
Odin: A Service for Gamification of Learning
Activities

José Paulo Leal1, José Paiva2, and Ricardo Queirós3

1 CRACS & INESC-Porto LA, Faculty of Sciences,
University of Porto, Porto, Portugal zp@dcc.fc.up.pt

2 CRACS & INESC-Porto LA, Faculty of Sciences,
University of Porto, Porto, Portugal up201200272@alunos.dcc.fc.up.pt

3 CRACS & INESC-Porto LA & DI/ESEIG/IPP,
Porto, Portugal ricardoqueiros@eseig.ipp.pt

Abstract. Existing gamification services have features that preclude
their use by e-learning tools. Odin is a gamification service that mimics
the API of state-of-the-art services without these limitations. This pa-
per describes Odin, its role in an e-learning system architecture requiring
gamification, and details its implementation. The validation of Odin in-
volved the creation of a small e-learning game, integrated in a Learning
Management System (LMS) using the Learning Tools Interoperability
(LTI) specification.

Keywords: Gamification, E-Learning, Game services, Interoperability

1 Introduction

The use of game concepts and mechanics in non-game contexts is an effective way
to engage users. Gamification is currently a word of order in different domains,
from marketing to e-learning [2]. The massive use of this approach led to the
concept of gamification as a service, provided by major players such as Google
and Microsoft. These services leverage on their large user base to provide support
for game progress mechanics such as points, leaderboards and badges, without
requiring a specific authentication from the client application.

Gamification services are a great advantage to small web and tablet based
applications, in particular to games. The game progress mechanics features pro-
vided by these services are also relevant in e-learning. However, e-learning sys-
tems are typically deployed in environments with a single sign-on managed by
an academic institution. It would be unacceptable to require students to have
an account with a third party such as Google, for instance.

The purpose of the Odin service is to provide a gamification service similar
to the state of the art, without requiring registration of the end users. Its API
is inspired in the Google Play Game Service (GPGS) with minor adjustments
regarding user identification.

The remainder of this paper is organised as follows. Section 2 reviews the state
of the art in game services. Section 3 introduces the Odin service, its design and

implementation. Section 4 describes its evaluation using a small serious game as
case study. Finally, Section 5 summarizes the contributions of this research.

2 Game Services

The video game industry is one of the fastest growing sectors in the worldwide
economy [8]. According to the research company Gartner, global video game sales
will reach $111.1 billion in 2015, due in part to the growth in mobile game play
and the recent release of the new generation of game consoles. In order to increase
engagement and player retention, video games include several common features
such as leaderboards and achievements. The massive use of this approach and
the impressive growth of players led to the concept of gamification as a service,
later materialized in Game Backend as a Service (GBaaS). The approach is
simple. Instead of replicating the implementation of the game features in each
version of the game for various platforms, GBaaS adhere to a service oriented
architecture providing cross-platform game services that lets you easily integrate
popular gaming features such as achievements, leaderboards, remote storage and
real-time multiplayer in mobile games.

While the concept of ”winners and losers” can hinder the motivation of
students [7], gamification is currently being applied with relative success in e-
learning [1, 6]. The integration of game concepts in learning environments helps
students to remain focused and to fulfil their course goals. However, the imple-
mentation of gamification in these domains is often trapped in ad-hoc solutions
or supported by specific platforms (for instance, the badges in Moodle), instead
of using approaches such as those provided by GBaaS.

In the following subsections we briefly summarize the main common game
features that can be applied to the teaching-learning process. Then, we compare
six GBaaS regarding social and technical features. This study is part of an effort
to select an GBaaS on which to base the development of a service for gamification
of learning activities.

2.1 Game concepts

Games are more interesting when players are able to achieve goals and compete
against other players. These features foster retention and competitiveness, and
are applicable also in the gamification of e-learning activities. The following list
enumerates the most common game concepts:

Leaderboards are databases that keep scores. They allow users to post their
scores in a game and compare themselves with other players’ scores. They
measure the success of a player in a game.

Achievements are goals/challenges set in a game that players managed to
accomplish. Achievements give players a motivation to keep playing, to earn
as many as possible, and a way compare themselves with other players. The
fulfilment of a goal may enhance the status of the player or unlock access to
other levels, for instance.

Multiplayer is a play mode that allows several players to simultaneously co-
operate or compete in a game. This feature supports a range of other sub-
features, such as challenges, where players compete each other on either a
score challenge or an achievement challenge, and matchmaking games for
real-time, turn-based, or self-hosted matches.

Saved games allow the remote storage (in the cloud) of game data, for in-
stance, the state and the players progress in the game.

Quests are periodic game challenges that players can complete to earn rewards.
This way, developers can launch periodic challenges to their gaming commu-
nities.

Gifts allow players to send/request game resources or items to/from friends (for
instance, in their Google+ circles).

Matchmaking automatically sets up game matches and finds opponents based
on parameters set by the game developer. Usually only a specific number of
players can be matched at the same time.

2.2 Game Backend Services

A Backend-as-a-service (BaaS) is a cloud computing service model acting as
a middleware component that allows developers to connect their Web and mo-
bile applications to cloud services via application programming interfaces (API)
and software developers’ kits (SDK). BaaS features include cloud storage, push
notifications, server code, user and file management, social networking integra-
tion, location services, and user management as well as many other backend
services. These services have their own API, allowing them to be integrated into
applications in fairly simple way [3].

A Game-Backend-as-a-Service (GBaaS) is a subset of a BaaS that in-
cludes cross-platform solutions for the typical game concepts identified in the
previous subsection. During the development process of a game (or a generic
application) developers must choose between building their own back-end ser-
vices or using an available game back-end platform. This last option is usually
preferred since GBaaS include several services specifically tailored for game de-
velopment. These services allow developers to focus on the game logic by freeing
them from implementing boiler plate features.

The following subsections compare several GBaaS according to their social
and technical features. Given the number of GBaaS found (32) it would be
impracticable to study them all. Therefore, eight GBaaS were chosen: Google
Play Game Services, Yahoo Bakend Game Service, GameUp, Flox, GameSparks,
Fresvii, Kumakore and Photon. These features are summarized in Table 1.

Social game features The studied GBaaS provide developers with social game
services accessed through cross-platform API. These features make the gameplay
more competitive and collaborative, and improve social engagement.

Analysing Table 1 one concludes that almost all GBaaS supports leader-
boards, multiplayer game mode and cloud storage. Other features such quests
and matchmaking are not yet widely supported, probably due to their novelty.

Table 1. Social and Technical game features

Types Features Google Yahoo GameUp GSparks Fresvii Photon

Social

Leaderboards yes no yes yes yes yes
Achievements yes yes yes yes no no
Multiplayer yes yes no yes yes yes
Save Data yes yes yes yes yes yes
Quests yes no no yes no yes
Gifts yes yes no yes no yes
Matchmaking no no yes no yes yes

Technical

Auth G+
Yahoo
Face Face

Face
Twitter Face Face

WS REST - REST REST - REST
Res. format JSON - JSON JSON - JSON

Platforms

Android
iOS
C++

ActionScript
iOS
Android
C#
Unity

Android
iOS
Unity

ActionScript
C++
Cocos2D
JavaScript
Marmalade
Unity

Android
iOS
Unity

Android
.NET
Unity

Technical game features The studied GBaaS offer cloud services through
API and SDK to various platforms. Regarding authentication almost all GBaaS
use the same strategy. Before the game can make any calls to the game services,
it must first establish an asynchronous connection with the backend servers and
authenticate within the game services. Some GBaaS requires that the players
have an account on specific backends (GPGS requires that users have a Google
account). Others, such as GameSparks, provides a simple mechanism that allows
games to implement social login without any additional code, allowing gamers,
for instance, to sign in using a Facebook or Twitter account, and start playing.

The majority of the GBaaS provides a HTTP RESTful API. The format
of the data in all HTTP store operations (PUT and POST) are required to be
valid JSON. All response data from the GBaaS comes back also in JSON format.
Regarding the REST API reference, the authors opinion is that GPGS is the
most complete and better documented API.

In complement to the REST API most GBaaS support also mobiles. There
are examples of SDKs for Android, iOS, and even FirefoxOS (GameUp) mobile
native apps. Game engines are also supported and most GBaaS offer SDKs for
major game engines such as Unity, and also for cross-platform game development
tools such as Marmalade and Cocos2D.

3 Odin

This section describes Odin, a gamification RESTful Web Service to be used
by educational institutions. It provides (1) score submissions, (2) leaderboards
listing, (3) quests for players, (4) awards to players for in-game accomplishments
as well as some minor services to manage institutions, players, leaderboards,
quests and achievements.

Odin is based on a standard gamification API but has a different approach
regarding authentication. Institutions, rather than end-users, are the ones that
require authentication. Once an institution is authenticated, Odin grants it per-
mission to manage scores, quests and achievements in its users.

The next subsections present the architecture of Odin and its main compo-
nents, and describe its data model and service API.

3.1 Architecture

Odin is a RESTful Web Service that allows institutions to consume gamification
resources from their web applications. The web applications initialize sessions
in Odin through authentication built on top of OAuth2 authorization protocol.
Then they requests particular actions to the server identified by a specific URI
and an HTTP method such as POST, GET, PUT or DELETE.

HTTP/REST Client Odin Authorization
Server

Redis
Database

HTTP Request

Redirects to Authorization Server

Authenticate and approve release of token

Starts Authorization Proccess

Send Token

New HTTP Request with Token
Validate authorization

Response (valid or not)

RESP Request to retrieve or modify data

RESP Response
JSON Response

Fig. 1. Sequence diagram representing a common request to Odin

Figure 1 presents a sequence diagram that summarizes the interactions of
Odin with other systems when a request is made by the client. Firstly, the
HTTP request made by the client is subject to a security filter that checks if the
institution is authenticated. If the institution is not authenticated or authorized
to access Odin resources it is redirected to the authorization server where it will
authenticate and approve the release of a token with the authorization proof.
The generated token (with expiration time) is sent to the client and it (client)
presents the access token to Odin.

When the client is authenticated and authorized, it is passed to the JAX-RS
REST interface implemented using Jersey (described in the next subsection) and
forwarded to the mapped resource. From the resource layer it is forwarded to
the service layer, passing through a security layer which intercepts it to check
authorization and roles, ensuring that only authorized institutions have access
to the services.

The service layer responds to the request with the data persisted on Redis
(described in the next subsection) through the Jedis client (using REdis Serial-
ization Protocol) and Ohm library implementation for Java. The response sent to
the client is a JSON object representing the resource type modified or requested
by it (each resource type may have one or more data representations). Whenever
a fresh token is needed, the client can request it from the Authorization Server.

3.2 Frameworks and Tools

Odin uses Jersey, an open-source framework that is the reference implementation
of the Java API for RESTful Web Services, extending it with additional features
and utilities to further simplify RESTful service. Among other features, Jersey
provides a Core Server to build RESTful services based on annotations, support
for JSON and to the Java Architecture for XML Binding, as well as a Core
Client to easily create a client that can communicate with REST services.

Data storage relies upon Redis NoSQL database that provides an open-source
and advanced key-value storage and cache solution. It is an high performance al-
ternative to the traditional Relational Database Management Systems (RDBMS)
[5] to store and access large amount of data. Redis is sometimes described as a
data structure server since keys can contain strings, hashes, lists, sets and sorted
sets. As a NoSQL database it focus on performance and scalability rather than in
guaranteeing the atomicity, consistency, isolation and durability (ACID) prop-
erties. Redis was selected for backend due to its hability to store large amounts
of non critical data very efficiently.

In order to integrate Redis in Odin the data layer resorts to the Jedis client,
as well as of an object-hash mapping library, named JOhm, to store and re-
trieve objects from Redis with a higher level of abstraction and thus simplicity.
JOhm is the Java implementation of the well-known Ohm library and aims to
be minimally-invasive, relying only on reflection aided by annotation hooks for
persistence.

3.3 Data Model

The data model of Odin consists of seven main entities: institution, player,
leaderboard, score, quest, achievement and session, related as denoted in the
UML class diagram of figure 2.

An institution is the entity that manages games and all related data, and so
it is the one which needs authentication and/or authorization. Thus, it needs to
store an id and password to authenticate, and also a token to check the validity
of the session. Whenever an institution authenticates a session is created and
linked to it (through the institutionId). This session contains the creation time,
last access time and a state indicator (active or inactive).

The institution needs to represent its students. As this is a gamification
model they are abstracted to players, and so they will have a playerId that
identifies him to the institution, a displayName that is the name to show on the

Achievement

+ achievementId : String
+ currentSteps : int
+ achievementState : String
+ lastUpdatedTimestamp : long
+ experiencePoints : long

Score

+ player : Player
+ leaderboard : Leaderboard
+ scoreValue : float
+ rank : Object
+ timeSpan : timeSpan
+ writeTimestamp : long
+ scoreTag : String

Institution

+ institutionId : String
+ name : String
+ password : String
+ token : String

Player

+ playerId : String
+ displayName : String
+ avatarImageUrl : String
+ name : Object
+ experienceInfo : Object
+ title : String

Leaderboard

+ leaderboardId : String
+ name : String
+ order : String
+ currentVersion : int
+ playerLevels : Object[]

Session

+ institutionId : String
+ sessionId : String
+ createTime : Date
+ lastAccessedTime : Date
+ active : boolean

Quest

+ questId : String
+ name : String
+ description : String
+ state : String
+ start : Date
+ end : Date

Fig. 2. Class diagram of the data model of Odin

leaderboard, a full name and a representation of his experience info with level,
points acquired and needed points to level up.

As the player progresses in the game, (s)he will possibly win achievements.
An achievement has a number of required steps and a state (hidden, revealed
or unlocked). When a player reveals one, he receives the number of experience
points associated.

A player can also accept and fulfill quests. A quest is characterized by a name,
a description, a state (upcoming, open, accepted, completed, failed, expired or
deleted) and a start and end date.

One of the most important parts of this model is the leaderboard. It contains
more than a list of sorted scores, it contains data related to a game, such as a list
of info on the levels available in the game/leaderboard. These parts are joined
since it is required a single leaderboard to each game, and they depend on the
existence of each other.

Scores related to a leaderboard and a player, are also stored. Each score has
a floating point value, a timespan (daily, weekly or all time score), a timestamp
and a rank (its position on the leaderboard).

3.4 Service API

The integration of Odin with other systems relies on REST calls to set and re-
trieve data. It follows the Google Web API Reference for achievements, leader-
boards, players, quests and scores resources. The only differences are that all
these resources URI paths are relative to gamify/institutions/institutionId.
Also when an authenticated player is referenced in a function, it is replaced
by a sub-path of the form /players/playerId right after institutionId in the
resource path URI.

The institution resource is added to the set of resources. It contains the
functions shown in table 2.

Table 2. Intitutions resource API reference. URIs are relative to /gamify

Function HTTP request

insert POST /institutions
get GET /institutions/institutionId

The insert function inserts the institution given in the request body. The get

function retrieves the institution resource given its id.

4 Evaluation

For validation of the gamification service described in the previous section, a
simple multiplication game was created. This game – MathGamify – can be used
by primary school children to learn multiplication tables. MathGamify generates
two random numbers. The first number between 1 and the current game level
and the second number between 1 and 10. Then the student/player has the
opportunity to answer the multiplication value of the two numbers. The score is
accumulated in the ratio of the player’s level until player misses, in which case
the score is reset to zero.

MathGamify acts as a tool provider to a Learning Management System
(LMS). The integration of MathGamify with the LMS relies on the Learning
Tools Interoperability (LTI) specification. When the LMS launches MathGam-
ify the LTI parameters are sent as part of the HTTP POST request. On request
reception MathGamify uses the LTI Wrapper [4] package to process LTI com-
munication and extract user id, name and level. The last is a custom parameter
defined on the external tool configuration of the LMS.

MathGamify consumes two types of resources from Odin: score submission
and listing of scores. Once the player answers a question, MathGamify commu-
nicates the score to Odin, using Jersey Client to issue the REST call, and the
grade to the LMS using LTI. This grade is a value between 0 and 1, calculated
by the following way: if there is a custom parameter custom max score then it
is the score divided by custom max score, otherwise it is the number of correct
answers divided by the total number of tries. When MathGamify initializes its
GUI, and every time a score is submitted, the score listing is updated with the
data returned from Odin.

One of the key components is the LTI Wrapper that implements both sides
of the LTI communication. This component receives LTI requests from LMS and
issues LTI requests to LMS.

The GUI component of MathGamify was developed using Google Web Toolkit
(GWT), an open source Java software development framework that allows a fast
development of AJAX applications in Java. The GWT code is organised in two

main packages, the server and the client. The server package includes all the ser-
vice implementations triggered by the user interface. These implementations are
responsible of (1) the logic of the game, (2) communication with Odin and (3)
communication with LMS through LTI wrapper. The selected LMS was Moodle
2.8 .

The implementation of MathGamify demonstrates the efficacy of the pro-
posed approach in coping with the extra requirements of a serious game inte-
grated in a typical e-learning ecosystem, where authentication is provided by an
LMS. To complement its validation, Odin was also tested regarding its efficiency.

The latency of the Odin service was tested in two of its functions: (1) submit
a single score and (2) list all scores in a leaderboard. Each test consisted of 1000
samples of calls to the same function, and all numbers stated below are averages
per sample.

Initially the tests were run locally on the same machine as the Odin server,
using Grizzly Test Container provided by Jersey, so it had no network latency.
The average time to (2) was around 40 ms (leaderboard had 6 scores when the
test was running). In the worst case it took 461 ms. The test (1) spent an average
time of 22 ms and the worst case took 385 ms.

The same tests were repeated on an external server. During these tests an
average network latency of 23 ms was observed. In this setting test (1) consumed
an average time of 67 ms. The average time to (2) was 587 ms (the leaderboard
had 1000 scores).

The tool used to measure time spent was ContiPerf, a lightweight testing
utility that allows the user to easily turn JUnit 4 test cases to performance
tests. It is base on annotations as the JUnit 4’s test configuration.

5 Conclusions

Game concepts and mechanics are an useful way to engage students in e-learning
activities. These kind of features are already provided by game backend services
that can leverage on their authentication services and massive user base. How-
ever, gamification services that rely on external authentication are not adequate
for e-learning systems that already operate on a single sign-on ecosystem.

Odin is a gamification service developed for requirements of e-learning sys-
tems. It was designed to authenticate clients rather than end-users and thus
can be integrated with the e-learning systems typically found in educational
institutions.

The MathGamify system is a proof of concept, that illustrates how serious
games acting as tool providers for an LMS interact with the services of Odin.
The authors plan to integrate Odin in a learning environment for solving pro-
gramming exercises.

Odin itself will be subject to improvements. The current version provides web
services for exposing the gamification service to clients. The next version will
provide also a web interface to register institutions and allow them to manage
their resources.

Acknowledgments. Project ”NORTE-07-0124-FEDER-000059” is financed by

the North Portugal Regional Operational Programme (ON.2 O Novo Norte), under

the National Strategic Reference Framework (NSRF), through the European Regional

Development Fund (ERDF), and by national funds, through the Portuguese funding

agency, Fundação para a Ciência e a Tecnologia (FCT).

References

1. Burguillo, J.C.: Using game theory and competition-based learning to stimulate
student motivation and performance. Comput. Educ. 55(2), 566–575 (Sep 2010),
http://dx.doi.org/10.1016/j.compedu.2010.02.018

2. Hamari, J., Koivisto, J., Sarsa, H.: Does gamification work?–a literature review of
empirical studies on gamification. In: System Sciences (HICSS), 2014 47th Hawaii
International Conference on. pp. 3025–3034. IEEE (2014)

3. Janssen, C.: Backend-as-a-service (baas)”. Tech. rep., Techopedia,
http://www.techopedia.com/definition/29428/backend-as-a-service-baas (2014)

4. Queirós, R., Leal, J.P., Campos, J.: Sequencing educational resources with seqins.
Computer Science and Information Systems 11(4), 1479–1497 (2014)

5. Seeger, M., Ultra-Large-Sites, S.: Key-value stores: a practical overview. Computer
Science and Media, Stuttgart (2009)

6. Siddiqui, A., Khan, M., Akhtar, S.: Supply chain simulator: A scenario-based educa-
tional tool to enhance student learning. Comput. Educ. 51(1), 252–261 (Aug 2008),
http://dx.doi.org/10.1016/j.compedu.2007.05.008

7. Vansteenkiste, M., Deci, E.L.: Competitively contingent rewards and intrinsic moti-
vation: Can losers remain motivated? Motivation and Emotion 27, 273–299 (2003),
http://dx.doi.org/10.1023/A:1026259005264, 10.1023/A:1026259005264

8. Zackariasson, P., Wilson, T.: The Video Game Industry: Formation, Present State,
and Future. Taylor & Francis (2012), http://books.google.pt/books?id=lgiQNdc-
DOwC

