
SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. (2012)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2132

crimsonHex: a learning objects repository for
programming exercises‡

Ricardo Queirós1,*,† and José Paulo Leal2

1CRACS & DI-ESEIG/IPP, Porto, Portugal
2CRACS & DCC-FCUP, University of Porto, Portugal

SUMMARY

A repository of learning objects is a system that stores electronic resources in a technology-mediated learning
process. The need for this kind of repository is growing as more educators become eager to use digital educa-
tional contents and more of it becomes available. The sharing and use of these resources relies on the use of
content and communication standards as a means to describe and exchange educational resources, commonly
known as learning objects. This paper presents the design and implementation of a service-oriented reposi-
tory of learning objects called crimsonHex. This repository supports new definitions of learning objects for
specialized domains and we illustrate this feature with the definition of programming exercises as learning
objects and its validation by the repository. The repository is also fully compliant with existing commu-
nication standards and we propose extensions by adding new functions, formalizing message interchange
and providing a REST interface. To validate the interoperability features of the repository, we developed a
repository plug-in for Moodle that is expected to be included in the next release of this popular learning
management system. Copyright © 2012 John Wiley & Sons, Ltd.

Received 1 August 2011; Revised 4 May 2012; Accepted 10 May 2012

KEY WORDS: eLearning; repositories; SOA; standards; interoperability

1. INTRODUCTION

A learning object repository (LOR) is a type of software, similar to a digital library, which enables
educators to share, manage and use educational resources. These resources, usually called learn-
ing objects (LOs), are defined as small, self-contained, reusable units of learning, usually tagged
with metadata useful to catalogue and to search them. This concept has been promoted by the
eLearning industry since 2001 and many repositories appeared as a way of storing and manag-
ing LOs [1]. Despite their relative success, they have also been target of criticism: the repository
tools are too general and most of them do not implement metadata and communication standards
making it difficult to integrate with other eLearning systems [2].

In this paper, we highlight the interoperability features of crimsonHex. This repository supports
new definitions of learning objects for specialized domains and we illustrate this feature with the
definition of programming exercises as learning objects and its validation by the repository. The
repository also provides standard compliant repository services to a broad range of eLearning sys-
tems, exposing its functions using two alternative kinds of web services. For the sake of standards
compliance these functions are based on the IMS Digital Repositories Interoperability (DRI) spec-
ification [3]. Our experience with using these recommendations led us to propose extensions to its

*Correspondence to: Ricardo Queirós, CRACS & DI-ESEIG/IPP, Porto, Portugal.
†E-mail: ricardo.queiros@eu.ipp.pt
‡Supporting information may be found in the online version of this article.

Copyright © 2012 John Wiley & Sons, Ltd.



R. QUEIRÓS AND J. P. LEAL

set of functions and to the XML binding that currently lacks a formal definition. To evaluate the pro-
posed extensions to the IMS DRI specification and its implementation in the crimsonHex repository,
we developed a crimsonHex plug-in for the 2.1 release of the popular Moodle learning management
system (LMS). Moodle users will be able to download LOs from crimsonHex repositories because
this LMS is expected to include the plug-in described in this paper in its distribution.

This research was carried out under a European project called EduJudge. The EduJudge project
aims to integrate the ‘UVA On-line Judge’, an existing on-line programming trainer with an impor-
tant number of programming exercises and users, into an effective educational environment [4]
consisting of the e-learning platform Moodle and the competitive learning tool called QUESTOUR-
nament. These systems will interact with a remote repository where the programming exercises will
be stored.

Parts of the research described in this paper were presented at a conference on enterprise infor-
mation systems [5,6], addressing the essential aspects of crimsonHex’s development, and the use of
this system from Moodle. This paper provides a comprehensive view of the crimsonHex system and
details certain parts of its design, such as the definition of programming problems as learning objects
and the Web interface. To provide a better understanding of the decisions taken when designing
crimsonHex, this paper also adds a survey on learning object repositories and specifications related
to learning objects.

The remainder of this paper is organized as follows: Section 2 includes a survey on reposito-
ries distinguishing two major types: learning objects repositories and digital libraries and presents
the recent efforts made to foster the interoperability on repositories. In the following section we
introduce the architecture of crimsonHex and its application interfaces. Then, we provide imple-
mentation details of a crimsonHex plug-in for Moodle 2.0 using the proposed IMS DRI extensions.
Finally, we conclude with a summary of the main contributions of this work and a perspective of
future research.

2. REPOSITORIES

A repository can be thought of as a storage area from which users can publish/retrieve resources.
Most of these resources are described by metadata for discoverable purposes. The need for reposito-
ries has been growing in the last decade, because more educators are eager to create and use digital
content and more of it is available. This growth led many to neglect interoperability issues that are
fundamental to share educational resources and to (re)use them on different contexts.

In this section, we analyse the repository software distinguishing two types of repositories —
digital libraries and learning objects repositories — and we provide examples of such types of sys-
tems. Then we take a careful look at recent efforts made to foster interoperability with repositories.
These efforts are organized as two facets: content and communication. In the former, we focus on the
metadata and package specifications used to describe and deploy learning content. In the latter, we
highlight the publishing, searching and retrieval specifications used to enhance the communication
between the repository and other e-Learning systems.

The evolution of the software and specification for repositories can be seen in Figure 1. In the
next sections we detail both.

2.1. Software

There are several typologies to classify the repositories available in the literature. McGreal [7] cate-
gorises repositories into three types based on resource location: (i) those that house content primarily
on site (e.g. MIT Open Courseware); (ii) those that provide metadata with links to resources housed
at other sites (e.g. Merlot) — also called referatories [8]; and (iii) those that provide both content
and links to external content (e.g. Ariadne). Ochoa and Duval [9] conducted a detailed quantita-
tive study of the process of publication of learning objects in repositories and grouped repositories
in five types: learning object repositories, learning object referatories, open courseware initiatives,
LMS and institutional repositories. Other relevant studies [10–13] categorize repositories mainly by
general characteristics such as language used, subject area, end users, fee type, quality control, etc.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



crimsonHex: A LEARNING OBJECTS REPOSITORY FOR PROGRAMMING EXERCISES

Figure 1. Evolution of software and specifications for repositories.

In this section, we categorize repositories to LORs and digital libraries (DLs) — two concepts
that overlap to a certain extent. Also, we distinguish between the actual repositories and the software
used to implement them, highlighting the differences in software features for both categories.

Digital libraries store documents in digital formats and metadata for those documents. Learning
objects repositories store learning objects, which are objects containing educational content and
metadata for those contents. At first sight a LOR seems to be basically a DL storing educational
content, but there are also differences related to metadata and packaging. The metadata schemata
used by DLs are generic (e.g. Dublin Core, DC and Metadata Encoding and Transmission Standard,
METS), while those used by LORs are specific to eLearning (e.g. learning object metadata, LOM).
Also, LORs package content and metadata in a single unit using eLearning standards (e.g. IMS
Content Packaging (IMS CP), Sharable Content Object Reference Model (SCORM)), while DLs
usually keep content and metadata separated.

In spite of these differences and similarities there are several references in the literature [14, 15]
that attempt to implement LORs using DLs software. A reasonable explanation for this is the lack of
software specifically for implementing LORs. In fact, unlike what happens with DLs, most imple-
mentations of LORs actually use home-grown software. Thus, the remainder of this section first
analyzes the existing software for creating DLs before proceeding to the software for creating LORs.

2.1.1. Software for digital libraries. A nonexhaustive list of software to create DLs is presented in
Table I [11]. This table reveals that these systems share many features, but they are far from equal
because they have strengths and weaknesses in different functional areas.

According to the OpenDOAR (Directory of Open Access Repository) — an authoritative direc-
tory of academic open access repositories — and the Registry of Open Access Repositories data, in
December 2011, the majority of repositories (in a sample of 2164 repositories) were built using the
DSpace software (165 Washington Street, Suite #201 Winchester, MA 01890), as shown in Figure 2.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



R. QUEIRÓS AND J. P. LEAL

Table I. Digital library software.

Repository License Metadata Communication

CONTENTdm Commercial DC, METS OAI, Z39.50
DigiTool Commercial DC, MODS,METS OAI, Z39.50
DSpace Free DC, MODS,METS OAI, SWORD, OpenSearch,

REST,SRU/SRW
EPrints Free DC, MODS,METS OAI, SWORD
Equella Commercial LOM OAI, SWORD
Fedora Free LOM OAI, SWORD
Greenstone Free METS OAI, Z39.50
Zentity Free DC, METS OAI, SWORD, RDFS

DC: Dublin Core; METS: Metadata Encoding and Transmission Standard; MODS: Metadata Object Descrip-
tion Schema; LOM: learning object metadata; OAI: Open Archives Initiative; SWORD: Simple Web-
service Offering Repository Deposit; REST: Representational State Transfer; SRU: Search/Retrieve via URL;
SRW: Search/Retrieve Web service; RDFS: Resource Description Framework Schema.

Figure 2. Usage of digital library software worldwide.

Software for DLs was designed for repositories of digital content in general not specifically for
learning objects. Thus, this type of software in general lacks some of the features required by LORs
such as the support for:

� eLearning metadata (e.g. LOM) and content packaging (e.g. SCORM)
� Federated searching (e.g. simple query interface (SQI), SRU/SRW, Open Knowledge Initiative

(OKI) open service interface definitions (OSIDs))
� Classification using folksonomies (e.g. tags)
� Versioning, reviewing and evaluation
� Interoperability with eLearning systems (e.g. LMSs, authoring tools)

However, the newest versions of some of the systems listed in Table I recently added support for
metadata export using learning standards such as LOM. These efforts led us to conclude that in the
near future these types of repository will converge.

2.1.2. Software for learning objects repositories. A LOR is a repository that manages learning
objects and their respective metadata. The majority of the LORs available nowadays are Web appli-
cations developed using nonrepository software because of the lack of support of these tools for the
eLearning requirements as stated above. A nonexhaustive list of LORs is presented in Table II. All
these LORs are free of charge provided that they are not used for commercial purposes.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



crimsonHex: A LEARNING OBJECTS REPOSITORY FOR PROGRAMMING EXERCISES

Table II. Learning objects repositories.

Repository #LO Type

Bepress 52678 Legal
BerkleeShares 123 Music
Connexions 19783 General
GEM 47321 General
LeMill 43734 General
LO.NET 302 General
LRE (European Schoolnet) > 200K General
Maricopa 1818 General
MERLOT 30398 General
Scriptorium 512 Humanities
Wisc-Online 2133 General

Most LORs store multidisciplinary content. Programming exercises are mostly enclosed in online
judges. An example of an online judge is the UVa Online Judge (UVA OJ) — an automated
judge for programming exercises created in 1995 with the aim of training users who participate
in worldwide programming competitions. The judge is hosted by the University of Valladolid and
its archive contains over 2700 exercises. The set of exercises is continuously being extended but it
lacks interoperability features such as standardization of the exercises content as learning objects
and implementation of communication specifications to improve accessibility for the educational
community of teachers and students.

In regard to interoperability features for repositories the Jorum Team made a comprehensive
survey [13] of the existing repositories and concluded that user expectations regarding stan-
dardization, content management and interoperability are not completely met by existing
LORs. In fact, most of the LORs enumerated in the table above do not support content and
communication standards.

Existing repositories usually store learning objects from several domains (referatories). They pro-
vide on-line catalogues through specific and tightly coupled Web-based interfaces. These interfaces
provide tools for the management throughout the life cycle of learning objects, namely, submission,
comment/review, browse/search and download. It has also been noticed that most of the existing
repositories do not store actual learning objects. They just store meta-data describing LOs, includ-
ing pointers to their locations on the Web, and sometimes these are dangling pointers. Although
some repositories list a large number of pointers to LOs, they have few instances in any category,
such as programming problems. Last but not least, the LOs listed in these repositories must be man-
ually imported into an LMS. A specialized system such as an evaluation engine (EE) to perform
specific evaluations or an intelligent tutor system cannot query the repository and automatically
import the LO it needs. In summary, current repositories provide specialized search engines for LOs
and not adequate for feeding specialized services.

Although much useful work has been accomplished and considerable progress made, the existing
software for creating LORs is still to a great extent confined to home-grown software. Table III
presents a list of existing software for creating LORs with the licensing and supported standards.

Table III. Learning objects repositories software.

Repository License Metadata Communication

ARIADNE Free DC,LOM,MLR SPI,SWORD,PENS,
SQI,SRU/SRW,OKI

Flori Free — —
HarvestRoad Hive Commercial LOM/SCORM OAI, OKI
IntraLibrary Commercial DC, LOM/SCORM SWORD,SRU/SRW

SPI: Simple Publishing Interface; PENS: package exchange notification services; MLR:
Metadata for Learning Resources.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



R. QUEIRÓS AND J. P. LEAL

2.2. Interoperability

The corner stone of the interoperability of eLearning systems is the standard definition of learn-
ing objects. LOs are units of instructional content that can be used, and most of all reused, on
Web-based eLearning systems. They usually encapsulate a collection of interdependent files (HTML
files, images, web scripts, style sheets) with a manifest containing metadata. This metadata is impor-
tant for classifying and searching LO in digital repositories. Standardized metadata plays an impor-
tant role in keeping LO neutral to different repository vendors. Despite its success in the promotion
of the standardization of eLearning content, current LO content specifications are quite generic and
not adequate for specific domains [16]. However, these specifications were designed to be straight-
forward to extend, meeting the needs of a target user community through the creation of application
profiles. When applied to metadata the term Application Profile generally refers to ‘the adaptation,
constraint, and/or augmentation of a metadata scheme to suit the needs of a particular community’
[17]. The creation of application profiles is based on one or more of the following approaches:

� Selection of a core subset of elements and fields from the source schema;
� Addition of elements and/or fields (normally termed extensions) to the source schema, thus

generating the derived schema;
� Substitution of a vocabulary with a new or extended vocabulary to reflect terms in common

usage within the target community;
� Description of the semantics and common usage of the schema as they are to be applied across

the community.

Beyond the standardization of content, the repositories need to interact with other systems
that typically cohabit in the eLearning realm. Examples of these systems are authoring tools,
learning management systems, harvesting systems, intelligent tutors, and evaluation engines. In
fact, some surveys [11–13, 18] concluded that user expectations regarding standardization, content
management and interoperability are not completely met by existing repositories.

In recent years, several organizations (e.g. Institute of Electrical and Electronics Engineers (IEEE)
Learning Technology Standards Committee, IMS Global, OKI, International Federation for Learn-
ing, Education, and Training Systems Interoperability (LETSI), Advanced Distributed Learning
(ADL), European Committee for Standardization (CEN)) have developed specifications and stan-
dards [16] to address these interoperability issues. For the sake of readability we detail only the most
prominent [19] specifications organized into two facets: content and communication.

2.2.1. Content. A learning object is composed of one or more educational resources. These
resources are described by metadata for discovery purposes and packaged for deployment and
storage purposes.

One of the earliest international metadata standards is the DC. DC metadata is a set of vocabulary
terms that can be used to describe generic resources for the purpose of discovery. It was devel-
oped in 1995 by a group of librarians and content experts. It was called ‘Dublin Core’ because it
was created on a workshop in the city of Dublin (OH, USA). The Dublin Core Metadata Initiative
is responsible for the development, standardization and promotion of the Dublin Core Metadata
Elements Set, which includes two levels: Simple and Qualified. The Dublin Core Simple includes
15 elements (title, creator, subject, description, publisher, contributor, date, type, format, identifier,
source, language, relation, coverage and rights). The Qualified includes three additional elements
(audience, provenance and rights holder), and a group of element qualifiers that refine the semantics
of the elements.

In 2002, the IEEE Standards Association published the IEEE 1484.12.1 – 2002 Standard for
Learning Object Metadata as an open standard for the description of learning objects (LO) as units
of instructional content that can be used, and most of all reused, on Web-based eLearning systems.
Later, in 2005, IEEE published the official LOM XML binding, enabling syntactic interoperability.
The purpose of LOM is to support the reusability of LOs, to aid discoverability, and to facilitate
their interoperability, usually in the context of online learning management systems.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



crimsonHex: A LEARNING OBJECTS REPOSITORY FOR PROGRAMMING EXERCISES

Table IV. LOM data model categories.

Category Description

General Describe the learning object as a whole. This category includes
elements such as identifier, title, language, keywords.

Lifecycle Describe features related to the history and current state of the
LO such as version, status, and contributors.

Metametadata Group information about the metadata such as identifier,
contributors and language used in the metadata.

Technical Describe the technical requirements and characteristics of the
LO such as MIME type, size, required software/hardware.

Educational Describe educational and pedagogic characteristics of the LO
such as interactivity type, learning resource type, interactivity
level, semantic density, educational context, typical age range.

Rights Describe the intellectual property rights and conditions of use
for the LO (whether or not any cost is involved, and whether
copyright and other restrictions apply).

Relation Describe features that define the relationship between this LO
and others (‘based on’, ‘part of’, etc.).

Annotation Provide comments on the use of the LO and information on
when and by whom the comments were created.

Classification Describe where the LO can be classified within a particular
classification system.

The binding data model is organized in nine categories. Table IV enumerates these categories
based on the IEEE Learning Technology Standards Committee official Web site [20].

These categories cover many facets of a LO. However, LOM was designed for general LO and
does not to meet the requirements of specialized domains. Fortunately, it was designed to be straight-
forward to extend. According to Al-Khalifa and Davis [21], an important feature of LOM is that it
is simple to use and has an inherent extension capability. Next, we enumerate four ways that have
been used [22] to extend the LOM data model:

� Combining the LOM elements with elements from other specifications;
� Defining extensions to LOM elements while preserving its set of categories;
� Simplifying LOM, reducing the number of LOM elements and its choices;
� Extending and simultaneously reducing the number of LOM elements.

A good example of a LOM-based metadata is the Canadian Core Metadata Application
Profile. The Canadian Core standard is a LOM streamlined version that reduces the complexity
and ambiguity of this specification.

Despite the wide use of both DC and IEEE LOM to describe learning resources, several seman-
tic and interoperability issues are still not addressed. For instance, in DC the date element can be
written in plain language and is ambiguous, it can be used for resource creation, update or publi-
cation time. In LOM, the cost element can only have a ‘yes’ or ‘no’ value [23]. To overcome these
issues, the ISO/IEC 19788 MLR standard is intended to provide optimal compatibility with both
DC and LOM and to specify metadata elements and their attributes for the description of learning
resources [24].

Other standards for metadata such as METS, MODS, PREMIS and MIX are mostly related to
digital libraries. The most prominent are the first two. The METS is an XML standard for describing
metadata regarding objects within a digital library [25]. The standard is supported by the Network
Development and MARC Standards Office of the Library of Congress. The MODS is an XML-based
bibliographic description schema developed by the United States Library of Congress’ Network
Development and Standards Office. MODS was designed as a compromise between the complexity
of the MARC format used by libraries and the simplicity of DC metadata [26].

Packaging of the learning resources complements content description and is crucial to facilitate
the deployment, storage and reuse of learning resources. One of the earliest efforts was from the
Aviation Industry Computer-Based Training Committee (AICC). The AICC association developed

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



R. QUEIRÓS AND J. P. LEAL

in 1998 a content package format called AICC HTTP-based AICC/CMI Protocol (HACP) consist-
ing of four comma-separated American Standard Code for Information Interchange (ASCII) files
that define details about the learning content including a universal resource locator (URL).

In 2000 IMS Global launched the IMS CP. An IMS CP learning object assembles resources and
meta-data into a distribution medium, typically an archive in ZIP format, with its content described
in a manifest file at the root level. The manifest file — named imsmanifest.xml — adheres to the
IMS CP schema and contains the following sections: Metadata — describes the package as a whole;
Organizations — describes the organization of the content within a manifest; Resources — contains
references to resources (files) needed for the manifest and metadata describing these resources; and
Submanifests — defines subpackages. The manifest uses the LOM standard to describe the learning
resources included in the package. More recently (2008), the IMS Global Learning Consortium pro-
posed the IMS Common Cartridge (CC) that adds support for several standards (e.g. IEEE LOM,
IMS CP, IMS Question and Test Interoperability specification (QTI), IMS Authorization Web Ser-
vice) and its main goal is to shape the future regarding the organization and distribution of digital
learning content. The latest revised version [27] was released in May 2011.

The IMS CC manifest (Figure 3) includes references for two types of resources:

� Web Content Resources: static web resources that are supported on the Web such as HTML
files, GIF/JPEG images, PDF documents, etc.
� Learning Application Objects (LAO): special resource types that require additional processing

before they can be imported and represented within the target system. Physically, a LAO con-
sists of a directory in the content package containing a descriptor file and optionally additional
files used exclusively by that LAO. Examples of Learning Application Objects include QTI
assessments, Discussion Forums, Web links, Basic LTI descriptors, etc.

Other well-known package format is the SCORM. SCORM was created by the ADL initiative
with the first production version launched in 2001. It is an application profile for content packaging
that extends the IMS CP specification with more sophisticated sequencing and Contents-to-LMS
communication. It defines communications between client side content and a host system called the
run-time environment, which is commonly supported by a learning management system.

The large number of package and metadata standards means that there may be several ver-
sions of a learning object (e.g. an English version and a French version) and available in different

Figure 3. IMS Common Cartridge package.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



crimsonHex: A LEARNING OBJECTS REPOSITORY FOR PROGRAMMING EXERCISES

formats (e.g. as an IMS Common Cartridge or as an SCORM 2004 package) from several heteroge-
neous repositories. To overcome the potential data exchange issues, Massart et al. [28] created the
Information for Learning Object eXchange framework. This framework organizes multiple meta-
data specifications in a container that can be handled as a whole. It was developed as part of the
IMS Learning Object Discovery and Exchange (LODE) specification that aims to facilitate the dis-
covery and retrieval of learning objects stored across more than one collection and over a federation
of repositories.

2.2.2. Communication. The share and reuse of learning objects depends not only on the adoption
of common formats to describe the content but also on standard mechanisms to publish data to
repositories and to search and retrieve data from repositories. The basic functionalities provided by
a repository boil down to data push (publication of data from a source into the repository) and
data pull (searching/harvesting/gathering of data from the repository).

There are several protocols for publishing learning objects and/or their metadata to digital repos-
itories. A learning object can be sent to a repository by value or by reference. In the former the
publishing method embeds the learning object, after encoding, into the message that is sent to the
repository. In the latter, the repository embeds a reference (e.g. URL) to the learning object that is
being published.

The IMS DRI specification was created by the IMS Global Learning Consortium and provides
a functional architecture and reference model for repository interoperability. The IMS DRI recom-
mends common repository functions. One of these functions is the submit function for submitting
LO to a DRI compliant repository through the transmission of an IMS-compliant content package
using Simple Object Access Protocol (SOAP) Messages with attachments.

The Package Exchange Notification Services (PENS) protocol, developed by the AICC in 2005,
supports a notification service for content packages. Using this service a source can announce the
location of a package that is available for transport. When an application (e.g. LMS) receives
a PENS notification, it can retrieve the package from the URL that is provided. The PENS
specification contains an abstract data model and provides a binding to the Hypertext Transfer
Protocol (HTTP).

The OKI created OSIDs to enable the submission of assets (learning object and metadata) to a
digital repository. The repository OSID includes a JAVA Asset interface that offers methods for
adding and deleting records.

The SRU [29] Record Update service supports the creation, replacement and deletion of metadata
records. This specification can be implemented only on metadata resources.

The SWORD (Simple Web-service Offering Repository Deposit) standard allows digital repos-
itories to accept the deposit of any content from multiple sources. SWORD is a profile of the
Atom Publishing Protocol (AtomPub — a simple HTTP-based protocol for creating and updating
Web resources) restricting the scope of depositing resources into scholarly systems.

The Simple Publishing Interface (SPI) specification [30], partly sponsored by the CEN Workshop
on Learning Technologies, defines a protocol that aims to facilitate the communication between
content producing tools and repositories that persistently manage learning resources and meta-
data. The SPI is an abstract model for publishing metadata and resources. A binding to a tech-
nology makes these methods more concrete and defines how applications can interoperate. SPI
has been bound to the AtomPub, compatible with the SWORD profile, which is widely used by
institutional repositories.

Learning objects are described by metadata stored in repositories. The latter should support dif-
ferent search/harvesting protocols to expose metadata to users and/or services. One of the earliest
search protocols was the Z39.50. It is a client–server protocol for searching and retrieving informa-
tion from remote libraries. Z39.50 is a pre-Web technology (work on the Z39.50 protocol began in
the 1970s). Since then there have been several efforts to evolve the protocol under the designation
ZING (Z39.50 International: Next Generation). One of the most important is the twin protocols
SRU/SRW, which introduce a new communication protocol (HTTP) making the specification more
lightweight. SRU is REST based and enables queries to be expressed in URL query strings; SRW
service uses SOAP. Both expect search results to be returned as XML. Queries in SRU and SRW

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



R. QUEIRÓS AND J. P. LEAL

are expressed using the Contextual Query Language as a new query language that was based on
the semantics of Z39.50. All these standards (SRW, SRU and Contextual Query Language) were
promulgated by the United States Library of Congress.

The IMS DRI also provides a recommendation for a search function. The Search reference model
defines the searching of the metadata associated with content exposed by repositories. It suggests
two query languages: XQuery for searching IMS (XML) metadata format and Z39.50 for searching
library information.

The IMS LODE specification aims to facilitate the discovery and retrieval of learning objects
stored across more than one collection. LODE is based on the following assumptions: (i) LOs
are described by metadata such as LOM or DC; (ii) multiple metadata instances might be nec-
essary to adequately describe all the aspect of a LO and to create searchable catalogues of
LO using the Information for Learning Object eXchange framework; (iii) repositories can be
searched programmatically using SQI or SRU; (iv) large catalogues can be created by harvesting
(i.e. mirroring) metadata stored in repositories using protocols such as OAI Protocol for Metadata
Harvesting (PMH).

The SQI specification, supported by CEN, presents an API for querying learning object reposi-
tories. SQI is neutral in terms of results format and query languages, thus it makes no assumptions
about the query language or results format [31].

OpenSearch — created by A9.com (an Amazon.com company) — is a collection of simple for-
mats for the sharing of search results. The OpenSearch description document format can be used
to describe a search engine so that it can be used by search client applications. The OpenSearch
response elements can be used to extend existing syndication formats, such as Really Simple
Syndication (RSS) and Atom, with the extra metadata needed to return search results.

The ProLearn Query Language (PLQL), developed by the PROLEARN ‘Network of Excellence’,
is a query language for repositories of learning objects. PLQL is primarily a query interchange
format, used by source applications (or PLQL clients) for querying repositories (or PLQL servers).
PLQL has been designed with the goal of effectively supporting search over LOM, DC and MPEG-7
metadata. However, PLQL does not assume or require these metadata standards.

Harvesting protocols enable pulling learning objects and metadata from a repository. An example
of a metadata harvesting protocol is the OAI-PMH. Large catalogues can be created by harvesting
(i.e. mirroring) metadata stored in repositories using OAI-PMH. To obtain content, the OAI-PMH
can be used in combination with a protocol for obtaining content, such as the National Information
Standards Organization’s (NISO’s) OpenURL.

3. crimsonHex

In this section, we introduce the crimsonHex repository, its architecture, data model and main com-
ponents. We also present its API used both internally and externally. Internally the API links the
main components of the repository. Externally the API exposes the functions of the repository to
third party systems. To promote the integration with other eLearning systems, the API of the repos-
itory adheres to the IMS DRI specification. The IMS DRI specifies a set of core functions and an
XML binding for these functions. In the definition of API of crimsonHex we needed to create new
functions and to extend the XML binding with a Response Specification language. The complete set
of functions of the API and the extension to the XML binding are also both detailed in this section.

3.1. Architecture

The architecture of the crimsonHex repository can be summarized by the UML components diagram
in Figure 4.

In the design of crimsonHex we set some initial requirements, in particular, to be simple and
efficient. Simplicity is the best way to promote the reliability and efficiency of the repository. In
fact, the core operations of the repository are uploading and downloading LO — ZIP archives —
which are inherently simple operations that can be implemented almost directly over the transport
protocol. Other features may need a more elaborate implementation but do not require the same
reliability and efficiency of the core features.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



crimsonHex: A LEARNING OBJECTS REPOSITORY FOR PROGRAMMING EXERCISES

Figure 4. Components diagram of the repository.

Using the crimsonHex API, the repository exposes a set of functions implemented by a core
component that was designed for efficiency and reliability. All other features are relegated to auxil-
iary components, connected to the central component using this API. Other eLearning systems can
be plugged into the repository also using this API.

Thus, the architecture of crimsonHex repository is divided into three main components:

(1) The Core exposes the main features of the repository, both to external services, such as the
LMS and the EE, and to internal components — the Web Manager and the Importer;

(2) The Web Manager allows the searching, previewing, uploading and downloading of LOs and
related usage data;

(3) The Importer populates the repository with content from existing legacy repositories, while
converting it to LOs.

In the remainder we focus on the Core component, more precisely, its functions, communication
model and implementation.

3.2. Data model

An LO containing a programming problem must include metadata to allow its use by different types
of specialized eLearning services, such as evaluation engines and programming problem reposito-
ries, among others. The existing LO standards are insufficient for that purpose, which led us to the
development of a new application profile based on existing standards and guidelines. This section
details the definition of programming problems as LO by extending the LOM metadata schema with
new elements to support programming problems and their automatic evaluation.

The new metadata information is included in an IMS CP manifest file that usually follows the
IEEE LOM schema, although other schemata can be used. In this definition, the metadata that can-
not be conveniently represented using LOM is encoded in elements of a new schema — EduJudge

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



R. QUEIRÓS AND J. P. LEAL

Figure 5. Structure of a programming exercise as an LO.

Meta-Data (EJ MD) — and included only in the metadata section of the IMS CP. This section is the
proper place to describe relationships among resources, as those needed for automatic evaluation.
The compound schema can be viewed as a new application profile that combines metadata elements
selected from several schemata. The structure of the archive, acting as distribution medium and
containing the programming problem as an LO, is depicted in Figure 5.

The archive contains several files represented in the diagram as gray rectangles. The manifest is
an XML file and each element’s structure is represented by white rectangles. Different elements
of the manifest comply with different schemata packaged in the same archive, as represented by
the dashed arrows: the manifest root element complies with the IMS CP schema; elements in the
metadata section may comply either with IEEE LOM or with EJ MD; metadata elements within
resources may comply either with IEEE LOM or IMS QTI. Resource elements in the manifest file
reference assets packaged in the archive are represented by solid arrows.

The resources section of the IMS CP provides a suite of resource elements where each one is
composed of several files. To link the EJ MD domain metadata, it is necessary to create a reference
mechanism to link it with the related resources. This mechanism takes the ID/IDREF types of the
XML Schema specification to link the EJ MD metadata element with the identifier attribute of the
resource element.

The core of the proposed application profile is the EduJudge schema that introduces new elements
for resources specific to programming problems. This section presents its data model, represented
schematically in Figure 6.

The domain metadata is a hierarchy of elements whose leaves are resources.
The basic Resource type is an asset in the distribution medium, referenced by a relative filename.
The ProgramResource is a specialized type of resource that refers to a source code program file.

This type of resource requires as attributes all the information to compile and execute the program,
including the language name and version, and compilation and execution command lines.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



crimsonHex: A LEARNING OBJECTS REPOSITORY FOR PROGRAMMING EXERCISES

Figure 6. The EduJudge Metadata model.

The metadata type hierarchy has three main categories in the first level: the General category
describes generic metadata and recommendations; the Presentation category describes metadata
on resources that are presented to the learner (e.g. description and skeleton resources); the Eval-
uation category describes the metadata for resources used to evaluate the learner’s attempts and
provide feedback.

The elements of the Evaluation type define all the resources needed to judge a programming prob-
lem. It has attributes to identify the problem’s evaluation module and its version and three elements
pointing to different types of evaluation resources: tests, correctors and solutions.

The elements of type Tests describe resources supplied to evaluate the submitted program.
This definition supports several testing methodologies, each with a specific element type,

including among others:

� TestFiles contains a pair of input and output files;
� TestGroup contains a collection of test files and associated valorization;
� TestDescription identifies tests encoded in a language describing test cases;
� TestGeneration identifies a program that generates input files for test cases.

The TestFiles element supports the simplest type of evaluation and is expected to be the most
commonly used. This element must contain references to input and output files, and may have a
valorization and feedback. An element of this type corresponds to a single test case, thus it can be
repeated to create a comprehensive set of tests. In this case the learner’s program is executed once
for each TestFile element, receiving as input the content of the file referenced by the corresponding
element, and/or from the arguments attribute. The resulting output is compared with the expected
output contained in the TestFile element.

The TestFiles element can also be used for grading and correcting programs. This element may
include a valorization attribute, in which case the grade of the program is the sum of the valorizations
of successful executions.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



R. QUEIRÓS AND J. P. LEAL

Corrections to the program may be indicated using the optional Feedback element. These
elements provide, for each test case, a feedback message associated with a particular error
condition (e.g. ‘Wrong Answer’, ‘Time Limit Exceed’, ‘Execution Error’) or invalid output.
The showAfterNumberAttempts attribute controls when the feedback message should be sent to the
learner based on the actual number of attempts. The valorization attribute of the feedback element
enables partial grading for predefined errors.

The TestGroup element is a container of TestFile elements and is used to create different test sets,
with an optional valorization for the complete set.

The TestDescription element refers to a file describing test cases. This file is meant as input for a
test case generation tool. The test description is an asset of the LO but the test generation tool must
be available to the evaluation engine.

Alternatively, the TestGenerator element refers to a program that when executed generates tests
for this particular programming exercise.

The Correctors element is optional and refers to custom programs that change the general evalu-
ation pattern for a given problem. There are two types of correctors: Static — invoked immediately
after compilation, before any execution, to compute software metrics on the source code, judging
the quality of source code, performing unit testing on the program or checking the structure of the
program’s source code; and Dynamic — invoked after each execution with a test case to deal with
nondeterminism (e.g. the solution is a set of unordered values, in this case the corrector normalizes
the outputs before comparing them). A single programming problem may use an arbitrary number
of correctors. The order in which they are executed is defined by the depends attribute.

Finally, optional elements of type Solution refer to files containing the problem solution.
The following code excerpt shows an example of the evaluation element.

3.3. Functions

The Core component of the crimsonHex repository provides a minimal set of operations exposed as
Web services and based in the IMS DRI specification. The main functions are the following.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



crimsonHex: A LEARNING OBJECTS REPOSITORY FOR PROGRAMMING EXERCISES

The Register/Reserve function requests a unique ID from the repository. We separated this func-
tion from Submit/Store to allow the inclusion of the ID in the metadata of the LO itself. This ID is
an URL that must be used for submitting an LO. The producer may use this URL as an ID with the
guarantee of its uniqueness and the advantage of being a network location from where the LO can
be downloaded.

The Submit/Store function copies a LO to a repository and makes it available for future access.
This operation receives as an argument an IMS CP with the EJ MD extension and an URL gener-
ated by the Register/Reserve function with a location/ identification in the repository. This operation
validates the LO conformance to the IMS Package Conformance and stores the package in the
internal database;

The Search/Expose function enables the eLearning systems to query the repository using the
XQuery language, as recommended by the IMS DRI. This approach gives more flexibility to the
client systems to perform any queries supported by the repository’s data. These queries are based
on both the content of the LO manifest and the LOs’ usage reports, and can combine the two
document types.

The Report/Store function associates a usage report with an existing LO. This function is invoked
by the LMS to submit a final report, summarizing the use of an LO by a single student. This report
includes both general data on the student’s attempt to solve the programming exercise (e.g. data,
number of evaluations, success) and particular data on the student’s characteristics (e.g. gender,
age, instructional level). With this data, the LMS will be able to dynamically generate presentation
orders based on previous uses of LO, instead of using fixed presentation orders. This function is an
extension of the IMS DRI.

The Alert/Expose function notifies users of changes in the state of the repository using an RSS
feed. With this option a user can have up-to-date information through a feed reader.

3.4. Communication model

The communication model of the repository defines the interaction between the repository and the
other eLearning systems. The model is composed from a set of core functions exposed in the previ-
ous section. Figure 7 shows an UML diagram to illustrate the sequence of core functions invocations
from these eLearning systems to repositories.

The life cycle of a LO starts with choosing an identification and the submission of the LO to the
repository. Next, the LO is available for searching and delivering to other eLearning systems. Then,
the learner in the LMS could use the LO and submit it sending an attempt at the problem solution
to the EE. On the basis of the feedback the learner could repeat the process. At the end, the LMS
sends a report of the LO usage data back to the repository. This DRI extension will be, in our view,
the basis for a ‘next generation of LMS’ with the capability to adjust the order of presentation of the
programming exercises in accordance with the needs of a particular student.

4. IMPLEMENTATION

In this section we detail the design and implementation of the Core component of crimsonHex on
the Tomcat servlet container. The following subsections detail the development of the four main
facets of the Core: storage, validation, interface and security.

4.1. Storage

Searching LOs in the repository is based on queries on their XML manifests. Because manifests
are XML documents with complex schemata we paid particular attention to database systems with
XML support: XML enabled relational databases and Native XML Databases (NXD).

XML enabled relational databases are traditional databases with XML import/export features.
They do not internally store data in XML format hence they need extra processing to support query-
ing using XQuery. Because queries in this standard are a DRI recommendation, this type of storage
is not the best option. In contrast, NXD uses the XML document as a fundamental unit of (logical)

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



R. QUEIRÓS AND J. P. LEAL

Figure 7. Communication between the repository and the other eLearning systems.

storage, making it more suitable for data schemata difficult to fit in the relational model. Moreover,
using XML documents as storage units enables the following standards:

� XPath for simple queries on document or collections of documents;
� XQuery for queries requiring transformational scaffolding;
� SOAP, REST, WebDAV, XmlRpc and Atom for application interface;
� XML:DB API (or XAPI) as a standard interface to access XML datastores.
� XSLT to transform documents or query-results retrieved from the database.

We analysed several open source NXD, including SEDNA, OZONE, XIndice and eXist. Only eXist
implements the complete list of the features enumerated above, which led us to select it as the stor-
age component of crimsonHex. It has also two important features [32] worth mentioning: support
for collections, to structure the database in groups of related documents and automatic indexes to
speed up the database access.

4.2. Validation

CrimsonHex is a repository of specialized learning objects. To support this multityped content the
repository must have a flexible LO metadata validation feature. The eXist NXD supports implicit
validation on insertion of XML documents in the database but this feature could not be used for
several reasons: LOs are not XML documents (are ZIP files containing an XML manifest); manifest
validation may involve many XML Schema Definition (XSD) files that are not efficiently handled
by eXist; and manifest validation may combine XSD and Schematron validation and this last is not
fully supported by eXist.

All LOs stored in crimsonHex must comply with the IMS Package Conformance that specifies
its structure and content. This standard also requires XSD validation of their manifests. For par-
ticular domains it is possible to configure specialized validations in crimsonHex by supplying a

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



crimsonHex: A LEARNING OBJECTS REPOSITORY FOR PROGRAMMING EXERCISES

Java class implementing a specific interface. These validations extend those of the IMS Package
Conformance and may introduce new schemata, even using different type definition languages, such
as Schematron.

Validations are configured for each collection of documents. Thus, different types of specialized
LO may coexist in a single instance of crimsonHex. As mentioned before, IMS CP main schema
imports many other schemata (more than 30) that according to the IMS Package Conformance must
be downloaded from the Internet. This requirement has a bad impact on the performance of the
submit function. To accelerate this function we implemented a cache. A newly stored schema has
a time to live of 1 h. Outdated schemata are reloaded from their original Internet location using a
conditional HTTP request that downloads it only if it has effectively changed.

4.3. Interface

To comply with standards, the IMS DRI recommends the implementation of core functions as
Web services.

We chose to implement two distinct flavours of wWeb services: SOAP and REST [33]. SOAP
Web services are usually action oriented, mainly when used in remote procedure call mode and
implemented by an off-the-shelf SOAP engine such as Axis. Web services based on the REST style
are object (resource) oriented and implemented directly over the HTTP protocol, using, for example,
Java servlets, mostly to put and get resources, such as LOs and usage data. The reason to implement
two distinct Web service flavours is to promote the use of the repository by adjusting to different
architectural styles. The repository functions are summarized in Table V. Each function is associ-
ated with the corresponding operations in both SOAP and REST Web services interfaces. The lines
formatted in italics correspond to the new functions added to the DRI specification, to improve the
repository communication with other eLearning systems.

To describe the responses generated by the repository we defined a Response Specification as a
new XML document type formalized in XML Schema (XML Schema, 2004). The advantage of this
approach is that client systems can obtain more information from the server and be able to stan-
dardize the parsing and validation of the HTTP responses. Figure 8 depicts the elements of the new
language and their types.

Table V. Core functions of the repository.

Function SOAP REST

Reserve URL getNextId() GET /nextId > URL
Submit submit(URL loid, LO lo) PUT URL < LO
Request LO retrieve(URL loid) GET URL > LO
Search XML search(XQuery query) POST /query < XQUERY > XML
Report Report(URL loid,LOReport rep) PUT URL/report < LOREPORT
Alert RSS getUpdates() GET /rss > RSS
Create XML Create(URL collection) PUT URL
Remove XML Remove(URL collection) DELETE URL
Status XML getStatus() GET URL?status > XML

Figure 8. Response specification schema.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



R. QUEIRÓS AND J. P. LEAL

The schema defines two top level elements: result and rss. The former will be used by
all the functions except the Alert function that returns a feed compliant with the RSS (2003) 2.0
specification. The result element contains the following child components:

� base-url attribute, defining a base URL for the relative URLs in the response;
� request element, containing the full request URL and an human readable request message;
� error element, containing an error message — client systems will search for this element to

verify the existence of errors;

response element, describing a successful execution of the function — it is composed of a
human readable response message and, for some functions, of a resources element that groups
a set of resources defined individually in resource elements. A resource element contains an
identification of the collection absolute path (attribute idCol) and an identification of the LO itself
(attribute idLo).

In the remainder of this section we detail the Core functions of the repository.
The Register/Reserve function requests a unique ID from the repository. We separated this func-

tion from Submit/Store to allow the inclusion of the ID in the meta-data of the LO itself. This ID is
an URL that must be used for submitting or retrieving an LO. The producer may use this URL as
an ID with the guarantee of its uniqueness and with the advantage of being a network location from
where the LO can be downloaded.

The Submit/Store function uploads an LO to a repository and makes it available for future access.
This operation receives an argument providing an IMS CP compliant file and an URL generated by
the Reserve function. This operation validates the LO conformity to the IMS Package Conformance
and stores the LO in the internal database.

The Search/Expose function enables the eLearning systems to query the repository using the
XQuery language (XQuery, 2007), as recommended by the IMS DRI. This approach gives more
flexibility to the client systems to perform any queries supported by the repository’s data. To write
queries in XQuery the programmers of the client systems need to know the repository’s database
schema. These queries are based on both the LO manifest and its usage reports, and can combine
the two document types. The client developer needs also to know that the database is structured in
collections. A collection is a kind of a folder containing several resources and subfolders. From the
XQuery point of view the database is a collection of manifest files.

The Report/Store function associates a usage report with an existing LO. This function is invoked
by the LMS to submit a final report, summarizing the use of an LO by a single student. This report
includes both general data on the student’s attempt to solve the programming exercise (e.g. data,
number of evaluations, success) and particular data on the student’s characteristics (e.g. gender,
age, instructional level). With these data, the LMS will be able to dynamically generate presenta-
tion orders based on previous uses of LO, instead of fixed presentation orders. This function is an
extension of the IMS DRI.

The Alert/Expose function notifies users of changes in the state of the repository using an RSS
feed. With this option a user can have up-to-date information through a feed reader.

The Create function adds new collections to the repository and the Remove function removes an
existent collection or learning object.

The Status function returns a general status of the repository, including versions of the compo-
nents, their capabilities and statistics.

4.4. Security

Following the design principles of simplicity and efficiency we decided to avoid the manage-
ment of users and access control in the Core. This decision does not preclude the security of this
component because we can control these features in the communication layer. Because both Web
services flavours use HTTP as transport protocol we secure the channel using Secure Sockets Layer
(i.e. HTTPS). This ensures the integrity and confidentiality of assets in LO. To achieve authentica-
tion and authorization, we rely on the verification of client certificates provided by Secure Sockets
Layer. In practice, to implement this approach, we just needed to configure the servlet container

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



crimsonHex: A LEARNING OBJECTS REPOSITORY FOR PROGRAMMING EXERCISES

(e.g. Tomcat) to support HTTPS requests with authorized certificates. Nevertheless, managing cer-
tificates is a comparatively complex procedure, thus we provide a set of auxiliary functions in the
core that act as a mini Certificate Authority. These functions are used for managing and signing
client certificates and their implementation is based on the Java Security APIs.

4.5. Web manager

In this section, we present the crimsonHex user interface. We start by presenting our strategy to
design the user interface, followed by detailed descriptions of its main tasks, namely browsing,
authoring and searching.

To design this user interface (Figure 9) we started with the identification of task and usage profiles,
task objects and task actions. We identified the following task profiles:

1. Archivist - a person responsible for a set of activities related with the collection management,
such as: creation of collections, assigning of learners and reviewers to collections;

2. Author - a person that develops and submits LO to the repository. The submission of LO
will be enforced to comply with controlled vocabularies defined in metadata standards (IEEE
LOM) and possible extensions. This class of users will contribute with new learning objects
and receive peer reviews from specialists;

3. Reviewer - a person that controls the quality of the repository by validating the submitted LO;
4. Consumer - a person that browses (part) of the repository and has limited access to its content

(LO, usage reports, reviews, comments).

We assume that users will have different usage profiles. On one hand, many will be novice or
first-time users, especially among authors and consumers. On the other hand, we expect some users,
especially reviewers and archivists, to use it frequently, tending to become experts in its use.

After the identification of users and usage profiles, we proceeded to identify the tasks they need
to perform on this interface. We clearly identified LO and collections of LO as our task objects, each

Figure 9. crimsonHex WebManager.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



R. QUEIRÓS AND J. P. LEAL

with a number of associated task actions, depending on user profiles. Task actions over LO include:
viewing, reviewing, downloading, and commenting. Task actions on collections include creating,
removing and authoring/uploading (LO to that collection).

On the basis of the previous identifications we defined a screen layout — a single screen (Figure 9)
with specific areas for task object selection and task actions. Task object selection is needed by all
users, although the selectable content depends on the user’s profile, thus it can be implemented by
a common tree-based control. Different task actions require specific forms or panels that also share
a common control on the user interface. Because the number of task actions is comparatively small
we choose a tabbed control to aggregate them. The tab configuration shown to users depend both on
their profile and on the current task object selection.

As a rule, all available task actions have an associated tab, thus helping novice users to recognise
which are the available actions. However, some of these task actions can be executed directly over
selected task objects, without requiring additional data. In general, these task actions are meant for
frequent users and will be bound to contextual menus on the tree-control, and to accelerator keys.

Figure 9 shows the user interface layout of the repository with two main areas: selection on the
left side and action in the middle. In the selection area the user navigates through the repository
structure to select task objects. In the action area the user executes task actions on the selected task
objects. Secondary areas in this layout are the header, used for authentication and registration, and
the right side, used for news and statistics. The remainder of this section details the design of task
actions available in the main areas.

Selected LO can be viewed in different perspectives, such as, Content, Usage and Review. As
would be expected, each perspective is assigned to a different tab on the action area.

The Content tab shows the resources and metadata of the selected LO using XSLT trans-
formations on its manifest file. Different stylesheets can be selected to configure content
presentation, including:

� Resources — lists resources and their metadata with support for viewing/downloading individ-
ual resources;
� Meta-data — shows all global metadata, including LOM and extensions;
� LOM — show LOM metadata grouped in main categories (General, Lifecycle, Technical,

Educational, Rights);
� Extension — shows metadata related with the extension schemata.

The Usage tab presents statistics on the use of a selected LO. This feature is related to the report
function that associates usage reports to an existing LO. This function is invoked by a consumer of
the repository services (typically an LMS), summarising an episode of using a LO with a particular
student. The aim of this function is to provide the LMS with the ability to dynamically gener-
ate presentation orders based on previous uses of LO, instead of using fixed presentation orders.
This report includes both general data on the student’s attempt to solve the programming exercise
(e.g. data, number of evaluations, success) and particular data on the student’s characteristics (e.g.
gender, age, instructional level).

The Review tab assists in the review process of an LO. Before validation the LO is not available
to general users of the repository. The availability of the LO depends on this validation. If the LO
is not accepted the reviewer could justify the rejection and/or supply comments to the author of the
LO. These comments may lead to new versions that must be submitted as a new LO.

The Web Manager component was developed using an Ajax framework to enable the implemen-
tation of the single screen design resulting from the last section. We selected the Google Web Toolkit
(GWT), an open source Java software development framework that allows a rapid development of
AJAX applications in Java. When the application is deployed, the GWT cross-compiler translates
Java classes of the GUI to JavaScript files and guarantees cross-browser portability. The frame-
work also supports asynchronous remote procedure calls. This way, tasks that require significant
computational resources (e.g. complex searching within the repository) can be triggered asyn-
chronously, increasing the user interface’s responsiveness. The complex controls required by the
selection and action areas are provided by SmartGWT, a GWT API for SmartClient, a Rich Internet
Application system.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



crimsonHex: A LEARNING OBJECTS REPOSITORY FOR PROGRAMMING EXERCISES

Table VI. Average function execution times per
interface (in seconds).

Submit Retrieve Search

SOAP 4.53 1.57 2.23
REST 2.11 0.44 0.93

The Web Manager component is organised into two main packages: the back-end (server) and
the front-end (client). The back-end includes all the service implementations triggered by the user
interface. These implementations rely on the gateway class for managing the communication with
the Core of the repository. A single class implementing the Gateway design pattern concentrates
the interaction with the core component. To interact with other DRI compliant repositories only this
class will have to be reimplemented.

4.6. Tests

Reliability is one of our main concerns regarding the Core component of crimsonHex. We adopted
JUnit as our automated unit testing framework because crimsonHex is implemented in Java and this
tool is supported by Eclipse, the integrated development environment used in this project. Apart
from the unit tests, we created a tool for automatic generation of random requests to the repository,
following the communication model summarized in Figure 3. The goal of this tool is twofold: to
look for bugs in unpredicted sequences of requests and to stress-test the repository. The tool gen-
erates a random sequence of Core functions’ invocations and records them in the Core’s log file
(through a Java-based logging utility called log4j). Errors generated by these request sequences are
recorded by the Core in the same log files. After each test the log file is manually inspected looking
for function sequences that originated errors. This approach was essential to discover errors that oth-
erwise would only be detected in production. Efficiency and scalability are two other main concerns
in the development of crimsonHex.

To test performance, we used the test tool to compare execution times of the main functions in
the two supported Web services interfaces: SOAP and REST. For the experiment we use the same
PC for client and server purposes. The PC was an Asus M70VSeries (ASUSTeK Computer Inc.,
Beitou District, Taipei, Taiwan) with Windows Vista Home Premium (32 bits) (Microsoft Corpora-
tion, Albuquerque, New Mexico, United States), Intel(R) Core(TM)2 Duo P8400 @2.26 GHz and
4 GB RAM. We used 100 LOs on the experiment ranging in storage size from 2 MB to 5 MB. Each
function has been repeated 10 times. Average function execution times for the set of functions are
shown in Table VI.

These figures show that our DRI extension, based on REST, is twice as efficient as the standard
SOAP interface. These results were expected because the REST interface does not have to marshal
request messages. In both interfaces submit times are significantly higher than the other functions
because of the cost of the validation process.

Scalability has other important issue. Scalability is bound by the database limits. The eXist NXD
supports a maximum of 231 documents and theoretically, documents can be arbitrarily large depend-
ing on relevant file system limits, for example, the max size of a file in the file system. To test the
scalability of eXist, some queries were made with ever increasing data volumes. The experiment
shows linear scalability of eXist’s indexing, storage and querying architecture.

5. CASE STUDY

To evaluate the interoperability features of the crimsonHex repository we integrated it with Moodle,
arguably the most popular LMS nowadays. In this section we present the new APIs supported by
Moodle (since version 2.0) for the creation of plug-ins and we provide implementation details of a
plug-in for crimsonHex repositories. The development of this plug-in was straightforward. In terms
of programming effort we spent half a day to produce approximately 100 new lines of code. This
quick and simple integration benefited from the new interoperability features of the repository.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



R. QUEIRÓS AND J. P. LEAL

Currently, Moodle 2.2 includes support for different types of repositories. Several APIs are
available to enable the development of plugins by third parties, including:

� File API for managing internal repositories;
� Repository API for browsing and retrieving files from external repositories;
� Portfolio API for exporting Moodle content to external repositories.

We chose the Repository API for testing the integration features of the crimsonHex repository
in Moodle. The goal of this particular API is to support the development of plug-ins to import
content from external repositories. The Repository API is organized in two parts: Administration,
for administrators to configure their repositories and File picker, for teachers to interact with the
available repositories.

To create a plug-in for Moodle using the Repository API, one must implement a set of related
files. For instance, the steps to create the crimsonHex plug-in for Moodle are the following:

1. To create a folder for the plug-in (moodle/repository/crimsonHex);
2. To add to the plug-in folder the files

a. repository.class.php — subclassing a standard API class and overriding its default methods;
b. icon.png — providing the icon displayed in the file picker;

3. To create the language file repository_crimsonHex.php and add it to the folder moodle/
repository/lang/en_utf8/.

The repository.class.php is responsible for handling the communication between Moodle and all
repository servers of that type. In this case the repository type is crimsonHex but other types are
being developed for other types of repository, such as Merlot, YouTube, Flickr and DSpace. For
Moodle, each repository is just a hierarchy of nodes. This allows Moodle to construct a standard
browser interface. The repository server must provide: a uniform resource identifier (URI) to down-
load each node (e.g. a LO) and a list of the nodes (e.g. LO and collections) under a given node (e.g.
collection). In addition to these requirements, a repository can optionally support authentication,
provide additional metadata for each node (mime type, size, dates, related files, etc.), describe a
search facility or even provide copyright and usage rules.

As explained before, the Repository API has two parts — Administration and File Picker — each
with its own GUI. In Figure 10 we show the file picker GUI of the crimsonHex plug-in that will be
used by the teacher to pick up the suitable exercises for the class. In the left panel are listed the avail-
able repositories as defined by the administrator. Two crimsonHex repository instances are marked

Figure 10. crimsonHex plugin interface.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



crimsonHex: A LEARNING OBJECTS REPOSITORY FOR PROGRAMMING EXERCISES

Table VII. Features of crimsonHex and Moodle
Repository APIs for implementing File Picker.

Moodle Repository API crimsonHex API

get_file retrieve
Preview retrieve
Search search
global_search search

with label 1. Label 2 marks the default listing of the selected repository. Pressing the ‘Preview’ link
presents a preview of the respective LO. Pressing the ‘Search’ link pops-up a simple search form,
marked as 3 in Figure 10. Federated search in all available crimsonHex repositories uses the text box
marked as 4. In Table VII we indicate the features in Moodle’s Repository API and in crimsonHex’s
API, used to implement the features we marked on the file picker’s GUI.

Not all features of crimsonHex API were needed for this plug-in but all features of the Moodle’s
API were covered. The remaining features of the crimsonHex API are useful for uploading LOs and
managing the structure of the repository and thus are out of the scope of this plug-in. They would
be matching the needs of a plug-in implementing the Moodle’s Portfolio API. Each feature of the
plug-in is implemented by a method in the repository.class.php file.

A typical method includes: a repository invocation (SOAP or REST), the parsing of its response
(using the PHP simplexml_load_string function to parse the XML data), a selection of the pertinent
data (using XPath) and an iteration over the new results (for instance, populating an array with the
relevant data). The next example shows an excerpt of the overridden search function.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we describe the design and implementation of a repository of specialized learning
objects called crimsonHex focusing on two main parts: the definition of specialised LOs, where
programming problems are given as a concrete example, and the design and implementation details
of the repository, more precisely, its components and functions.

For the first part we detailed the steps to define LOs from a domain that is not covered by existing
standards in a way that can be reproduced in similar contexts. The main contribution of this part was
the extension of the existing specifications based on the IMS standard to the particular requirements
of a specialized domain, such as the automatic evaluation of programming problems.

For the second part we described the design and implementation of a repository of specialized
LOs. We adopted the IMS DRI and proposed extensions to its recommendations. More precisely,
we included new functions and a formal definition of a response specification for the complete

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



R. QUEIRÓS AND J. P. LEAL

function set. To evaluate the proposed extensions, we implemented a plug-in for the 2.1 release of
Moodle that uses the new interoperability features of crimsonHex.

The improved interoperability of crimsonHex is expected to support the development of new
eLearning tools requiring greater integration with repositories. The repository plug-in will facilitate
the use of crimsonHex by Moodle users. In its current status crimsonHex is available for test and
download at the site of the project at http://crimshonhex.dcc.fc.up.pt.

Adding authoring features to crimsonHex is the next step in this research. Creating LOs with
metadata of good quality is a challenge because the typical author of eLearning content usually
lacks the knowledge of metadata standards. This is also an interoperability issue because the LMS
is where eLearning content is tested and used in the first place, but repositories are the appropri-
ate place to promote content reuse as LOs. We plan to continue using Moodle’s repository APIs
for that purpose, in particular the Portfolio API. A plug-in using this API will enable the content
author to upload learning content to crimsonHex and create a new LO with the essential metadata.
Then, using the authoring features of crimsonHex, the content author will be assisted in refining the
LO metadata.

Other future work is to support the new package specification from IMS called Common
Cartridge. This new specification defines a new model for packaging content with LOM metadata
(based on simple Dublin Core) and assessment (QTI). Other features in IMS-CC relevant for this
line of work are discussion topics, authorization for protected content and the support for Basic LTI,
a subset of the full LTI specification.

REFERENCES

1. Nash SS. Learning objects, learning object repositories, and learning theory: Preliminary best practices for online
courses. Interdisciplinary Journal of Knowledge and Learning Objects 2005; 1:217–228. Available from: http:
//ijklo.org/VolumeI/v1p217228Nash.pdf [21 July 2011].

2. Dagger D, O’Connor A, Lawless S, Walsh E, Wade V. Service Oriented eLearning Platforms: From Monolithic
Systems to Flexible Services. IEEE Internet Computing Special Issue on Distance Learning 2007; 11(3):28–35.

3. IMS DRI - IMS Digital Repositories Interoperability, Core Functions Information Model, v. 1.0, 2003. Available
from: http://www.imsglobal.org/digitalrepositories/driv1p0/imsdri_infov1p0.html [21 July 2011].

4. Verdú E, Regueras LM, Verdú MJ, Leal JP, Castro JP, Queirós R. A Distributed System for Learning Programming
On-line. Journal Computers & Education 2012; 58(1):1–10.

5. Leal JP, Queirós R. CrimsonHex: a service oriented repository of specialised learning objects. In Proceedings of
ICEIS’09: 11th International Conference on Enterprise Information Systems, Vol. 24, Filipe J, Cordeiro J (eds).
Springer: Milan, Italy, May 2009; 102–113. ISBN: 978-3-642-01346-1. DOI: 10.1007/978-3-642-01347-8_9.

6. Leal JP, Queirós R. Integration of repositories in elearning systems. In ICEIS 10 - 12th International Conference on
Enterprise Information Systems, Madeira (Portugal), 2010.

7. McGreal R. A typology of learning object repositories. In Handbook on Information Technologies for Education and
Training, International Handbooks on Information Systems, Adelsberger HH, Kinshuk, Pawlowski JM, Sampson DG
(eds). Springer: Berlin Heidelberg, 2008; 5–28.

8. Rogers SA. Developing an institutional knowledge bank at Ohio State University: From concept to action plan.
Portal: Libraries and the Academy 2003; 3(1):125–136.

9. Ochoa X, Duval E. Quantitative Analysis of Learning Object Repositories. IEEE Transactions on Learning
Technologies Sept 2009 July; 2(3):226–238. DOI: 10.1109/TLT.2009.28.

10. Ternier S. Standards based Interoperability for Searching in and Publishing to Learning Object Repositories.
PhD Thesis, Katholieke Universiteit Leuven, 2008.

11. Repository software survey, in Repositories Support Project, November, 2010. Available from: http://www.rsp.ac.uk/
start/software-survey/results-2010/ [21 July 2011].

12. Fay E. Repository, Software Comparison, Building Digital Library Infrastructure at LSE, in Ariadne Issue 64. Web
Magazine for Information Professionals, 2010. Available from: http://www.ariadne.ac.uk/issue64/fay.

13. JORUM team. E-Learning Repository Systems Research Watch. Technical report, JISC (University of Bristol), 2006.
14. Leslie S. Challenges to Implementing DSpace as a LOR. In COPPUL Distance Education Group, 2006. Available

from: http://www.slideshare.net/sleslie/using-dspace-as-a-lor.
15. Wolpert A. CWSpace - Archiving MIT OpenCourseWare to MIT DSpace, MIT Libraries, 2009. Available from:

http://cwspace.mit.edu/ [21 July 2011].
16. Friesen N. Interoperability and Learning Objects: An Overview of E-Learning Standardization, Interdisciplinary

Journal of Knowledge and Learning Objects. Informing Science Institute: 131 Brookhill Court, Santa Rosa, CA,
95409, USA, 2005; 1(1): 23–31.

17. IMS Application Profile Guidelines Overview, Part 1 – Management Overview, Version 1.0, 2005. Available from:
http://www.imsglobal.org/ap/apv1p0/imsap_oviewv1p0.html.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



crimsonHex: A LEARNING OBJECTS REPOSITORY FOR PROGRAMMING EXERCISES

18. Tzikopoulos A, Manouselis N, Vuorikari R. An Overview of Learning Object Repositories. In Learning Objects for
Instruction: Design and Evaluation. IGI Global, 2007; 29–55. DOI:10.4018/978-1-59904-334-0.ch003.

19. Queirós R, Leal JPA. comparative study on LMS interoperability. In Higher Education Institutions and Learning
Management Systems: Adoption and Standardization, IGI Global, 2011; 142–161.

20. IEEE Learning Technology Standards Committee (LTSC) official Web site. http://www.ieeeltsc.org [21 July 2011].
21. Al-Khalifa H, Davis H. The evolution of metadata from standards to semantics in E-learning applications. In

Proceedings of the 17th ACM Conference on Hypertext and Hypermedia, Denmark, 22-25 Aug 2006; 69–72.
22. Friesen N. Semantic and Syntactic Interoperability for Learning Object Metadata. In Metadata in Practice,

Hillman D (ed.). ALA Editions: Chicago, 2004.
23. Pons D, Hilera J, Pagés C. E-Learning metadata standards. In Learning Technology Newsletter of IEEE Computer

Societys Technical Committee on Learning Technology (TCLT), Vol. 13 Issue 3, Graf S, Karagiannidis C (eds),
July 2011. ISSN 1438-0625.

24. ISO/IEC 19788-1:2011. Information technology - Learning, education and training - Metadata for learning resources.
Part 1: Framework. First edition, 07 January 2011. Available from: http://www.iso.org/iso/iso_catalogue/catalogue_
tc/catalogue_detail.htm?csnumber=50772.

25. Cantara L. Metadata Encoding and Transmission Standard: Primer and Reference Manual. Imprint, 40
(September), 2007. Available from: http://www.informaworld.com/openurl?genre=article&doi=10.1300/
J104v40n03_11&magic=crossref.

26. MODS: Uses and Features. Library of Congress, October 18, 2010. Available from: http://www.loc.gov/standards/
mods/mods-overview.html.

27. IMS Common Cartridge Profile: overview, Version 1.1 Final Specification. http://www.imsglobal.org/cc/ccv1p1/
imscc_profilev1p1-Overview.html [21 July 2011].

28. Massart D, et al. Taming the Metadata Beast: ILOX , D-Lib Magazine. D-Lib Magazine November/December 2010;
16(11/12). DOI: 10.1045/november2010-massart.

29. McCallum SH. A look at new information retrieval protocols: SRU, OpenSearch/a9, CQL, and XQuery. In World
Library and Information Congress: 72nd IFLA General Conference and Council, IFLA, IFLA, 2006.

30. Ternier S, Massart D, Totschnig M, Klerkx J, Duval E. The Simple Publishing Interface (SPI). D-Lib Magazine 2010;
16:957–962.

31. Simon B, Massart D, Van Assche F, Ternier S, Duval E, Brantner S, Olmedilla D, Miklós Z. A simple query
interface for interoperable learning repositories. Proceedings of the 1st Workshop on Interoperability of Web-based
Educational Systems, Chiba, Japan, 2005; 11–18.

32. Meier W. eXist: An Open Source Native XML Database. In: NODe 2002 Web and Database-Related Workshops,
Erfurt, Germany, 2002; 169–183.

33. Fielding RT, Taylor RN. Principled Design of the Modern Web Architecture. ACM Transactions on Internet
Technology (TOIT) May 2002; 2(2):115–150. DOI: 10.1145/514183.514185, ISSN 1533-5399. New York: Asso-
ciation for Computing Machinery.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe


