students. An experiment is already scheduled for the last month of the current
school year with student of a software architecture course.

The motivation for developing this assessment methodology is to blend it with
other assessment methodologies, notably the test based assessment used with
programming languages. This will require the study of the existing document
type definitions for abstract semantic graphs of programming languages used in
introductory programing courses such as Java, C/C++, Python and C#, and
the existing tools for extracting abstract semantic graphs.
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